Skip to main content
Log in

Normalization of Reverse Transcription Quantitative PCR Data During Ageing in Distinct Cerebral Structures

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Reverse transcription quantitative-polymerase chain reaction (RT-qPCR) has become a routine method in many laboratories. Normalization of data from experimental conditions is critical for data processing and is usually achieved by the use of a single reference gene. Nevertheless, as pointed by the Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines, several reference genes should be used for reliable normalization. Ageing is a physiological process that results in a decline of many expressed genes. Reliable normalization of RT-qPCR data becomes crucial when studying ageing. Here, we propose a RT-qPCR study from four mouse brain regions (cortex, hippocampus, striatum and cerebellum) at different ages (from 8 weeks to 22 months) in which we studied the expression of nine commonly used reference genes. With the use of two different algorithms, we found that all brain structures need at least two genes for a good normalization step. We propose specific pairs of gene for efficient data normalization in the four brain regions studied. These results underline the importance of reliable reference genes for specific brain regions in ageing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Andersen CL, Jensen JL, Orntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64(15):5245–5250. doi:10.1158/0008-5472.CAN-04-0496

    Article  CAS  PubMed  Google Scholar 

  2. Bustin SA, Benes V, Garson J, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley G, Wittwer CT, Schjerling P, Day PJ, Abreu M, Aguado B, Beaulieu JF, Beckers A, Bogaert S, Browne JA, Carrasco-Ramiro F, Ceelen L, Ciborowski K, Cornillie P, Coulon S, Cuypers A, De Brouwer S, De Ceuninck L, De Craene J, De Naeyer H, De Spiegelaere W, Deckers K, Dheedene A, Durinck K, Ferreira-Teixeira M, Fieuw A, Gallup JM, Gonzalo-Flores S, Goossens K, Heindryckx F, Herring E, Hoenicka H, Icardi L, Jaggi R, Javad F, Karampelias M, Kibenge F, Kibenge M, Kumps C, Lambertz I, Lammens T, Markey A, Messiaen P, Mets E, Morais S, Mudarra-Rubio A, Nakiwala J, Nelis H, Olsvik PA, Perez-Novo C, Plusquin M, Remans T, Rihani A, Rodrigues-Santos P, Rondou P, Sanders R, Schmidt-Bleek K, Skovgaard K, Smeets K, Tabera L, Toegel S, Van Acker T, Van den Broeck W, Van der Meulen J, Van Gele M, Van Peer G, Van Poucke M, Van Roy N, Vergult S, Wauman J, Tshuikina-Wiklander M, Willems E, Zaccara S, Zeka F, Vandesompele J (2013) The need for transparency and good practices in the qPCR literature. Nat Methods 10(11):1063–1067. doi:10.1038/nmeth.2697

    Article  CAS  PubMed  Google Scholar 

  3. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome biology 3 (7):RESEARCH0034

  4. Huggett J, Dheda K, Bustin S, Zumla A (2005) Real-time RT-PCR normalisation; strategies and considerations. Genes Immun 6(4):279–284. doi:10.1038/sj.gene.6364190

    Article  CAS  PubMed  Google Scholar 

  5. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55(4):611–622. doi:10.1373/clinchem.2008.112797

    Article  CAS  PubMed  Google Scholar 

  6. Seidler RD, Bernard JA, Burutolu TB, Fling BW, Gordon MT, Gwin JT, Kwak Y, Lipps DB (2010) Motor control and aging: links to age-related brain structural, functional, and biochemical effects. Neurosci Biobehav Rev 34(5):721–733. doi:10.1016/j.neubiorev.2009.10.005

    Article  CAS  PubMed  Google Scholar 

  7. Baltes PB, Lindenberger U (1997) Emergence of a powerful connection between sensory and cognitive functions across the adult life span: a new window to the study of cognitive aging? Psychol Aging 12(1):12–21

    Article  CAS  PubMed  Google Scholar 

  8. Ganesh SK, Arnett DK, Assimes TL, Basson CT, Chakravarti A, Ellinor PT, Engler MB, Goldmuntz E, Herrington DM, Hershberger RE, Hong Y, Johnson JA, Kittner SJ, McDermott DA, Meschia JF, Mestroni L, O'Donnell CJ, Psaty BM, Vasan RS, Ruel M, Shen WK, Terzic A, Waldman SA (2013) Genetics and genomics for the prevention and treatment of cardiovascular disease: update: a scientific statement from the American Heart Association. Circulation 128(25):2813–2851. doi:10.1161/01.cir.0000437913.98912.1d

    Article  PubMed  Google Scholar 

  9. Reitz C, Mayeux R (2014) Alzheimer disease: epidemiology, diagnostic criteria, risk factors and biomarkers. Biochem Pharmacol 88(4):640–651. doi:10.1016/j.bcp.2013.12.024

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Hindle JV (2010) Ageing, neurodegeneration and Parkinson's disease. Age Ageing 39(2):156–161. doi:10.1093/ageing/afp223

    Article  PubMed  Google Scholar 

  11. Bustin SA (2002) Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J Mol Endocrinol 29(1):23–39

    Article  CAS  PubMed  Google Scholar 

  12. Harrison DC, Medhurst AD, Bond BC, Campbell CA, Davis RP, Philpott KL (2000) The use of quantitative RT-PCR to measure mRNA expression in a rat model of focal ischemia—caspase-3 as a case study. Brain Res Mol Brain Res 75(1):143–149

    Article  CAS  PubMed  Google Scholar 

  13. Foldager CB, Munir S, Ulrik-Vinther M, Soballe K, Bunger C, Lind M (2009) Validation of suitable house keeping genes for hypoxia-cultured human chondrocytes. BMC Mol Biol 10:94. doi:10.1186/1471-2199-10-94

    Article  PubMed Central  PubMed  Google Scholar 

  14. Ishitani R, Sunaga K, Hirano A, Saunders P, Katsube N, Chuang DM (1996) Evidence that glyceraldehyde-3-phosphate dehydrogenase is involved in age-induced apoptosis in mature cerebellar neurons in culture. J Neurochem 66(3):928–935

    Article  CAS  PubMed  Google Scholar 

  15. Ghani M, Sato C, Rogaeva E (2013) Segmental duplications in genome-wide significant loci and housekeeping genes; warning for GAPDH and ACTB. Neurobiol Aging 34(6):1710 e1711–1714. doi:10.1016/j.neurobiolaging.2012.11.006

    Article  Google Scholar 

  16. Sieber MW, Guenther M, Kohl M, Witte OW, Claus RA, Frahm C (2010) Inter-age variability of bona fide unvaried transcripts normalization of quantitative PCR data in ischemic stroke. Neurobiol Aging 31(4):654–664. doi:10.1016/j.neurobiolaging.2008.05.023

    Article  CAS  PubMed  Google Scholar 

  17. Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J (2007) qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol 8(2):R19. doi:10.1186/gb-2007-8-2-r19

    Article  PubMed Central  PubMed  Google Scholar 

  18. Roussel BD, Macrez R, Jullienne A, Agin V, Maubert E, Dauphinot L, Potier MC, Plawinski L, Castel H, Hommet Y, Munuera J, Montaner J, Yepes M, Ali C, Vivien D (2009) Age and albumin D site-binding protein control tissue plasminogen activator levels: neurotoxic impact. Brain 132(Pt 8):2219–2230. doi:10.1093/brain/awp162

    Article  PubMed Central  PubMed  Google Scholar 

  19. Cacquevel M, Launay S, Castel H, Benchenane K, Cheenne S, Buee L, Moons L, Delacourte A, Carmeliet P, Vivien D (2007) Ageing and amyloid-beta peptide deposition contribute to an impaired brain tissue plasminogen activator activity by different mechanisms. Neurobiol Dis 27(2):164–173. doi:10.1016/j.nbd.2007.04.004

    Article  CAS  PubMed  Google Scholar 

  20. Obiang P, Maubert E, Bardou I, Nicole O, Launay S, Bezin L, Vivien D, Agin V (2011) Enriched housing reverses age-associated impairment of cognitive functions and tPA-dependent maturation of BDNF. Neurobiol Learn Mem 96(2):121–129. doi:10.1016/j.nlm.2011.03.004

    Article  CAS  PubMed  Google Scholar 

  21. Bustin SA, Nolan T (2004) Pitfalls of quantitative real-time reverse-transcription polymerase chain reaction. J Biomol Tech: JBT 15(3):155–166

    PubMed Central  PubMed  Google Scholar 

  22. Suzuki T, Higgins PJ, Crawford DR (2000) Control selection for RNA quantitation. BioTechn 29(2):332–337

    CAS  Google Scholar 

  23. Orset C, Macrez R, Young AR, Panthou D, Angles-Cano E, Maubert E, Agin V, Vivien D (2007) Mouse model of in situ thromboembolic stroke and reperfusion. Stroke 38(10):2771–2778. doi:10.1161/STROKEAHA.107.487520

    Article  PubMed  Google Scholar 

  24. Duty S, Jenner P (2011) Animal models of Parkinson's disease: a source of novel treatments and clues to the cause of the disease. Br J Pharmacol 164(4):1357–1391. doi:10.1111/j.1476-5381.2011.01426.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Seeman P, Seeman N (2011) Alzheimer's disease: beta-amyloid plaque formation in human brain. Synapse 65(12):1289–1297. doi:10.1002/syn.20957

    Article  CAS  PubMed  Google Scholar 

  26. Forster MJ, Morris P, Sohal RS (2003) Genotype and age influence the effect of caloric intake on mortality in mice. FASEB J : Off Publ Fed Am Soc Exp Biol 17(6):690–692. doi:10.1096/fj.02-0533fje

    Google Scholar 

  27. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386

    CAS  PubMed  Google Scholar 

  28. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):e45

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank the Basse-Normandie region for funding Bruckert G and Dr Roussel BD and its credits for the laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. D. Roussel.

Additional information

Neurodegenerative diseases represent a real challenge for our societies as their frequencies increase with ageing of the population. These diseases are often associated to gene regulation disorders that make their study useful for the comprehension of the disease. Currently, quantitative PCR is the most efficient tool for this kind of studies because it allows a fast and accurate measurement of gene expression levels. However, the reliability of RT-qPCR is influenced by the selection of reference genes, whose expression must be stable in the experimental conditions studied. However, many studies use “common” reference genes such as GAPDH or actin-beta, which have been reported to be unstable in certain conditions. Moreover, Sieber and collaborators have demonstrated the importance of using more than one reference gene to strengthen the exactness of measurements when studying ageing or brain insults such as ischaemia. However, the authors focused on the whole brain instead of studying several structures separately.

By using different algorithms, we identified specific combinations of housekeeping genes in the cortex, the hippocampus, the striatum and the cerebellum, allowing a reliable measurement of gene expression during a longitudinal study in RT-qPCR.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary table 1

An intragroup analysis was performed using the Mann and Whitney non-parametric test (Grap Prism software) on the raw data for each genes studied in the cortex, hippocampus, striatum and cerebellum. *: p < 0.05; **: p < 0.01; ***: p < 0.001. (DOCX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bruckert, G., Vivien, D., Docagne, F. et al. Normalization of Reverse Transcription Quantitative PCR Data During Ageing in Distinct Cerebral Structures. Mol Neurobiol 53, 1540–1550 (2016). https://doi.org/10.1007/s12035-015-9114-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9114-5

Keywords

Navigation