Skip to main content
Log in

Inhibitor of Aurora Kinase B Induces Differentially Cell Death and Polyploidy via DNA Damage Response Pathways in Neurological Malignancy: Shedding New Light on the Challenge of Resistance to AZD1152-HQPA

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Aurora kinase B (AURKB), a crucial regulator of malignant mitosis, is involved in chromosome segregation and cytokinesis. AZD1152-HQPA is a selective inhibitor for AURKB activity and currently bears clinical assessment for several malignancies. However, the effect of this drug still needs to be elucidated in neurological malignancies. In this study, we investigated the restrictive potentials of AZD1152-HQPA in U87MG and SK-N-MC. AZD1152-HQPA treatment resulted in growth arrest, modification of cell cycle, and inhibition of colony formation in both cell lines. Furthermore, lower concentrations of AZD1152-HQPA profoundly induced apoptosis in U87GM (p53/p73 wild type) cells in parallel with an upregulation of p53 and its target genes BAX, BAD, APAF1, and PUMA. But remarkably, SK-N-MC (p53/p73 double null) responded to AZD1152-HQPA at much higher concentrations with an upregulation of genes involved in cell cycle progression, induction of excessive endoreduplication, and polyploidy rather than apoptosis. Although SK-N-MC was resistant to AZD1152-HQPA, we did not find a mutation in the coding sequence of Aurora B gene or overexpressions of ABCG2 and ABCB1 as reported previously to be resistance mechanisms. However, our results suggest that p53/p73 status could be an important mechanism for the type of response and resistance of the tumor cells to AZD1152-HQPA. Collectively, inhibition of Aurora kinase B differentially induced cell death and polyploidy via DNA damage response pathways, depending on the status of p53/p73. We suggest p53/p73 could be a key regulator of sensitivity to AZD1152-HQPA and their status should be explored in clinical response to this ongoing drug in clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Khasraw M, Lassman AB (2010) Advances in the treatment of malignant gliomas. Curr Oncol Rep 12(1):26–33. doi:10.1007/s11912-009-0077-4

    Article  CAS  PubMed  Google Scholar 

  2. Brodeur GM (2003) Neuroblastoma: biological insights into a clinical enigma. Nat Rev Cancer 3(3):203–216. doi:10.1038/nrc1014

    Article  CAS  PubMed  Google Scholar 

  3. Hontz AE, Li SA, Lingle WL, Negron V, Bruzek A, Salisbury JL, Li JJ (2007) Aurora A and B overexpression and centrosome amplification in early estrogen-induced tumor foci in the Syrian hamster kidney: implications for chromosomal instability, aneuploidy, and neoplasia. Cancer Res 67(7):2957–2963

    Article  CAS  PubMed  Google Scholar 

  4. Carmena M, Earnshaw WC (2003) The cellular geography of aurora kinases. Nat Rev 4(11):842–854

    Article  CAS  Google Scholar 

  5. Zeng WF, Navaratne K, Prayson RA, Weil RJ (2007) Aurora B expression correlates with aggressive behaviour in glioblastoma multiforme. J Clin Pathol 60(2):218–221. doi:10.1136/jcp.2006.036806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chieffi P, Cozzolino L, Kisslinger A, Libertini S, Staibano S, Mansueto G, De Rosa G, Villacci A et al (2006) Aurora B expression directly correlates with prostate cancer malignancy and influence prostate cell proliferation. Prostate 66(3):326–333. doi:10.1002/pros.20345

    Article  CAS  PubMed  Google Scholar 

  7. Li D, Zhu J, Firozi PF, Abbruzzese JL, Evans DB, Cleary K, Friess H, Sen S (2003) Overexpression of oncogenic STK15/BTAK/Aurora A kinase in human pancreatic cancer. Clin Cancer Res 9(3):991–997

    CAS  PubMed  Google Scholar 

  8. Ulisse S, Delcros JG, Baldini E, Toller M, Curcio F, Giacomelli L, Prigent C, Ambesi-Impiombato FS et al (2006) Expression of Aurora kinases in human thyroid carcinoma cell lines and tissues. Int J Cancer 119(2):275–282. doi:10.1002/ijc.21842

    Article  CAS  PubMed  Google Scholar 

  9. Ikezoe T, Yang J, Nishioka C, Tasaka T, Taniguchi A, Kuwayama Y, Komatsu N, Bandobashi K et al (2007) A novel treatment strategy targeting Aurora kinases in acute myelogenous leukemia. Mol Cancer Ther 6(6):1851–1857. doi:10.1158/1535-7163.MCT-07-0067

    Article  CAS  PubMed  Google Scholar 

  10. Michaelis M, Selt F, Rothweiler F, Loschmann N, Nusse B, Dirks WG, Zehner R, Cinatl J Jr (2014) Aurora kinases as targets in drug-resistant neuroblastoma cells. PLoS One 9(9):e108758. doi:10.1371/journal.pone.0108758

    Article  PubMed  PubMed Central  Google Scholar 

  11. Borges KS, Castro-Gamero AM, Moreno DA, da Silva SV, Brassesco MS, de Paula Queiroz RG, de Oliveira HF, Carlotti CG Jr et al (2012) Inhibition of Aurora kinases enhances chemosensitivity to temozolomide and causes radiosensitization in glioblastoma cells. J Cancer Res Clin Oncol 138(3):405–414. doi:10.1007/s00432-011-1111-0

    Article  CAS  PubMed  Google Scholar 

  12. Morozova O, Vojvodic M, Grinshtein N, Hansford LM, Blakely KM, Maslova A, Hirst M, Cezard T et al (2010) System-level analysis of neuroblastoma tumor-initiating cells implicates AURKB as a novel drug target for neuroblastoma. Clin Cancer Res 16(18):4572–4582. doi:10.1158/1078-0432.CCR-10-0627

    Article  CAS  PubMed  Google Scholar 

  13. Van Brocklyn JR, Wojton J, Meisen WH, Kellough DA, Ecsedy JA, Kaur B, Lehman NL (2014) Aurora-A inhibition offers a novel therapy effective against intracranial glioblastoma. Cancer Res 74(19):5364–5370. doi:10.1158/0008-5472.CAN-14-0386

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hong X, O’Donnell JP, Salazar CR, Van Brocklyn JR, Barnett KD, Pearl DK, deCarvalho AC, Ecsedy JA et al (2014) The selective Aurora-A kinase inhibitor MLN8237 (alisertib) potently inhibits proliferation of glioblastoma neurosphere tumor stem-like cells and potentiates the effects of temozolomide and ionizing radiation. Cancer Chemother Pharmacol 73(5):983–990. doi:10.1007/s00280-014-2430-z

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Dennis M, Davies M, Oliver S, D’Souza R, Pike L, Stockman P (2012) Phase I study of the Aurora B kinase inhibitor barasertib (AZD1152) to assess the pharmacokinetics, metabolism and excretion in patients with acute myeloid leukemia. Cancer Chemother Pharmacol 70(3):461–469. doi:10.1007/s00280-012-1939-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Schwartz GK, Carvajal RD, Midgley R, Rodig SJ, Stockman PK, Ataman O, Wilson D, Das S et al (2012) Phase I study of barasertib (AZD1152), a selective inhibitor of Aurora B kinase, in patients with advanced solid tumors. Invest New Drugs. doi:10.1007/s10637-012-9825-7

    Google Scholar 

  17. Zekri A, Ghaffari SH, Ghanizadeh-Vesali S, Yaghmaie M, Salmaninejad A, Alimoghaddam K, Modarressi MH, Ghavamzadeh A (2014) AZD1152-HQPA induces growth arrest and apoptosis in androgen-dependent prostate cancer cell line (LNCaP) via producing aneugenic micronuclei and polyploidy. Tumour Biol. doi:10.1007/s13277-014-2664-8

    PubMed  Google Scholar 

  18. Pluim D, Beijnen JH, Schellens JH, van Tellingen O (2009) Simultaneous determination of AZD1152 (prodrug) and AZD1152-hydroxyquinazoline pyrazol anilide by reversed phase liquid chromatography. J Chromatogr B Anal Technol Biomed Life Sci 877(29):3549–3555. doi:10.1016/j.jchromb.2009.08.035

    Article  CAS  Google Scholar 

  19. Talos F, Nemajerova A, Flores ER, Petrenko O, Moll UM (2007) p73 suppresses polyploidy and aneuploidy in the absence of functional p53. Mol Cell 27(4):647–659. doi:10.1016/j.molcel.2007.06.036

    Article  CAS  PubMed  Google Scholar 

  20. Aihara A, Tanaka S, Yasen M, Matsumura S, Mitsunori Y, Murakata A, Noguchi N, Kudo A et al (2010) The selective Aurora B kinase inhibitor AZD1152 as a novel treatment for hepatocellular carcinoma. J Hepatol 52(1):63–71. doi:10.1016/j.jhep.2009.10.013

    Article  CAS  PubMed  Google Scholar 

  21. Tao Y, Zhang P, Girdler F, Frascogna V, Castedo M, Bourhis J, Kroemer G, Deutsch E (2008) Enhancement of radiation response in p53-deficient cancer cells by the Aurora-B kinase inhibitor AZD1152. Oncogene 27(23):3244–3255. doi:10.1038/sj.onc.1210990

    Article  CAS  PubMed  Google Scholar 

  22. Freed-Pastor WA, Prives C (2012) Mutant p53: one name, many proteins. Genes Dev 26(12):1268–1286. doi:10.1101/gad.190678.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fenech M (2000) The in vitro micronucleus technique. Mutat Res 455(1–2):81–95

    Article  CAS  PubMed  Google Scholar 

  24. Davidoff AM, Pence JC, Shorter NA, Iglehart JD, Marks JR (1992) Expression of p53 in human neuroblastoma- and neuroepithelioma-derived cell lines. Oncogene 7(1):127–133

    CAS  PubMed  Google Scholar 

  25. Gartel AL, Tyner AL (2002) The role of the cyclin-dependent kinase inhibitor p21 in apoptosis. Mol Cancer Ther 1(8):639–649

    CAS  PubMed  Google Scholar 

  26. Kaghad M, Bonnet H, Yang A, Creancier L, Biscan JC, Valent A, Minty A, Chalon P et al (1997) Monoallelically expressed gene related to p53 at 1p36, a region frequently deleted in neuroblastoma and other human cancers. Cell 90(4):809–819

    Article  CAS  PubMed  Google Scholar 

  27. Girdler F, Sessa F, Patercoli S, Villa F, Musacchio A, Taylor S (2008) Molecular basis of drug resistance in aurora kinases. Chem Biol 15(6):552–562. doi:10.1016/j.chembiol.2008.04.013

    Article  CAS  PubMed  Google Scholar 

  28. Walsby E, Walsh V, Pepper C, Burnett A, Mills K (2008) Effects of the aurora kinase inhibitors AZD1152-HQPA and ZM447439 on growth arrest and polyploidy in acute myeloid leukemia cell lines and primary blasts. Haematologica 93(5):662–669. doi:10.3324/haematol.12148

    Article  CAS  PubMed  Google Scholar 

  29. Sasai K, Katayama H, Stenoien DL, Fujii S, Honda R, Kimura M, Okano Y, Tatsuka M et al (2004) Aurora-C kinase is a novel chromosomal passenger protein that can complement Aurora-B kinase function in mitotic cells. Cell Motil Cytoskeleton 59(4):249–263. doi:10.1002/cm.20039

    Article  CAS  PubMed  Google Scholar 

  30. Guo J, Anderson MG, Tapang P, Palma JP, Rodriguez LE, Niquette A, Li J, Bouska JJ et al (2009) Identification of genes that confer tumor cell resistance to the aurora B kinase inhibitor, AZD1152. Pharmacogenomics J 9(2):90–102. doi:10.1038/tpj.2008.20

    Article  CAS  PubMed  Google Scholar 

  31. Talos F, Moll UM (2010) Role of the p53 family in stabilizing the genome and preventing polyploidization. Adv Exp Med Biol 676:73–91

    Article  CAS  PubMed  Google Scholar 

  32. Tsuiki H, Nitta M, Tada M, Inagaki M, Ushio Y, Saya H (2001) Mechanism of hyperploid cell formation induced by microtubule inhibiting drug in glioma cell lines. Oncogene 20(4):420–429

    Article  CAS  PubMed  Google Scholar 

  33. Tomasini R, Mak TW, Melino G (2008) The impact of p53 and p73 on aneuploidy and cancer. Trends Cell Biol 18(5):244–252. doi:10.1016/j.tcb.2008.03.003

    Article  CAS  PubMed  Google Scholar 

  34. Stukenberg PT (2004) Triggering p53 after cytokinesis failure. J Cell Biol 165(5):607–608. doi:10.1083/jcb.200405089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sak A, Stuschke M, Groneberg M, Kubler D, Pottgen C, Eberhardt WE (2012) Inhibiting the aurora B kinase potently suppresses repopulation during fractionated irradiation of human lung cancer cell lines. Int J Radiat Oncol Biol Phys 84(2):492–499. doi:10.1016/j.ijrobp.2011.12.021

    Article  CAS  PubMed  Google Scholar 

  36. Diaz RJ, Golbourn B, Shekarforoush M, Smith CA, Rutka JT (2012) Aurora kinase B/C inhibition impairs malignant glioma growth in vivo. J Neurooncol 108(3):349–360. doi:10.1007/s11060-012-0835-2

    Article  CAS  PubMed  Google Scholar 

  37. Yu J, Zhang H, Gu J, Lin S, Li J, Lu W, Wang Y, Zhu J (2004) Methylation profiles of thirty four promoter-CpG islands and concordant methylation behaviours of sixteen genes that may contribute to carcinogenesis of astrocytoma. BMC Cancer 4:65. doi:10.1186/1471-2407-4-65

    Article  PubMed  PubMed Central  Google Scholar 

  38. Stokes MP, Rush J, Macneill J, Ren JM, Sprott K, Nardone J, Yang V, Beausoleil SA et al (2007) Profiling of UV-induced ATM/ATR signaling pathways. Proc Natl Acad Sci U S A 104(50):19855–19860. doi:10.1073/pnas.0707579104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Vitale I, Galluzzi L, Castedo M, Kroemer G (2011) Mitotic catastrophe: a mechanism for avoiding genomic instability. Nat Rev Mol Cell Biol 12(6):385–392. doi:10.1038/nrm3115

    Article  CAS  PubMed  Google Scholar 

  40. Bassing CH, Alt FW (2004) The cellular response to general and programmed DNA double strand breaks. DNA Repair 3(8–9):781–796

    Article  CAS  PubMed  Google Scholar 

  41. Featherstone C, Jackson SP (1999) DNA double-strand break repair. Curr Biol 9(20):R759–R761

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank AstraZeneca pharmaceutical company for supplying the Aurora B inhibitor AZD1152-HQPA. We thank Azam Zaghal for of flow cytometry analyses and Elham Hossaini and Masomeh Rostami for their help in this study.

Compliance with Ethical Standards

Funding

This study was funded by Hematology, Oncology and stem cell therapy, Tehran University of Medical Sciences, Tehran, Iran (grant number 1619).

Conflict of Interest

The authors declare that they have no conflict of interest.

Research Involving Human Participants and/or Animals

This research did not involve any human participants, and no animals were involved in this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed H. Ghaffari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zekri, A., Ghaffari, S.H., Yaghmaie, M. et al. Inhibitor of Aurora Kinase B Induces Differentially Cell Death and Polyploidy via DNA Damage Response Pathways in Neurological Malignancy: Shedding New Light on the Challenge of Resistance to AZD1152-HQPA. Mol Neurobiol 53, 1808–1823 (2016). https://doi.org/10.1007/s12035-015-9139-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9139-9

Keywords

Navigation