Skip to main content

Advertisement

Log in

The Role of Nitric Oxide and Sympathetic Control in Cerebral Autoregulation in the Setting of Subarachnoid Hemorrhage and Traumatic Brain Injury

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Cerebral autoregulation is defined as the mechanism by which constant cerebral blood flow is maintained despite changes of arterial blood pressure, and arterial blood pressure represents the principle aspect of cerebral autoregulation. The impairment of cerebral autoregulation is reported to be involved in several diseases. However, the concept, mechanisms, and pathological dysfunction of cerebral autoregulation are beyond full comprehension. Nitric oxide control and sympathetic control are main contributors to cerebral autoregulation. Although impaired cerebral autoregulation after nitric oxide inhibition or sympathetic ganglia blockade is reported, managing the inhibition or blockade can have negative consequences and needs further exploration. Additionally, impaired cerebral autoregulation following subarachnoid hemorrhage and traumatic brain injury has been proven by several descriptive studies, although without corresponding explanations. As the most important mechanisms of cerebral autoregulation, the changes of nitric oxide and sympathetic stimulation play significant roles in these insults. Therefore, the in-depth researches of nitric oxide and sympathetic nerve in cerebral autoregulation may help to develop new therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Immink RV, van Montfrans GA, Stam J, Karemaker JM, Diamant M, van Lieshout JJ (2005) Dynamic cerebral autoregulation in acute lacunar and middle cerebral artery territory ischemic stroke. Stroke 36(12):2595–2600

    Article  PubMed  Google Scholar 

  2. Claassen JA, Zhang R (2011) Cerebral autoregulation in Alzheimer’s disease. J Cereb Blood Flow Metab 31(7):1572–1577. doi:10.1038/jcbfm.2011.69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Guo ZN, Xing Y, Liu J, Wang S, Yan S, Jin H, Yang Y (2014) Compromised dynamic cerebral autoregulation in patients with a right-to-left shunt: a potential mechanism of migraine and cryptogenic stroke. Plos One 9(8):e104849. doi:10.1371/journal.pone.0104849

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bellapart J, Fraser JF (2009) Transcranial Doppler assessment of cerebral autoregulation. Ultrasound Med Biol 35(6):883–893. doi:10.1016/j.ultrasmedbio.2009.01.005

    Article  PubMed  Google Scholar 

  5. Murkin JM (2007) Cerebral autoregulation: the role of CO2 in metabolic homeostasis. Semin Cardiothorac Vasc Anesth 11(4):269–273. doi:10.1177/1089253207311159

    Article  PubMed  Google Scholar 

  6. Hamner JW, Tan CO, Tzeng YC, Taylor JA (2012) Cholinergic control of the cerebral vasculature in humans. J Physiol Lond 590(24):6343–6352. doi:10.1113/jphysiol.2012.245100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tiecks FP, Lam AM, Aaslid R, Newell DW (1995) Comparison of static and dynamic cerebral autoregulation measurements. Stroke 26(6):1014–1019

    Article  CAS  PubMed  Google Scholar 

  8. Terashvili M, Pratt PF, Gebremedhin D, Narayanan J, Harder DR (2006) Reactive oxygen species cerebral autoregulation in health and disease. Pediatr Clin N Am 53(5):1029–1037, xi

    Article  Google Scholar 

  9. Armstead WM, Kiessling JW, Cines DB, Higazi AA (2011) Glucagon protects against impaired NMDA-mediated cerebrovasodilation and cerebral autoregulation during hypotension after brain injury by activating cAMP protein kinase A and inhibiting upregulation of tPA. J Neurotrauma 28(3):451–457. doi:10.1089/neu.2010.1659

    Article  PubMed  PubMed Central  Google Scholar 

  10. Bohlen HG, Harper SL (1984) Evidence of myogenic vascular control in the rat cerebral cortex. Circ Res 55(4):554–559

    Article  CAS  PubMed  Google Scholar 

  11. McCarron JG, Osol G, Halpern W (1989) Myogenic responses are independent of the endothelium in rat pressurized posterior cerebral arteries. Blood Vessels 26(5):315–319

    CAS  PubMed  Google Scholar 

  12. Carrera E, Lee LK, Giannopoulos S, Marshall RS (2009) Cerebrovascular reactivity and cerebral autoregulation in normal subjects. J Neurol Sci 285(1-2):191–194. doi:10.1016/j.jns.2009.06.041

    Article  PubMed  Google Scholar 

  13. Gommer ED, Staals J, van Oostenbrugge RJ, Lodder J, Mess WH, Reulen JP (2008) Dynamic cerebral autoregulation and cerebrovascular reactivity: a comparative study in lacunar infarct patients. Physiol Meas 29(11):1293–1303. doi:10.1088/0967-3334/29/11/005

    Article  CAS  PubMed  Google Scholar 

  14. Tan CO, Taylor JA (2014) Integrative physiological and computational approaches to understand autonomic control of cerebral autoregulation. Exp Physiol 99(1):3–15. doi:10.1113/expphysiol.2013.072355

    Article  PubMed  Google Scholar 

  15. Ainslie PN, Lucas SJ, Fan JL, Thomas KN, Cotter JD, Tzeng YC, Burgess KR (2012) Influence of sympathoexcitation at high altitude on cerebrovascular function and ventilatory control in humans. J Appl Physiol (1985) 113(7):1058–1067. doi:10.1152/japplphysiol.00463.2012

    Article  CAS  Google Scholar 

  16. Jordan J, Shannon JR, Diedrich A, Black B, Costa F, Robertson D, Biaggioni I (2000) Interaction of carbon dioxide and sympathetic nervous system activity in the regulation of cerebral perfusion in humans. Hypertension 36(3):383–388

    Article  CAS  PubMed  Google Scholar 

  17. Azevedo E, Castro P, Santos R, Freitas J, Coelho T, Rosengarten B, Panerai R (2011) Autonomic dysfunction affects cerebral neurovascular coupling. Clin Auton Res 21(6):395–403. doi:10.1007/s10286-011-0129-3

    Article  PubMed  Google Scholar 

  18. Phillips AA, Krassioukov AV, Zheng MM, Warburton DE (2013) Neurovascular coupling of the posterior cerebral artery in spinal cord injury: a pilot study. Brain Sci 3(2):781–789. doi:10.3390/brainsci3020781

    Article  PubMed  PubMed Central  Google Scholar 

  19. Aguado F, Espinosa-Parrilla JF, Carmona MA, Soriano E (2002) Neuronal activity regulates correlated network properties of spontaneous calcium transients in astrocytes in situ. J Neurosci 22(21):9430–9444

    CAS  PubMed  Google Scholar 

  20. Hamner JW, Tan CO (2014) Relative contributions of sympathetic, cholinergic, and myogenic mechanisms to cerebral autoregulation. Stroke 45(6):1771–1777. doi:10.1161/STROKEAHA.114.005293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. White RP, Vallance P, Markus HS (2000) Effect of inhibition of nitric oxide synthase on dynamic cerebral autoregulation in humans. Clin Sci (Lond) 99(6):555–560

    Article  CAS  Google Scholar 

  22. Preckel MP, Leftheriotis G, Ferber C, Degoute CS, Banssillon V, Saumet JL (1996) Effect of nitric oxide blockade on the lower limit of the cortical cerebral autoregulation in pentobarbital-anaesthetized rats. Int J Microcirc Clin Exp 16(6):277–283

    Article  CAS  PubMed  Google Scholar 

  23. Tanaka K, Fukuuchi Y, Gomi S, Mihara B, Shirai T, Nogawa S, Nozaki H, Nagata E (1993) Inhibition of nitric-oxide synthesis impairs autoregulation of local cerebral blood-flow in the rat. Neuroreport 4(3):267–270. doi:10.1097/00001756-199303000-00010

    Article  CAS  PubMed  Google Scholar 

  24. Kajita Y, Takayasu M, Dietrich HH, Dacey RG Jr (1998) Possible role of nitric oxide in autoregulatory response in rat intracerebral arterioles. Neurosurgery 42(4):834–841, discussion 841-832

    Article  CAS  PubMed  Google Scholar 

  25. Thompson BG, Pluta RM, Girton ME, Oldfield EH (1996) Nitric oxide mediation of chemoregulation but not autoregulation of cerebral blood flow in primates. J Neurosurg 84(1):71–78. doi:10.3171/jns.1996.84.1.0071

    Article  CAS  PubMed  Google Scholar 

  26. Zhang R, Wilson TE, Witkowski S, Cui J, Crandall GG, Levine BD (2004) Inhibition of nitric oxide synthase does not alter dynamic cerebral autoregulation in humans. Am J Physiol Heart Circ Physiol 286(3):H863–H869

    Article  CAS  PubMed  Google Scholar 

  27. Edvinsson L, Aubineau P, Owman C, Sercombe R, Seylaz J (1975) Sympathetic innervation of cerebral arteries: prejunctional supersensitivity to norepinephrine after sympathectomy or cocaine treatment. Stroke 6(5):525–530

    Article  CAS  PubMed  Google Scholar 

  28. Hamner JW, Tan CO, Lee K, Cohen MA, Taylor JA (2010) Sympathetic control of the cerebral vasculature in humans. Stroke 41(1):102–109. doi:10.1161/STROKEAHA.109.557132

    Article  CAS  PubMed  Google Scholar 

  29. Sagawa K, Guyton AC (1961) Pressure-flow relationships in isolated canine cerebral circulation. Am J Physiol 200:711–714

    CAS  PubMed  Google Scholar 

  30. Eklof B, Ingvar DH, Kagstrom E, Olin T (1971) Persistence of cerebral blood flow autoregulation following chronic bilateral cervical sympathectomy in the monkey. Acta Physiol Scand 82(2):172–176. doi:10.1111/j.1748-1716.1971.tb04956.x

    Article  CAS  PubMed  Google Scholar 

  31. Zhang R, Levine BD (2007) Autonomic ganglionic blockade does not prevent reduction in cerebral blood flow velocity during orthostasis in humans. Stroke 38(4):1238–1244

    Article  PubMed  Google Scholar 

  32. Gierthmuhlen J, Allardt A, Sawade M, Baron R, Wasner G (2011) Dynamic cerebral autoregulation in stroke patients with a central sympathetic deficit. Acta Neurol Scand 123(5):332–338. doi:10.1111/j.1600-0404.2010.01424.x

    Article  CAS  PubMed  Google Scholar 

  33. Zhang R, Zuckerman JH, Iwasaki K, Wilson TE, Crandall CG, Levine BD (2002) Autonomic neural control of dynamic cerebral autoregulation in humans. Circulation 106(14):1814–1820

    Article  PubMed  Google Scholar 

  34. Ainslie PN, Brassard P (2014) Why is the neural control of cerebral autoregulation so controversial? F1000Prime Rep 6:14. doi:10.12703/P6-14

  35. Gordon RD, Kuchel O, Liddle GW, Island DP (1967) Role of the sympathetic nervous system in regulating renin and aldosterone production in man. J Clin Invest 46(4):599–605. doi:10.1172/JCI105561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mathew RJ, Wilson WH (1997) Intracranial and extracranial blood flow during acute anxiety. Psychiatry Res 74(2):93–107

    Article  CAS  PubMed  Google Scholar 

  37. Zhang HL, Guo ZN, Yang G, Yang L, Han K, Wu J, Xing Y, Yang Y (2012) Compromised cerebrovascular modulation in chronic anxiety: evidence from cerebral blood flow velocity measured by transcranial Doppler sonography. Neurosci Bull 28(6):723–728. doi:10.1007/s12264-012-1282-y

    Article  CAS  PubMed  Google Scholar 

  38. van Gijn J, Kerr RS, Rinkel GJ (2007) Subarachnoid haemorrhage. Lancet 369(9558):306–318

    Article  PubMed  Google Scholar 

  39. Otite F, Mink S, Tan CO, Puri A, Zamani AA, Mehregan A, Chou S, Orzell S et al (2014) Impaired cerebral autoregulation is associated with vasospasm and delayed cerebral ischemia in subarachnoid hemorrhage. Stroke 45(3):677–682. doi:10.1161/STROKEAHA.113.002630

    Article  PubMed  PubMed Central  Google Scholar 

  40. Budohoski KP, Czosnyka M, Smielewski P, Kasprowicz M, Helmy A, Bulters D, Pickard JD, Kirkpatrick PJ (2012) Impairment of cerebral autoregulation predicts delayed cerebral ischemia after subarachnoid hemorrhage: a prospective observational study. Stroke 43(12):3230–3237. doi:10.1161/STROKEAHA.112.669788

    Article  PubMed  Google Scholar 

  41. Lang EW, Diehl RR, Mehdorn HM (2001) Cerebral autoregulation testing after aneurysmal subarachnoid hemorrhage: the phase relationship between arterial blood pressure and cerebral blood flow velocity. Crit Care Med 29(1):158–163. doi:10.1097/00003246-200101000-00031

    Article  CAS  PubMed  Google Scholar 

  42. Jaeger M, Soehle M, Schuhmann MU, Meixensberger J (2012) Clinical significance of impaired cerebrovascular autoregulation after severe aneurysmal subarachnoid hemorrhage. Stroke 43(8):2097–2101. doi:10.1161/STROKEAHA.112.659888

    Article  PubMed  Google Scholar 

  43. Sabri M, Ai J, Knight B, Tariq A, Jeon H, Shang X, Marsden PA, Loch Macdonald R (2011) Uncoupling of endothelial nitric oxide synthase after experimental subarachnoid hemorrhage. J Cereb Blood Flow Metab 31(1):190–199. doi:10.1038/jcbfm.2010.76

    Article  CAS  PubMed  Google Scholar 

  44. Kim H, Britton GL, Peng T, Holland CK, McPherson DD, Huang SL (2014) Nitric oxide-loaded echogenic liposomes for treatment of vasospasm following subarachnoid hemorrhage. Int J Nanomedicine 9:155–165. doi:10.2147/IJN.S48856

    PubMed  Google Scholar 

  45. Hanggi D, Steiger HJ (2006) Nitric oxide in subarachnoid haemorrhage and its therapeutics implications. Acta Neurochir (Wien) 148(6):605–613. doi:10.1007/s00701-005-0721-1, discussion 613

    Article  CAS  Google Scholar 

  46. Sabri M, Ai J, Marsden PA, Macdonald RL (2011) Simvastatin re-couples dysfunctional endothelial nitric oxide synthase in experimental subarachnoid hemorrhage. Plos One 6(2):e17062. doi:10.1371/journal.pone.0017062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Osuka K, Watanabe Y, Yasuda M, Takayasu M (2012) Adiponectin activates endothelial nitric oxide synthase through AMPK signaling after subarachnoid hemorrhage. Neurosci Lett 514(1):2–5. doi:10.1016/j.neulet.2011.12.041

    Article  CAS  PubMed  Google Scholar 

  48. Vellimana AK, Milner E, Azad TD, Harries MD, Zhou ML, Gidday JM, Han BH, Zipfel GJ (2011) Endothelial nitric oxide synthase mediates endogenous protection against subarachnoid hemorrhage-induced cerebral vasospasm. Stroke 42(3):776–782. doi:10.1161/STROKEAHA.110.607200

    Article  CAS  PubMed  Google Scholar 

  49. Ding D, Starke RM, Dumont AS, Owens GK, Hasan DM, Chalouhi N, Medel R, Lin CL (2014) Therapeutic implications of estrogen for cerebral vasospasm and delayed cerebral ischemia induced by aneurysmal subarachnoid hemorrhage. Biomed Res Int 2014:727428. doi:10.1155/2014/727428

    PubMed  PubMed Central  Google Scholar 

  50. Moussouttas M, Lai EW, Huynh TT, James J, Stocks-Dietz C, Dombrowski K, Khoury J, Pacak K (2014) Association between acute sympathetic response, early onset vasospasm, and delayed vasospasm following spontaneous subarachnoid hemorrhage. J Clin Neurosci 21(2):256–262. doi:10.1016/j.jocn.2013.03.036

    Article  PubMed  Google Scholar 

  51. Banki NM, Kopelnik A, Dae MW, Miss J, Tung P, Lawton MT, Drew BJ, Foster E et al (2005) Acute neurocardiogenic injury after subarachnoid hemorrhage. Circulation 112(21):3314–3319

    Article  PubMed  Google Scholar 

  52. Rangel-Castilla L, Gasco J, Nauta HJ, Okonkwo DO, Robertson CS (2008) Cerebral pressure autoregulation in traumatic brain injury. Neurosurg Focus 25(4):E7. doi:10.3171/FOC.2008.25.10.E7

    Article  PubMed  Google Scholar 

  53. Junger EC, Newell DW, Grant GA, Avellino AM, Ghatan S, Douville CM, Lam AM, Aaslid R et al (1997) Cerebral autoregulation following minor head injury. J Neurosurg 86(3):425–432. doi:10.3171/jns.1997.86.3.0425

    Article  CAS  PubMed  Google Scholar 

  54. Liu X, Czosnyka M, Donnelly J, Budohoski KP, Varsos GV, Nasr N, Brady KM, Reinhard M et al (2014) Comparison of frequency and time domain methods of assessment of cerebral autoregulation in traumatic brain injury. J Cereb Blood Flow Metab. doi:10.1038/jcbfm.2014.192

    Google Scholar 

  55. Sviri GE, Aaslid R, Douville CM, Moore A, Newell DW (2009) Time course for autoregulation recovery following severe traumatic brain injury. J Neurosurg 111(4):695–700. doi:10.3171/2008.10.17686

    Article  PubMed  Google Scholar 

  56. Bailey DM, Jones DW, Sinnott A, Brugniaux JV, New KJ, Hodson D, Marley CJ, Smirl JD et al (2013) Impaired cerebral haemodynamic function associated with chronic traumatic brain injury in professional boxers. Clin Sci (Lond) 124(3):177–189. doi:10.1042/CS20120259

    Article  CAS  Google Scholar 

  57. Rosenthal G, Sanchez-Mejia RO, Phan N, Hemphill JC 3rd, Martin C, Manley GT (2011) Incorporating a parenchymal thermal diffusion cerebral blood flow probe in bedside assessment of cerebral autoregulation and vasoreactivity in patients with severe traumatic brain injury. J Neurosurg 114(1):62–70. doi:10.3171/2010.6.JNS091360

    Article  PubMed  Google Scholar 

  58. Cherian L, Goodman JC, Robertson CS (2000) Brain nitric oxide changes after controlled cortical impact injury in rats. J Neurophysiol 83(4):2171–2178

    CAS  PubMed  Google Scholar 

  59. Sakamoto KI, Fujisawa H, Koizumi H, Tsuchida E, Ito H, Sadamitsu D, Maekawa T (1997) Effects of mild hypothermia on nitric oxide synthesis following contusion trauma in the rat. J Neurotrauma 14(5):349–353

    Article  CAS  PubMed  Google Scholar 

  60. Wada K, Chatzipanteli K, Kraydieh S, Busto R, Dietrich WD (1998) Inducible nitric oxide synthase expression after traumatic brain injury and neuroprotection with aminoguanidine treatment in rats. Neurosurgery 43(6):1427–1436

    CAS  PubMed  Google Scholar 

  61. Cherian L, Hlatky R, Robertson CS (2004) Nitric oxide in traumatic brain injury. Brain Pathol 14(2):195–201

    Article  CAS  PubMed  Google Scholar 

  62. Clark RS, Kochanek PM, Obrist WD, Wong HR, Billiar TR, Wisniewski SR, Marion DW (1996) Cerebrospinal fluid and plasma nitrite and nitrate concentrations after head injury in humans. Crit Care Med 24(7):1243–1251

    Article  CAS  PubMed  Google Scholar 

  63. Uzan M, Tanriover N, Bozkus H, Gumustas K, Guzel O, Kuday C (2001) Nitric oxide (NO) metabolism in the cerebrospinal fluid of patients with severe head injury. Inflammation as a possible cause of elevated no metabolites. Surg Neurol 56(6):350–356

    Article  CAS  PubMed  Google Scholar 

  64. Wada K, Chatzipanteli K, Busto R, Dietrich WD (1999) Effects of L-NAME and 7-NI on NOS catalytic activity and behavioral outcome after traumatic brain injury in the rat. J Neurotrauma 16(3):203–212

    Article  CAS  PubMed  Google Scholar 

  65. Liu H, Goodman JC, Robertson CS (2002) The effects of L-arginine on cerebral hemodynamics after controlled cortical impact injury in the mouse. J Neurotrauma 19(3):327–334. doi:10.1089/089771502753594891

    Article  PubMed  Google Scholar 

  66. Louin G, Marchand-Verrecchia C, Palmier B, Plotkine M, Jafarian-Tehrani M (2006) Selective inhibition of inducible nitric oxide synthase reduces neurological deficit but not cerebral edema following traumatic brain injury. Neuropharmacology 50(2):182–190. doi:10.1016/j.neuropharm.2005.08.020

    Article  CAS  PubMed  Google Scholar 

  67. Jafarian-Tehrani M, Louin G, Royo NC, Besson VC, Bohme GA, Plotkine M, Marchand-Verrecchia C (2005) 1400W, a potent selective inducible NOS inhibitor, improves histopathological outcome following traumatic brain injury in rats. Nitric Oxide 12(2):61–69

    Article  CAS  PubMed  Google Scholar 

  68. Terpolilli NA, Kim SW, Thal SC, Kuebler WM, Plesnila N (2013) Inhaled nitric oxide reduces secondary brain damage after traumatic brain injury in mice. J Cereb Blood Flow Metab 33(2):311–318. doi:10.1038/jcbfm.2012.176

    Article  CAS  PubMed  Google Scholar 

  69. Liu P, Li YS, Quartermain D, Boutajangout A, Ji Y (2013) Inhaled nitric oxide improves short term memory and reduces the inflammatory reaction in a mouse model of mild traumatic brain injury. Brain Res 1522:67–75. doi:10.1016/j.brainres.2013.05.032

    Article  CAS  PubMed  Google Scholar 

  70. Papadimos TJ (2008) The beneficial effects of inhaled nitric oxide in patients with severe traumatic brain injury complicated by acute respiratory distress syndrome: a hypothesis. J Trauma Manag Outcomes 2(1):1. doi:10.1186/1752-2897-2-1

    Article  PubMed  PubMed Central  Google Scholar 

  71. Patel MB, McKenna JW, Alvarez JM, Sugiura A, Jenkins JM, Guillamondegui OD, Pandharipande PP (2012) Decreasing adrenergic or sympathetic hyperactivity after severe traumatic brain injury using propranolol and clonidine (DASH After TBI Study): study protocol for a randomized controlled trial. Trials 13:177. doi:10.1186/1745-6215-13-177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Baguley IJ, Heriseanu RE, Felmingham KL, Cameron ID (2006) Dysautonomia and heart rate variability following severe traumatic brain injury. Brain Inj 20(4):437–444

    Article  PubMed  Google Scholar 

  73. Baguley IJ, Nicholls JL, Felmingham KL, Crooks J, Gurka JA, Wade LD (1999) Dysautonomia after traumatic brain injury: a forgotten syndrome? J Neurol Neurosurg Psychiatry 67(1):39–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Heffernan DS, Inaba K, Arbabi S, Cotton BA (2010) Sympathetic hyperactivity after traumatic brain injury and the role of beta-blocker therapy. J Trauma 69(6):1602–1609. doi:10.1097/TA.0b013e3181f2d3e8

    Article  PubMed  Google Scholar 

Download references

Conflict of Interest

The authors declare that they have no conflict of interest.

Funding

This article was supported by Jilin Provincial government (Changbai mountain scholars, 440020031172) to Yi Yang and Youth development foundation of First Hospital of Jilin University to Zheni-Ni Guo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Yang.

Additional information

Zhen-Ni Guo, Anwen Shao, Lu-Sha Tong and Weiyi Sun contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, ZN., Shao, A., Tong, LS. et al. The Role of Nitric Oxide and Sympathetic Control in Cerebral Autoregulation in the Setting of Subarachnoid Hemorrhage and Traumatic Brain Injury. Mol Neurobiol 53, 3606–3615 (2016). https://doi.org/10.1007/s12035-015-9308-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9308-x

Keywords

Navigation