Skip to main content

Advertisement

Log in

Fluoride-Induced Neuron Apoptosis and Expressions of Inflammatory Factors by Activating Microglia in Rat Brain

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Excessive exposure to fluoride results in structural and functional damages to the central nervous system (CNS), and neurotoxicity of fluoride may be associated with neurodegenerative changes. Chronic microglial activation appears to cause neuronal damage through producing proinflammatory cytokines and is involved in many neurodegenerative disorders. It is not known about effects on microglia of fluoride. In the present study, healthy adult Wistar rats were exposed to 60 and 120 ppm fluoride in drinking water for 10 weeks, and control rats received deionized water. After 10 weeks, rats were sacrificed under anesthesia then apoptosis in neuron and inflammatory factors secreted by microglia were determined. We found that apoptosis of neurons in fluoride-treated rat brain increased and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL)-positive immunofluorescence increased with increasing fluoride concentrations. Bax protein expression increased and Bcl-2 protein expression decreased in fluoride-treated rat brain compared with that of the control rat brain. The microglia in the hippocampus and cortex of fluoride-treated rats were activated by immunostaining with OX-42, a marker of activated microglia, and OX-42-positive microglia cells were more abundant in the hippocampus than in the cortex. The levels of IL-1β and IL-6 protein expression in OX-42-labeled microglial cells were significantly increased in the cortex and hippocampus of rats exposed to fluoride, and TNF-α immunoreactivity in microglial cells of the hippocampus was significantly higher in the 120 ppm fluoride-treated group than that in the control group. Our results indicate that fluoride induced neuron apoptosis and expressions of inflammatory factors by activating microglia in rat brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wang S, Wang Z, Cheng X, Li J, Sang Z, Zhang X, Han L, Qiao X et al (2007) Arsenic and fluoride exposure in drinking water: children’s IQ and growth in Shanyin County, Shanxi province, China. Environ Health Perspect 115(4):643–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Trivedi MH, Verma RJ, Chinoy NJ, Patel RS, Sathawara NG (2007) Effect of high fluoride water on intelligence of school children in India. Fluoride 40:178–183

    Google Scholar 

  3. Xiang Q, Liang Y, Chen L, Wang C, Chen B, Chen X, Zhou M (2003) Effect of fluoride in drinking water on children’s intelligence. Fluoride 36:84–94

    CAS  Google Scholar 

  4. Tang Q, Du J, Ma H, Jian S, Zhou X (2008) Fluoride and children’s intelligence, a meta-analysis. Biol Trace Elem Res 126(1–3):115–120

    Article  CAS  PubMed  Google Scholar 

  5. Spittle B (1994) Psychopharmacology of fluoride: a review. Int Clin Psychopharmacol 9(2):79–82

    Article  CAS  PubMed  Google Scholar 

  6. Chioca LR, Raupp IM, Da Cunha C, Losso EM, Andreatini R (2008) Subchronic fluoride intake induces impairment in habituation and active avoidance tasks in rats. Eur J Pharmacol 579(1–3):196–201

    Article  CAS  PubMed  Google Scholar 

  7. Liu F, Ma J, Zhang H, Liu P, Liu YP, Xing B, Dang YH (2014) Fluoride exposure during development affects both cognition and emotion in mice. Physiol Behav 124:1–7

    Article  CAS  PubMed  Google Scholar 

  8. Guan Z, Wang Y, Xiao K, Dai D, Chen Y, Liu J, Sindelar P, Dallner G (1998) Influence of chronic fluorosis on membrane lipids in rat brain. Neurotoxicol Teratol 20(5):537–542

    Article  CAS  PubMed  Google Scholar 

  9. Shashi A (2003) Histopathological investigation of fluoride-induced neurotoxicity in rabbits. Fluoride 36:95–105

    CAS  Google Scholar 

  10. Zhang Z, Xu X, Shen X (2008) Effect of fluoride exposure on synaptic structure of brain areas related to learning-memory in mice. Fluoride 41:139–143

    CAS  Google Scholar 

  11. Zhang M, Wang A, He W, He P, Xu B, Xia T, Chen X, Yang K (2007) Effects of fluoride on the expression of NCAM, oxidative stress, and apoptosis in primary cultured hippocampal neurons. Toxicology 236(3):208–216

    Article  CAS  PubMed  Google Scholar 

  12. Adebayo OL, Shallie PD, Salau BA, Ajani EO, Adenuga GA (2013) Comparative study on the influence of fluoride on lipid peroxidation and antioxidants levels in the different brain regions of well-fed and protein undernourished rats. J Trace Elem Med Biol 27(4):370–374

    Article  CAS  PubMed  Google Scholar 

  13. Lee JH, Jung JY, Jeong YJ, Park JH, Yang KH, Choi NK, Kim SH, Kim WJ (2008) Involvement of both mitochondrial- and death receptor-dependent apoptotic pathways regulated by Bcl-2 family in sodium fluoride-induced apoptosis of the human gingival fibroblasts. Toxicology 243(3):340–347

    Article  CAS  PubMed  Google Scholar 

  14. Pal S, Sarkar C (2014) Protective effect of resveratrol on fluoride induced alteration in protein and nucleic acid metabolism, DNA damage and biogenic amines in rat brain. Environ Toxicol Pharmacol 38(2):684–699

    Article  CAS  PubMed  Google Scholar 

  15. Long Y, Wang Y, Chen J, Jiang S, Nordberg A, Guan Z (2002) Chronic fluoride toxicity decreases the number of nicotinic acetylcholine receptors in rat brain. Neurotoxicol Teratol 24(6):751–757

    Article  CAS  PubMed  Google Scholar 

  16. Pereira M, Dombrowski P, Losso E, Chioca L, DaCunhaC AR (2011) Memory impairment induced by sodium fluoride is associated with changes in brain monoamine levels. Neurotoxicol Res 19(1):55–62

    Article  CAS  Google Scholar 

  17. Jiang C, Zhang S, Liu H, Guan Z, Zeng Q, Zhang C, Lei R, Xia T et al (2014) Low glucose utilization and neurodegenerative changes caused by sodium fluoride exposure in rat’s developmental brain. Neuromol Med 16(1):94–105

    Article  CAS  Google Scholar 

  18. Bhatnagar M, Rao P, Sushma J, Bhatnagar R (2002) Neurotoxicity of fluoride: neurodegeneration in hippocampus of female mice. Indian J Exp Biol 40(5):546–554

    CAS  PubMed  Google Scholar 

  19. Varner JA, Jensen KF, Horvath W, Isaacson RL (1998) Chronic administration of aluminium fluoride and sodium fluoride in rats in drinking water, alterations in neuronal and cerebrovascular integrity. Brain Res 784(1–2):284–298

    Article  CAS  PubMed  Google Scholar 

  20. Morales I, Guzman-Martinez L, Cerda-Troncoso C, Farias GA, Maccioni RB (2014) Neuroinflammation in the pathogenesis of Alzheimer’s disease. A rational framework for the search of novel therapeutic approaches. Front Cell Neurosci 8:112

    PubMed  PubMed Central  Google Scholar 

  21. Trabelsi M, Guermazi F, Zeghal N (2001) Effect of fluoride on thyroid function and cerebellar development in mice. Fluoride 34:165–173

    CAS  Google Scholar 

  22. Flores-Méndez M, Ramírez D, Alamillo N, Hernández-Kelly LC, Del Razo LM, Ortega A (2014) Fluoride exposure regulates the elongation phase of protein synthesis in cultured Bergmann glia cells. Toxicol Lett 229(1):126–133

    Article  PubMed  Google Scholar 

  23. Akinrinade ID, Memudu AE, Ogundele OM, Ajetunmobi OI (2015) Interplay of glia activation and oxidative stress formation in fluoride and aluminium exposure. Pathophysiology 22(1):39–48

    Article  CAS  PubMed  Google Scholar 

  24. Beynon SB, Walker FR (2012) Microglial activation in the injured and healthy brain: what are we really talking about? Practical and theoretical issues associated with the measurement of changes in microglial morphology. Neuroscience 225:162–171

    Article  CAS  PubMed  Google Scholar 

  25. Hanisch UK, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10(11):1387–1394

    Article  CAS  PubMed  Google Scholar 

  26. Perry VH (2004) The influence of systemic inflammation on inflammation in the brain: implications for chronic neurodegenerative disease. Brain Behav Immun 18(5):407–413

    Article  CAS  PubMed  Google Scholar 

  27. Saijo K, Winner B, Carson CT, Collier JG, Boyer L, Rosenfeld MG, Gage FH, Glass CK (2009) A Nurr1/CoREST pathway in microglia and astrocytes protects dopaminergic neurons from inflammation-induced death. Cell 137(1):47–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Barrientos RM, Sprunger DB, Campeau S, Watkins LR, Rudy JW, Maier SF (2004) BDNF mRNA expression in rat hippocampus following contextual learning is blocked by intrahippocampal IL-1beta administration. J Neuroimmunol 155(1–2):119–126

    Article  CAS  PubMed  Google Scholar 

  29. Block ML, Hong JS (2005) Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog Neurobiol 76(2):77–98

    Article  CAS  PubMed  Google Scholar 

  30. Yan L, Liu S, Wang C, Wang F, Song Y, Yan N, Xi S, Liu Z et al (2013) JNK and NADPH oxidase involved in fluoride-induced oxidative stress in BV-2 microglia cells. Mediat Inflamm 2013:895975

    Article  Google Scholar 

  31. Zhang ZY, Han B, Qian C (2011) Rapid detection method for trace fluoride with microplate reader. Chin J Public Health 27:255–256 (in Chinese)

    CAS  Google Scholar 

  32. Sarkar C, Pal S, Das N, Dinda B (2014) Ameliorative effects of oleanolic acid on fluoride induced metabolic and oxidative dysfunctions in rat brain: experimental and biochemical studies. Food Chem Toxicol 66:224–236

    Article  CAS  PubMed  Google Scholar 

  33. Roos WP, Kaina B (2006) DNA damage-induced cell death by apoptosis. Trends Mol Med 12(9):440–450

    Article  CAS  PubMed  Google Scholar 

  34. Negrín G, Rubio S, Marrero MT, Quintana J, Eiroa JL, Triana J, Estévez F (2015) The eudesmanolide tanapsin from Tanacetum oshanahanii and its acetate induce cell death in human tumor cells through a mechanism dependent on reactive oxygen species. Phytomedicine 22(3):385–393

    Article  PubMed  Google Scholar 

  35. Liu YJ, Guan ZZ, Gao Q, Pei JJ (2011) Increased level of apoptosis in rat brains and SH-SY5Y cells exposed to excessive fluoride—a mechanism connected with activating JNK phosphorylation. Toxicol Lett 204(2–3):183–189

    Article  CAS  PubMed  Google Scholar 

  36. Harry GJ (2013) Microglia during development and aging. Pharmacol Ther 139(3):313–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Parakalan R, Jiang B, Nimmi B, Janani M, Jayapal M, Lu J, Tay SS, Ling EA et al (2012) Transcriptome analysis of amoeboid and ramified microglia isolated from the corpus callosum of rat brain. BMC Neurosci 13:64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sadasivan S, Pond BB, Pani AK, Qu C, Jiao Y, Smeyne RJ (2012) Methylphenidate exposure induces dopamine neuron loss and activation of microglia in the basal ganglia of mice. PLoS ONE 7:e33693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Smith JA, Das A, Ray SK, Banik NL (2012) Role of pro-inflammatory cytokines released from microglia in neurodegenerative diseases. Brain Res Bull 87(1):10–20

    Article  CAS  PubMed  Google Scholar 

  40. Zhang B, West EJ, Van KC, Gurkoff GG, Zhou J, Zhang XM, Kozikowski AP, Lyeth BG (2008) HDAC inhibitor increases histone H3 acetylation and reduces microglia inflammatory response following traumatic brain injury in rats. Brain Res 1226:181–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lawson LJ, Perry VH, Dri P, Gordon S (1990) Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 39(1):151–170

    Article  CAS  PubMed  Google Scholar 

  42. Leussis MP, Bolivar VJ (2006) Habituation in rodents: a review of behaviour, neurobiology and genetics. Neurosci Biobehav Rev 30(7):1045–1064

    Article  PubMed  Google Scholar 

  43. Basha PM, Sujitha NS (2012) Combined impact of exercise and temperature in learning and memory performance of fluoride toxicated rats. Biol Trace Elem Res 150(1–3):306–313

    Article  PubMed  Google Scholar 

  44. Ross FM, Allan SM, Rothwell NJ, Verkhratsky A (2003) A dual role for interleukin-1 in LTP in mouse hippocampal slices. J Neuroimmunol 144(1–2):61–67

    Article  CAS  PubMed  Google Scholar 

  45. Williamson LL, Sholar PW, Mistry RS, Smith SH, Bilbo SD (2011) Microglia and memory: modulation by early-life infection. J Neurosci 31(43):15511–15521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Barrientos RM, Frank MG, Hein AM, Higgins EA, Watkins LR, Rudy JW, Maier SF (2009) Time course of hippocampal IL-1 beta and memory consolidation impairments in aging rats following peripheral infection. Brain Behav Immun 23(1):46–54

    Article  CAS  PubMed  Google Scholar 

  47. Streit WJ (2010) Microglial activation and neuroinflammation in Alzheimer’s disease: a critical examination of recent history. Front Aging Neurosci 2:22

    PubMed  PubMed Central  Google Scholar 

  48. Furuya M, Miyaoka T, Tsumori T, Liaury K, Hashioka S, Wake R, Tsuchie K, Fukushima M et al (2013) Yokukansan promotes hippocampal neurogenesis associated with the suppression of activated microglia in Gunn rat. J Neuroinflammation 10:145

    Article  PubMed  PubMed Central  Google Scholar 

  49. Brown GC, Neher JJ (2010) Inflammatory neurodegeneration and mechanisms of microglial killing of neurons. Mol Neurobiol 41(2–3):242–247

    Article  CAS  PubMed  Google Scholar 

  50. Iliev AI, Stringaris AK, Nau R, Neumann H (2004) Neuronal injury mediated via stimulation of microglial toll-like receptor-9 (TLR9). FASEB J 18(2):412–414

    CAS  PubMed  Google Scholar 

  51. Park KM, Bowers WJ (2010) Tumor necrosis factor-alpha mediated signaling in neuronal homeostasis and dysfunction. Cell Signal 22(7):977–983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kraft AD, McPherson CA, Harry GJ (2009) Heterogeneity of microglia and TNF signaling as determinants for neuronal death or survival. Neurotoxicology 30(5):785–793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. McCoy MK, Tansey MG (2008) TNF signaling inhibition in the CNS: implications for normal brain function and neurodegenerative disease. J Neuroinflammation 5:45

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Research Fund for the Doctoral Program of Higher Education of China (No. 20112104110021).

Conflict of Interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuhua Xi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, N., Liu, Y., Liu, S. et al. Fluoride-Induced Neuron Apoptosis and Expressions of Inflammatory Factors by Activating Microglia in Rat Brain. Mol Neurobiol 53, 4449–4460 (2016). https://doi.org/10.1007/s12035-015-9380-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9380-2

Keywords

Navigation