Skip to main content

Advertisement

Log in

Neuroprotective and Functional Improvement Effects of Methylene Blue in Global Cerebral Ischemia

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Transient global cerebral ischemia (GCI) causes delayed neuronal cell death in the vulnerable hippocampus CA1 subfield, as well as behavioral deficits. Ischemia reperfusion (I/R) produces excessive reactive oxygen species and plays a key role in brain injury. The mitochondrial electron respiratory chain is the main cellular source of free radical generation, and dysfunction of mitochondria has a significant impact on the neuronal cell death in ischemic brain. The aim of the present study is to investigate the potential beneficial effects of methylene blue (MB) in a four-vessel occlusion (4VO) GCI model on adult male rats. MB was delivered at a dose of 0.5 mg/kg/day for 7 days, through a mini-pump implanted subcutaneously after GCI. We first found that MB significantly improved ischemic neuronal survival in the hippocampal CA1 region as measured by cresyl violet staining as well as NeuN staining. We also found that MB has the ability to rescue ischemia-induced decreases of cytochrome c oxidase activity and ATP generation in the CA1 region following I/R. Further analysis with labeling of MitoTracker® Red revealed that the depolarization of mitochondrial membrane potential (MMP) was markedly attenuated following MB treatment. In addition, the induction of caspase-3, caspase-8, and caspase-9 activities and the increased numbers of TUNEL-positive cells of the CA1 region were significantly reduced by MB application. Correspondingly, Barnes maze tests showed that the deterioration of spatial learning and memory performance following GCI was significantly improved in the MB-treatment group compared to the ischemic control group. In summary, our study suggests that MB may be a promising therapeutic agent targeting neuronal cell death and cognitive deficits following transient global cerebral ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zheng ZJ, Croft JB, Giles WH, Mensah GA (2001) Sudden cardiac death in the United States, 1989 to 1998. Circulation 104(18):2158–2163

    Article  CAS  PubMed  Google Scholar 

  2. Nichol G, Thomas E, Callaway CW, Hedges J, Powell JL, Aufderheide TP, Rea T, Lowe R et al (2008) Regional variation in out-of-hospital cardiac arrest incidence and outcome. Jama 300(12):1423–1431. doi:10.1001/jama.300.12.1423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Callans DJ (2004) Out-of-hospital cardiac arrest—the solution is shocking. N Engl J Med 351(7):632–634. doi:10.1056/NEJMp048174

    Article  CAS  PubMed  Google Scholar 

  4. Adrie C, Haouache H, Saleh M, Memain N, Laurent I, Thuong M, Darques L, Guerrini P et al (2008) An underrecognized source of organ donors: patients with brain death after successfully resuscitated cardiac arrest. Intensive Care Med 34(1):132–137. doi:10.1007/s00134-007-0885-7

    Article  CAS  PubMed  Google Scholar 

  5. Burke DT, Shah MK, Dorvlo AS, Al-Adawi S (2005) Rehabilitation outcomes of cardiac and non-cardiac anoxic brain injury: a single institution experience. Brain Inj 19(9):675–680. doi:10.1080/02699050400024953

    Article  CAS  PubMed  Google Scholar 

  6. Safar P (1986) Cerebral resuscitation after cardiac arrest: a review. Circulation 74(6 Pt 2):IV138–IV153

    CAS  PubMed  Google Scholar 

  7. Sulzgruber P, Kliegel A, Wandaller C, Uray T, Losert H, Laggner AN, Sterz F, Kliegel M (2015) Survivors of cardiac arrest with good neurological outcome show considerable impairments of memory functioning. Resuscitation 88:120–125. doi:10.1016/j.resuscitation.2014.11.009

    Article  PubMed  Google Scholar 

  8. Cummings JL, Tomiyasu U, Read S, Benson DF (1984) Amnesia with hippocampal lesions after cardiopulmonary arrest. Neurology 34(5):679–681

    Article  CAS  PubMed  Google Scholar 

  9. Gadian DG, Aicardi J, Watkins KE, Porter DA, Mishkin M, Vargha-Khadem F (2000) Developmental amnesia associated with early hypoxic-ischaemic injury. Brain: a journal of neurology 123(Pt 3):499–507

    Article  Google Scholar 

  10. Kartsounis LD, Rudge P, Stevens JM (1995) Bilateral lesions of CA1 and CA2 fields of the hippocampus are sufficient to cause a severe amnesic syndrome in humans. J Neurol Neurosurg Psychiatry 59(1):95–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ng T, Graham DI, Adams JH, Ford I (1989) Changes in the hippocampus and the cerebellum resulting from hypoxic insults: frequency and distribution. Acta Neuropathol 78(4):438–443

    Article  CAS  PubMed  Google Scholar 

  12. Raz L, Zhang QG, Zhou CF, Han D, Gulati P, Yang LC, Yang F, Wang RM et al (2010) Role of Rac1 GTPase in NADPH oxidase activation and cognitive impairment following cerebral ischemia in the rat. PLoS One 5(9), e12606. doi:10.1371/journal.pone.0012606

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lu Q, Wainwright MS, Harris VA, Aggarwal S, Hou Y, Rau T, Poulsen DJ, Black SM (2012) Increased NADPH oxidase-derived superoxide is involved in the neuronal cell death induced by hypoxia-ischemia in neonatal hippocampal slice cultures. Free Radic Biol Med 53(5):1139–1151. doi:10.1016/j.freeradbiomed.2012.06.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sanderson TH, Reynolds CA, Kumar R, Przyklenk K, Huttemann M (2013) Molecular mechanisms of ischemia-reperfusion injury in brain: pivotal role of the mitochondrial membrane potential in reactive oxygen species generation. Mol Neurobiol 47(1):9–23. doi:10.1007/s12035-012-8344-z

    Article  CAS  PubMed  Google Scholar 

  15. Ambrosio G, Flaherty JT, Duilio C, Tritto I, Santoro G, Elia PP, Condorelli M, Chiariello M (1991) Oxygen radicals generated at reflow induce peroxidation of membrane lipids in reperfused hearts. J Clin Invest 87(6):2056–2066. doi:10.1172/JCI115236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Oz M, Lorke DE, Petroianu GA (2009) Methylene blue and Alzheimer’s disease. Biochem Pharmacol 78(8):927–932. doi:10.1016/j.bcp.2009.04.034

    Article  CAS  PubMed  Google Scholar 

  17. Atamna H, Kumar R (2010) Protective role of methylene blue in Alzheimer’s disease via mitochondria and cytochrome c oxidase. Journal of Alzheimer’s disease : JAD 20(Suppl 2):S439–S452. doi:10.3233/JAD-2010-100414

    PubMed  Google Scholar 

  18. Wen Y, Li W, Poteet EC, Xie L, Tan C, Yan LJ, Ju X, Liu R et al (2011) Alternative mitochondrial electron transfer as a novel strategy for neuroprotection. J Biol Chem 286(18):16504–16515. doi:10.1074/jbc.M110.208447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Roy Choudhury G, Winters A, Rich RM, Ryou MG, Gryczynski Z, Yuan F, Yang SH, Liu R (2015) Methylene blue protects astrocytes against glucose oxygen deprivation by improving cellular respiration. PLoS One 10(4), e0123096. doi:10.1371/journal.pone.0123096

    Article  PubMed  PubMed Central  Google Scholar 

  20. Pulsinelli WA, Brierley JB, Plum F (1982) Temporal profile of neuronal damage in a model of transient forebrain ischemia. Ann Neurol 11(5):491–498. doi:10.1002/ana.410110509

    Article  CAS  PubMed  Google Scholar 

  21. Zhang QG, Raz L, Wang R, Han D, De Sevilla L, Yang F, Vadlamudi RK, Brann DW (2009) Estrogen attenuates ischemic oxidative damage via an estrogen receptor alpha-mediated inhibition of NADPH oxidase activation. J Neurosci 29(44):13823–13836. doi:10.1523/JNEUROSCI.3574-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang QG, Wang R, Han D, Dong Y, Brann DW (2009) Role of Rac1 GTPase in JNK signaling and delayed neuronal cell death following global cerebral ischemia. Brain Res 1265:138–147. doi:10.1016/j.brainres.2009.01.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jiang P, Chen C, Wang R, Chechneva OV, Chung SH, Rao MS, Pleasure DE, Liu Y et al (2013) hESC-derived Olig2+ progenitors generate a subtype of astroglia with protective effects against ischaemic brain injury. Nat Commun 4:2196. doi:10.1038/ncomms3196

    PubMed  PubMed Central  Google Scholar 

  24. Lu Q, Rau TF, Harris V, Johnson M, Poulsen DJ, Black SM (2011) Increased p38 mitogen-activated protein kinase signaling is involved in the oxidative stress associated with oxygen and glucose deprivation in neonatal hippocampal slice cultures. Eur J Neurosci 34(7):1093–1101. doi:10.1111/j.1460-9568.2011.07786.x

    Article  PubMed  PubMed Central  Google Scholar 

  25. Barnes CA (1979) Memory deficits associated with senescence: a neurophysiological and behavioral study in the rat. J Comp Physiol Psychol 93(1):74–104

    Article  CAS  PubMed  Google Scholar 

  26. Carobrez AP, Bertoglio LJ (2005) Ethological and temporal analyses of anxiety-like behavior: the elevated plus-maze model 20 years on. Neurosci Biobehav Rev 29(8):1193–1205. doi:10.1016/j.neubiorev.2005.04.017

    Article  CAS  PubMed  Google Scholar 

  27. Prut L, Belzung C (2003) The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. Eur J Pharmacol 463(1–3):3–33

    Article  CAS  PubMed  Google Scholar 

  28. Poteet E, Winters A, Yan LJ, Shufelt K, Green KN, Simpkins JW, Wen Y, Yang SH (2012) Neuroprotective actions of methylene blue and its derivatives. PLoS One 7(10), e48279. doi:10.1371/journal.pone.0048279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91(4):479–489

    Article  CAS  PubMed  Google Scholar 

  30. Chandra D, Choy G, Deng X, Bhatia B, Daniel P, Tang DG (2004) Association of active caspase 8 with the mitochondrial membrane during apoptosis: potential roles in cleaving BAP31 and caspase 3 and mediating mitochondrion-endoplasmic reticulum cross talk in etoposide-induced cell death. Mol Cell Biol 24(15):6592–6607. doi:10.1128/MCB.24.15.6592-6607.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Goodrich-Hunsaker NJ, Hunsaker MR, Kesner RP (2008) The interactions and dissociations of the dorsal hippocampus subregions: how the dentate gyrus, CA3, and CA1 process spatial information. Behav Neurosci 122(1):16–26. doi:10.1037/0735-7044.122.1.16

    Article  PubMed  Google Scholar 

  32. Fox GB, Fan L, LeVasseur RA, Faden AI (1998) Effect of traumatic brain injury on mouse spatial and nonspatial learning in the Barnes circular maze. J Neurotrauma 15(12):1037–1046

    Article  CAS  PubMed  Google Scholar 

  33. Pusswald G, Fertl E, Faltl M, Auff E (2000) Neurological rehabilitation of severely disabled cardiac arrest survivors. Part II. Life situation of patients and families after treatment. Resuscitation 47(3):241–248

    Article  CAS  PubMed  Google Scholar 

  34. Herlitz J, Andersson E, Bang A, Engdahl J, Holmberg M, Iindqvist J, Karlson BW, Waagstein L (2000) Experiences from treatment of out-of-hospital cardiac arrest during 17 years in Goteborg. Eur Heart J 21(15):1251–1258. doi:10.1053/euhj.2000.2150

    Article  CAS  PubMed  Google Scholar 

  35. Zingler VC, Krumm B, Bertsch T, Fassbender K, Pohlmann-Eden B (2003) Early prediction of neurological outcome after cardiopulmonary resuscitation: a multimodal approach combining neurobiochemical and electrophysiological investigations may provide high prognostic certainty in patients after cardiac arrest. Eur Neurol 49(2):79–84, doi:10.1159/000068503

    Article  PubMed  Google Scholar 

  36. Madeira MD, Paula-Barbosa M, Cadete-Leite A, Tavares MA (1988) Unbiased estimate of hippocampal granule cell numbers in hypothyroid and in sex-age-matched control rats. J Hirnforsch 29(6):643–650

    CAS  PubMed  Google Scholar 

  37. Monaghan DT, Cotman CW (1985) Distribution of N-methyl-D-aspartate-sensitive L-[3H]glutamate-binding sites in rat brain. J Neurosci 5(11):2909–2919

    CAS  PubMed  Google Scholar 

  38. Butler TR, Self RL, Smith KJ, Sharrett-Field LJ, Berry JN, Littleton JM, Pauly JR, Mulholland PJ et al (2010) Selective vulnerability of hippocampal cornu ammonis 1 pyramidal cells to excitotoxic insult is associated with the expression of polyamine-sensitive N-methyl-D-asparate-type glutamate receptors. Neuroscience 165(2):525–534. doi:10.1016/j.neuroscience.2009.10.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mourre C, Ben Ari Y, Bernardi H, Fosset M, Lazdunski M (1989) Antidiabetic sulfonylureas: localization of binding sites in the brain and effects on the hyperpolarization induced by anoxia in hippocampal slices. Brain Res 486(1):159–164

    Article  CAS  PubMed  Google Scholar 

  40. Haglund MM, Stahl WL, Kunkel DD, Schwartzkroin PA (1985) Developmental and regional differences in the localization of Na, K-ATPase activity in the rabbit hippocampus. Brain Res 343(1):198–203

    Article  CAS  PubMed  Google Scholar 

  41. Kuroiwa T, Terakado M, Yamaguchi T, Endo S, Ueki M, Okeda R (1996) The pyramidal cell layer of sector CA 1 shows the lowest hippocampal succinate dehydrogenase activity in normal and postischemic gerbils. Neurosci Lett 206(2–3):117–120

    Article  CAS  PubMed  Google Scholar 

  42. Sugawara T, Fujimura M, Morita-Fujimura Y, Kawase M, Chan PH (1999) Mitochondrial release of cytochrome c corresponds to the selective vulnerability of hippocampal CA1 neurons in rats after transient global cerebral ischemia. J Neurosci 19(22):RC39

    CAS  PubMed  Google Scholar 

  43. Brookes PS, Yoon Y, Robotham JL, Anders MW, Sheu SS (2004) Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am J Physiol Cell Physiol 287(4):C817–C833. doi:10.1152/ajpcell.00139.2004

    Article  CAS  PubMed  Google Scholar 

  44. Kalogeris T, Bao Y, Korthuis RJ (2014) Mitochondrial reactive oxygen species: a double edged sword in ischemia/reperfusion vs preconditioning. Redox biology 2:702–714. doi:10.1016/j.redox.2014.05.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chan PH (2004) Mitochondria and neuronal death/survival signaling pathways in cerebral ischemia. Neurochem Res 29(11):1943–1949

    Article  CAS  PubMed  Google Scholar 

  46. Chen H, Yoshioka H, Kim GS, Jung JE, Okami N, Sakata H, Maier CM, Narasimhan P et al (2011) Oxidative stress in ischemic brain damage: mechanisms of cell death and potential molecular targets for neuroprotection. Antioxid Redox Signal 14(8):1505–1517. doi:10.1089/ars.2010.3576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Young GB (2009) Clinical practice. Neurologic prognosis after cardiac arrest. N Engl J Med 361(6):605–611. doi:10.1056/NEJMcp0903466

    Article  CAS  PubMed  Google Scholar 

  48. Colbourne F, Sutherland G, Corbett D (1997) Postischemic hypothermia. A critical appraisal with implications for clinical treatment. Mol Neurobiol 14(3):171–201. doi:10.1007/BF02740655

    Article  CAS  PubMed  Google Scholar 

  49. Gonzalez-Lima F, Barksdale BR, Rojas JC (2014) Mitochondrial respiration as a target for neuroprotection and cognitive enhancement. Biochem Pharmacol 88(4):584–593. doi:10.1016/j.bcp.2013.11.010

    Article  CAS  PubMed  Google Scholar 

  50. Ohlow MJ, Moosmann B (2011) Phenothiazine: the seven lives of pharmacology’s first lead structure. Drug Discov Today 16(3–4):119–131. doi:10.1016/j.drudis.2011.01.001

    Article  CAS  PubMed  Google Scholar 

  51. Rojas JC, Simola N, Kermath BA, Kane JR, Schallert T, Gonzalez-Lima F (2009) Striatal neuroprotection with methylene blue. Neuroscience 163(3):877–889. doi:10.1016/j.neuroscience.2009.07.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rojas JC, John JM, Lee J, Gonzalez-Lima F (2009) Methylene blue provides behavioral and metabolic neuroprotection against optic neuropathy. Neurotox Res 15(3):260–273. doi:10.1007/s12640-009-9027-z

    Article  CAS  PubMed  Google Scholar 

  53. Muratsubaki H, Yajima N, Yoneda H, Enomoto K, Tezuka T (2008) Methylene blue protection against hypoxic injury in primary cultures of rat hepatocyte monolayers. Cell Biochem Funct 26(2):275–278. doi:10.1002/cbf.1429

    Article  CAS  PubMed  Google Scholar 

  54. Gabrielli D, Belisle E, Severino D, Kowaltowski AJ, Baptista MS (2004) Binding, aggregation and photochemical properties of methylene blue in mitochondrial suspensions. Photochem Photobiol 79(3):227–232

    Article  CAS  PubMed  Google Scholar 

  55. Scott A, Hunter FE Jr (1966) Support of thyroxine-induced swelling of liver mitochondria by generation of high energy intermediates at any one of three sites in electron transport. J Biol Chem 241(5):1060–1066

    CAS  PubMed  Google Scholar 

  56. Atamna H, Nguyen A, Schultz C, Boyle K, Newberry J, Kato H, Ames BN (2008) Methylene blue delays cellular senescence and enhances key mitochondrial biochemical pathways. FASEB J 22(3):703–712. doi:10.1096/fj.07-9610com

    Article  CAS  PubMed  Google Scholar 

  57. Miclescu A, Basu S, Wiklund L (2006) Methylene blue added to a hypertonic-hyperoncotic solution increases short-term survival in experimental cardiac arrest. Crit Care Med 34(11):2806–2813. doi:10.1097/01.CCM.0000242517.23324.27

    Article  CAS  PubMed  Google Scholar 

  58. Miclescu A, Sharma HS, Martijn C, Wiklund L (2010) Methylene blue protects the cortical blood–brain barrier against ischemia/reperfusion-induced disruptions. Crit Care Med 38(11):2199–2206. doi:10.1097/CCM.0b013e3181f26b0c

    Article  CAS  PubMed  Google Scholar 

  59. de la Torre JC, Cada A, Nelson N, Davis G, Sutherland RJ, Gonzalez-Lima F (1997) Reduced cytochrome oxidase and memory dysfunction after chronic brain ischemia in aged rats. Neurosci Lett 223(3):165–168

    Article  PubMed  Google Scholar 

  60. Callaway NL, Riha PD, Wrubel KM, McCollum D, Gonzalez-Lima F (2002) Methylene blue restores spatial memory retention impaired by an inhibitor of cytochrome oxidase in rats. Neurosci Lett 332(2):83–86

    Article  CAS  PubMed  Google Scholar 

  61. Di Y, He YL, Zhao T, Huang X, Wu KW, Liu SH, Zhao YQ, Fan M et al (2015) Methylene blue reduces acute cerebral ischemic injury via the induction of mitophagy. Mol Med. doi:10.2119/molmed.2015.00038

    Google Scholar 

  62. Jiang Z, Watts LT, Huang S, Shen Q, Rodriguez P, Chen C, Zhou C, Duong TQ (2015) The effects of methylene blue on autophagy and apoptosis in MRI-defined normal tissue, ischemic penumbra and ischemic core. PLoS One 10(6):e0131929. doi:10.1371/journal.pone.0131929

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research was supported by a research grant (NS086929) from the National Institutes of Neurological Disorders and Stroke, National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quanguang Zhang.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Q., Tucker, D., Dong, Y. et al. Neuroprotective and Functional Improvement Effects of Methylene Blue in Global Cerebral Ischemia. Mol Neurobiol 53, 5344–5355 (2016). https://doi.org/10.1007/s12035-015-9455-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9455-0

Keywords

Navigation