Skip to main content

Advertisement

Log in

Anthocyanins Reversed D-Galactose-Induced Oxidative Stress and Neuroinflammation Mediated Cognitive Impairment in Adult Rats

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Aging is a major factor involved in neurological impairments, decreased anti-oxidant activities, and enhanced neuroinflammation. D-galactose (D-gal) has been considered an artificial aging model which induces oxidative stress and inflammatory response resulting in memory and synaptic dysfunction. Dietary supplementation exerts valuable effects against oxidative stress and neuroinflammation. Polyphenolic flavonoids, such as anthocyanins, have been reported as an anti-inflammatory and anti-oxidant agents against various neurodegenerative diseases. Recently, our group reported anthocyanin neuroprotection of the developing rat brain against ethanol-induced oxidative stress and neurodegenaration and ethanol-induced neuronal apoptosis via GABAB1 receptor intracellular signaling in prenatal rat hippocampus. Here, we examined the protective effect of anthocyanin neuroprotection against D-gal-induced oxidative and inflammatory response in the hippocampus and cortex regions and explore the potential mechanism of its action. Our results indicated that anthocyanins treatment significantly improved behavioral performance of D-gal-treated rats in Morris water maze and Y-maze tests. One of the potential mechanisms of this action was decreased expression of the receptor for advance glycation end product, reduced level of reactive oxygen species (ROS) and lipid peroxidation as well as markers of the Alzheimer’s disease. Furthermore, the results also indicated that anthocyanins inhibited activated astrocytes and neuroinflammation via suppression of various inflammatory markers including p-NF- K B, inducible nitric oxide synthase (iNOS), and tumor necrosis factor-alpha (TNF-α) in the hippocampus and cortex regions of D-gal-treated rats brain. Moreover, anthocyanins abrogated neuroapoptosis via C-jun N-terminal kinase (p-JNK) suppression and improved deregulated synaptic proteins including synaptophysin, synaptosomal-associated protein (SNAP)-23, SNAP-25, and phosphorylated CREB. This data suggests that anthocyanins could be a safe and promising anti-oxidant and anti-neuroinflammatory agent for age-related neurodegenerative diseases such as Alzheimer’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

PBS:

Phosphate buffer saline

BACE-1:

Beta-site APP cleaving enzyme-1

NF-KB:

Nuclear factor kappa B

TNF-α:

Tumer necrosis factor-alpha

iNOS:

Inducible nitric oxide synthase

p-JNK:

C-jun N-terminal kinase

PARP-1:

Poly[ADP-ribose] polymerase 1

TRITC:

Tetramethyl rhodamine isothiocyanate

FITC:

Fluorescein isothiocyanate

DG:

Dentate gyrus

SNAP-23:

Synaptosomal-associated protein 23

S.D:

Standard deviation

i.p.:

Intraperitoneally

ROS:

Reactive oxygen species

References

  1. Raz N, Ghisletta P, Rodrigue KM, Kennedy KM, Lindenberger U (2010) Trajectories of brain aging in middle-aged and older adults: regional and individual differences. NeuroImage 51:501–511

    Article  PubMed  PubMed Central  Google Scholar 

  2. Morrison JH, Hof PR (1997) Life and death of neurons in the aging brain. Science 278:412–419

    Article  CAS  PubMed  Google Scholar 

  3. Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247

    Article  CAS  PubMed  Google Scholar 

  4. Barnham KJ, Masters CL, Bush AI (2004) Neurodegenerative diseases and oxidative stress. Nat Rev Drug Discov 3:205–214

    Article  CAS  PubMed  Google Scholar 

  5. De Iuliis A, Grigoletto J, Recchia A, Giusti P, Arslan P (2005) A proteomic approach in the study of an animal model of Parkinson’s disease. Clin Chim Acta 357:202–209

    Article  PubMed  Google Scholar 

  6. Dröge W (2003) Oxidative stress and aging. Adv Exp Med Biol 543:191–200

    Article  PubMed  Google Scholar 

  7. Niranjan R (2014) The role of inflammatory and oxidative stress mechanisms in the pathogenesis of Parkinson’s disease: focus on astrocytes. Mol Neurobiol 49:28–38

    Article  CAS  PubMed  Google Scholar 

  8. Meraz-Rios MA, Toral-Rios D, Franco-Bocanegra D, Villeda-Hernandez J, CamposPena V (2013) Inflammatory process in Alzheimer’s Disease. Front Integr Neurosci 7:59

    Article  PubMed  PubMed Central  Google Scholar 

  9. Tuppo EE, Arias HR (2005) The role of inflammation in Alzheimer’s disease. Int J Biochem Cell Biol 37:289–305

    Article  CAS  PubMed  Google Scholar 

  10. Allison DJ, Ditor DS (2014) The common inflammatory etiology of depression and cognitive impairment: a therapeutic target. J Neuroinflammation 11:151

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ho SC, Liu JH, Wu RY (2003) Establishment of the mimetic aging effect in mice caused by D-galactose. Biogerontology 4:15–18

    Article  CAS  PubMed  Google Scholar 

  12. Song X, Bao M, Li D, Li YM (1999) Advanced glycation in D-galactose induced mouse aging model. Mech. Ageing Dev 108:239–251

    Article  CAS  Google Scholar 

  13. Karasek M (2004) Melatonin, human aging, and age-related diseases. Exp Gerontol 3:1723–1729

    Article  Google Scholar 

  14. Kim SJ, Ahn JW, Kim H, Ha HJ, Lee SW, Kim HK, Lee S, Hong HS et al (2013) Two β-strands of RAGE participate in the recognition and transport of amyloid-β peptide across the blood brain barrier. Biochem Biophys Res Commun 439:252–257

    Article  CAS  PubMed  Google Scholar 

  15. Wei H, Cai Y, Chu J, Li C, Li L (2008) Temporal gene expression profile in hippocampus of mice treated with D-galactose. Cell Mol Neurobio 28:781–794

    Article  CAS  Google Scholar 

  16. Ali T, Badshah H, Kim TH, Kim MO (2015) Melatonin attenuates D-galactose-induced memory impairment, neuroinflammation and neurodegeneration via RAGE/NF-K B/JNK signaling pathway in aging mouse model. J Pineal Res 58:71–85

    Article  CAS  PubMed  Google Scholar 

  17. Zhang Q, Huang Y, Li X, Cui X, Zuo P, Li J (2005) GM1 ganglioside prevented the decline of hippocampal neurogenesis associated with D-galactose. Neuroreport 16:1297–1301

    Article  CAS  PubMed  Google Scholar 

  18. Kumar A, Prakash A, Dogra S (2010) Naringin alleviates cognitive impairment, mitochondrial dysfunction and oxidative stress induced by D-galactose in mice. Food Chem Toxicol 48:626–632

    Article  CAS  PubMed  Google Scholar 

  19. Wei H, Li L, Song Q, Ai H, Chu J, Li W (2005) Behavioural study of the D-galactose induced aging model in C57BL/6J mice. Behav Brain Res 157:245–251

    Article  CAS  PubMed  Google Scholar 

  20. Cui X, Zuo P, Zhang Q, Li X, Hu Y, Long J, Packer L, Liu J (2006) Chronic systemic D-galactose exposure induces memory loss, neurodegenaration, and oxidative damage in mice: protective effects of R-alpha-lipoic acid. J Neurosci Res 83:1584–1590

    Article  CAS  PubMed  Google Scholar 

  21. Prior RL, Wu X (2006) Anthocyanins: structural characteristics that result in unique metabolic patterns and biological activities. Free Radic Res 40:1014–1028

    Article  CAS  PubMed  Google Scholar 

  22. Shukitt-Hale B, Cheng V, Joseph JA (2009) Effects of blackberries on motor and cognitive function in aged rats. Nutr Neurosci 12:135–140

    Article  CAS  PubMed  Google Scholar 

  23. Del Rio D, Borges G, Crozier A (2010) Berry flavonoids and phenolics: bioavailability and evidence of protective effects. Br J Nutr 104:S67–S90

    Article  PubMed  Google Scholar 

  24. Shih PH, Chan YC, Liao JW, Wang MF, Yen GC (2010) Antioxidant and cognitive promotion effects of anthocyanin-rich mulberry (Morus atropurpurea L.) on senescence-accelerated mice and prevention of Alzheimer’s disease. J Nutr Biochem 21:598–605

    Article  CAS  PubMed  Google Scholar 

  25. Kahkonen MP, Heinonen M (2003) Antioxidant activity of anthocyanins and their aglycons. J Agric Food Chem 51:628–633

    Article  PubMed  Google Scholar 

  26. Kahkonen MP, Hopia AI, Heinonen M (2001) Berry phenolics and their antioxidant activity. J Agric Food Chem 51:628–633

    Article  Google Scholar 

  27. Shah SA, Yoon GH, Kim MO (2015) Protection of the developing brain with anthocyanins against ethanol-induced oxidative stress and neurodegeneration. Mol Neurobiol 51:1278–1291

    Article  CAS  PubMed  Google Scholar 

  28. Badshah H, Ullah I, Kim SE, Kim TH, Lee HY, Kim MO (2013) Anthocyanins attenuate body weight gain via modulating neuropeptide Y and GABAB1 receptor in rats hypothalamus. Neuropeptides 47:347–353

    Article  CAS  PubMed  Google Scholar 

  29. Ali Shah S, Ullah I, Lee HY, Kim MO (2013) Anthocyanins protect against ethanol-induced neuronal apoptosis via GABAB1 receptors intracellular signaling in prenatal rat hippocampal neurons. Mol Neurobiol 48:257–269

    Article  CAS  PubMed  Google Scholar 

  30. Naseer MI, Ullah I, Narasimhan ML, Lee HY, Bressan RA, Yoon GH, Yun DJ, Kim MO (2014) Neuroprotective effect of osmotin against ethanol-induced apoptotic neurodegeneration in the developing rat brain. Cell Death Dis 5, e1150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ho SC, Liu JH, Wu RY (2003) Establishment of the mimetic aging effect in mice caused by D-galactose. Biogerontology 4:15–18

    Article  CAS  PubMed  Google Scholar 

  32. Shah SA, Lee HY, Bressan RA, Yun DJ, Kim MO (2014) Novel osmotin attenuates glutamate-induced synaptic dysfunction and neurodegeneration via the JNK/PI3K/Akt pathway in postnatal rat brain. Cell Death Dis 5, e1026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wu W, Li M, Liu L, Gao J, Kong H, Ding J, Hu G, Xiao M (2011) Astrocyte activation but not neuronal impairment occurs in the hippocampus of mice after 2 weeks of D-galactose exposure. Life Sci 89:355–363

    Article  CAS  PubMed  Google Scholar 

  34. Lida T, Furuta A, Nishioka K, Nakabeppu Y, Iwaki T (2002) Expression of 8-oxoguanine DNA glycosylase is reduced and associated with neurofibrillary tangles in Alzheimer’s disease brain. Acta Neuropathol 103:20–25

    Article  Google Scholar 

  35. Salminen A, Ojala J, Kauppinen A, Kaarniranta K, Suuronen T (2009) Inflammation in Alzheimer’s disease: amyloid-beta oligomers trigger innate immunity defence via pattern recognition receptors. Prog Neurobiol 87:181–194

    Article  CAS  PubMed  Google Scholar 

  36. Lu J, Wu DM, Zheng YL, Hu B, Zhang ZF, Ye Q, Liu CM, Shan Q et al (2010) Ursolic acid attenuates D-galactose-induced inflammatory response in mouse prefrontal cortex through inhibiting AGEs/RAGE/NF-kB pathway activation. Cereb Cortex 20:2540–2548

    Article  PubMed  Google Scholar 

  37. Granic I, Dolga AM, Nijholt IM, vanDijk G, Eisel UL (2009) Inflammation and NF-kappaB in Alzheimer’s disease and diabetes. J. Alzheimers Dis 16:809–821

    Google Scholar 

  38. Zhang ZH, Yu LJ, Hui XC, Wu ZZ, Yin KL, Yang H, Xu Y (2014) Hydroxy-safflor yellow A attenuates Aβ1-42-induced inflammation by modulating the JAK2/STAT3/NF-κB pathway. Brain Res 14:72–80

    Article  CAS  Google Scholar 

  39. Wu DC, Jackson-Lewis V, Vila M, Tieu K, Teismann P, Vadseth C, Choi DK, Ischiropoulos H, Przedborski S (2002) Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine mouse model of Parkinson disease. J Neurosci 22:1763–1771

    CAS  PubMed  Google Scholar 

  40. Gao HM, Liu B, Zhang WQ, Hong JS (2003) Novel anti-inflammatory therapy for Parkinson’s disease. Trends Pharmacol Sci 24:395–401

    Article  CAS  PubMed  Google Scholar 

  41. Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39:889–909

    Article  CAS  PubMed  Google Scholar 

  42. Takeda A, Yasuda T, Miyata T, Goto Y, Wakai M, Watanabe M, Yasuda Y, Horie K et al (1998) Advanced glycation end products co-localized with astrocytes and microglial cells in Alzheimer’s disease brain. Acta Neuropathol 9:555–558

    Article  Google Scholar 

  43. Wu DM, Lu J, Zheng YL, Zhou Z, Shan Q, Ma DF (2008) Purple sweet potato color repairs d-galactose-induced spatial learning and memory impairment by regulating the expression of synaptic proteins. Neurobiol Learn Mem 90:19–27

    Article  CAS  PubMed  Google Scholar 

  44. Tamagno E, Bardini P, Obbili A, Vitali A, Borghi R, Zaccheo D, Pronzato MA, Danni O et al (2002) Oxidative stress increases expression and activity of BACE in NT2 neurons. Neurobiol Dis 10:279–288

    Article  CAS  PubMed  Google Scholar 

  45. Kao SC, Krichevsky AM, Kosik KS, Tsai LH (2004) BACE1 suppression by RNA interference in primary cortical neurons. J Biol Chem 279:1942–1949

    Article  CAS  PubMed  Google Scholar 

  46. Borghi R, Patriarca S, Traverso N, Piccini A, Storace D, Garuti A, Cirmena G, Odetti P et al (2007) The increased activity of BACE1 correlates with oxidative stress in Alzheimer’s disease. Neurobiol Aging 28:1009–1014

    Article  CAS  PubMed  Google Scholar 

  47. Hsieh HM, Wu WM, Hu ML (2009) Soy isoflavones attenuate oxidative stress and improve parameters related to aging and Alzheimer’s disease in C57BL/6J mice treated with D-galactose. Food and Chem Toxicol 47:625–632

    Article  CAS  Google Scholar 

  48. Lu J, Zheng YL, Wu DM, Luo L, Sun DX, Shan Q (2007) Ursolic acid ameliorates cognition deficits and attenuates oxidative damage in the brain of senescent mice induced by D-galactose. Biochem Pharmacol 74:1078–1090

    Article  CAS  PubMed  Google Scholar 

  49. Wu DM, Lu J, Zheng YL, Zhou Z, Shan Q, Ma DF (2008) Purple sweet potato color repairs d-galactose-induced spatial learning and memory impairment by regulating the expression of synaptic proteins. Neurobiol Learn Mem 90:19–27

    Article  CAS  PubMed  Google Scholar 

  50. Olanow CW (1993) A radical hypothesis for neurodegeneration. Trends Neurosci 11:439–444

    Article  Google Scholar 

  51. Castegna A, Aksenov M, Aksenova M, Thongboonkerd V, Klein JB, Pierce WM, Booze R, Markesbery WR et al (2002) Proteomic identification of oxidatively modified proteins in Alzheimer’s disease brain. Part I: creatine kinase BB, glutamine synthase, and ubiquitin carboxy-terminal hydrolase L-1. Free Radic Biol Med 33:562–571

    Article  CAS  PubMed  Google Scholar 

  52. Shan Q, Lu J, Zheng Y, Li J, Zhou Z, Hu B, Zhang Z, Fan S et al (2009) Purple sweet potato color ameliorates cognition deficits and attenuates oxidative damage and inflammation in aging mouse brain induced by D-galactose. J Biomed Biotechnol 564737

  53. Candela P, Gosselet F, Saint-Pol J, Sevin E, Boucau MC, Boulanger E, Cecchelli R, Fenart L (2010) Apical-tobasolateral transport of amyloid-beta peptides through blood–brain barrier cells is mediated by the receptor for advanced glycation end-products and is restricted by P-glycoprotein. J Alzheimers Dis 22:849–859

    CAS  PubMed  Google Scholar 

  54. Bierhaus A, Humpert PM, Morcos M, Wendt T, Chavakis T, Arnold B, Stern DM, Nawroth PP (2005) Understanding RAGE, the receptor for advanced glycation end products. J Mol Med 83:876–886

    Article  CAS  PubMed  Google Scholar 

  55. Srikanth V, Maczurek A, Phan T, Steele M, Westcott B, Juskiw D, Munch G (2011) Advanced glycation end products and their receptor RAGE in Alzheimer’s disease. Neurobiol Aging 32:763–770

    Article  CAS  PubMed  Google Scholar 

  56. Yan SD, Chen X, Schmidt AM, Brett J, Godman G, Scott CW, Caputo C, Frappier T et al (1994) The presence of glycated tau in Alzheimer’s disease: a mechanism for induction of oxidant stress. PNAS (USA) 91:7787–7791

    Article  CAS  Google Scholar 

  57. Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, Cooper NR, Eikelenboom P et al (2000) Inflammation and Alzheimer’s disease. Neurobiol Aging 21:383–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Calabrese V, Cornelius C, Cuzzocrea S, Iavicoli I, Rizzarelli E, Calabrese EJ (2011) Hormesis, cellular stress response and vitagenes as critical determinants in aging and longevity. Mol Aspects Med 32:279–304

    Article  CAS  PubMed  Google Scholar 

  59. Takuma K, Fang F, Zhang W, Yan S, Fukuzaki E, Du H, Sosunov A, McKhann G et al (2009) RAGE-mediated signaling contributes to intraneuronal transport of amyloid-beta and neuronal dysfunction. Proc Natl Acad Sci U S A 106:20021–20026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Deane R, Du Yan S, Submamaryan RK, LaRue B, Jovanovic S, Hogg E, Welch D, Manness L et al (2003) RAGE mediates amyloid-beta peptide transport across the blood–brain barrier and accumulation in brain. Nat Med 9:907–913

    Article  CAS  PubMed  Google Scholar 

  61. Lu X, Zhou Y, Wu T, Hao L (2014) Ameliorative effect of black rice anthocyanin on senescent mice induced by D-galactose. Food Funct 5:2892–2897

    Article  CAS  PubMed  Google Scholar 

  62. Yang YC, Lin HY, Su KY, Chen CH, Yu YL, Lin CC, Yu SL, Yan HY et al (2012) Rutin, a flavonoid that is a main component of Saussurea involucrata, attenuates the senescence effect in D-galactose aging mouse model. Evid Based Complement Alternat Med 2012:980276

    PubMed  PubMed Central  Google Scholar 

  63. Lovell M, Markesbery W (2007) Oxidative DNA damage in mild cognitive impairment and late-stage Alzheimer’s disease. Nucleic Acids Res 35:7497–7504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bourne KZ, Ferrari DC, Lange-Dohna C, Rossner S, Wood TG, Perez-Polo JR (2007) Differential regulation of BACE1 promoter activity by nuclear factor-kappaB in neurons and glia upon exposure to beta-amyloid peptides. J Neurosci Res 85:1194–1204

    Article  CAS  PubMed  Google Scholar 

  65. Tian J, Ishibashi K, Reiser K, Grebe R, Biswal S, Gehlbach P, Handa J (2005) Advanced glycation endproduct-induced aging of the retinal pigment epithelium and choroid: a comprehensive transcriptional response. Proc Natl Acad Sci U S A 102:11846–11851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lei M, Hua X, Xiao M, Ding J, Han Q, Hu G (2008) Impairments of astrocytes are involved in the d-galactose-induced brain aging. Biochem Biophys Res Commun 369:1082–1087

    Article  CAS  PubMed  Google Scholar 

  67. Vassar R, Bennett BD, Babu-Khan S, Kahn S, Mendiaz EA, Denis P, Teplow DB, Ross S et al (1999) γ-Secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286:735–741

    Article  CAS  PubMed  Google Scholar 

  68. Yang LB, Lindholm K, Yan R, Citron M, Xia W, Yang XL, Beach T, Sue L et al (2003) Elevated beta-secretase expression and enzymatic activity detected in sporadic Alzheimer disease. Nat Med 9:3–4

    Article  CAS  PubMed  Google Scholar 

  69. Lin X, Huang Z, Chen X, Rong Y, Zhang S, Jiao Y, Huang Q, Huang R (2014) Protective effect of Millettia pulchra polysaccharide on cognitive impairment induced by D-galactose in mice. Carbohydr Polym 101:533–543

    Article  CAS  PubMed  Google Scholar 

  70. Arendash GW, Schleif W, Reazi-zadeh K, Jackson EK, Zacharia LC, Cracchiolo JR, Shippy D, Tan J (2006) Caffeine protects Alzheimer’s mice against cognitive impairment and reduces brain-beta amyloid production. Neuroscience 142:941–952

    Article  CAS  PubMed  Google Scholar 

  71. Gao ZQ, Yang C, Wang YY, Wang P, Chen HL, Zhang XD, Liu R, Li WL et al (2008) RAGE upregulation and nuclear factor-kappaB activation associated with ageing rat cardiomyocyte dysfunction. Gen Physiol Biophys 27:152–158

    PubMed  Google Scholar 

  72. Esposito E, Rotilio D, Di Matteo V, Di Giulio C, Cacchio M, Algeri S (2002) A review of specific dietary antioxidants and the effects on biochemical mechanisms related to neurodegenerative processes. Neurobiol Aging 23:719–735

    Article  CAS  PubMed  Google Scholar 

  73. Gano LB, Donato AJ, Pasha HM, Hearon CM Jr, Sindler AL, Seals DR (2014) The SIRT1 activator SRT1720 reverses vascular endothelial dysfunction, excessive superoxide production, and inflammation with aging in mice. Am J Physiol Heart Circ Physiol 307:1754–1763

    Article  Google Scholar 

  74. Sahara N, Murayama M, Lee B, Park JM, Lagalwar S, Binder LI, Takashima A (2008) Active c-jun N-terminal kinase induces caspase cleavage of tau and additional phosphorylation by GSK-3β is required for tau aggregation. Eur J Neurosci 27:2897–2906

    Article  PubMed  Google Scholar 

  75. Bae MA, Song BJ (2003) Critical role of c-Jun N-terminal protein kinase activation in troglitazone-induced apoptosis of human HepG2 hepatoma cells. Mol Pharmacol 63:401–408

    Article  CAS  PubMed  Google Scholar 

  76. Morishima Y, Gotoh Y, Zieg J, Barrett T, Takano H, Flavell R, Davis RJ, Shirasaki Y et al (2001) Beta-amyloid induces neuronal apoptosis via a mechanism that involves the c-Jun N-terminal kinase pathway and the induction of Fas ligand. J Neurosci 21:7551–7560

    CAS  PubMed  Google Scholar 

  77. Lu J, Wu DM, Zheng YL, Hu B, Zhang ZF (2009) Purple sweet potato color alleviates D-galactose-induced brain aging in old mice by promoting survival of neurons via PI3K pathway and inhibiting cytochrome C-mediated apoptosis. Brain Pathol 20:598–612

    Article  PubMed  Google Scholar 

  78. Pollack M, Phaneuf S, Dirks A, Leeuwenburgh C (2002) The role of apoptosis in the normal aging brain, skeletal muscle, and heart. AnnNYAcadSci 959:93–107

    Article  CAS  Google Scholar 

  79. Thees S, Hubbard GB, Winckler J, Schultz C, Rami A (2005) Specific alteration of the Bax/Bcl2 ratio and cytochrome c without execution of apoptosis in the hippocampus of aged baboons. Restor Neurol Neurosci 23:1–9

    CAS  PubMed  Google Scholar 

  80. Shankar GM, Walsh DM (2009) Alzheimer’s disease: synaptic dysfunction and Abeta. Mol Neurodegener 4:48

    Article  PubMed  PubMed Central  Google Scholar 

  81. Markesbery WR (1997) Oxidative stress hypothesis in Alzheimer’s disease. Free Radic Biol Med 23:134–147

    Article  CAS  PubMed  Google Scholar 

  82. Selkoe DJ (2002) Alzheimer’s disease is a synaptic failure. Science 298:789–791

    Article  CAS  PubMed  Google Scholar 

  83. Canas PM, Porciúncula LO, Cunha GM, Silva CG, Machado NJ, Oliveira JM, Oliveira CR, Cunha RA (2009) Adenosine A2A receptor blockade prevents synaptotoxicity and memory dysfunction caused by beta-amyloid peptides via p38 mitogen-activated protein kinase pathway. J Neurosci 29:14741–14751

    Article  CAS  PubMed  Google Scholar 

  84. Ali T, Yoon GH, Shah SA, Lee HY, Kim MO (2015) Osmotin attenuates amyloid beta-induced memory impairment, tau phosphorylation and neurodegeneration in the mouse hippocampus

    Google Scholar 

Download references

Acknowledgments

This research was supported by the Pioneer Research Center Program through the National Research Foundation of Korea funded by the Ministry of Science, ICT and Future Planning (2012–0009521)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myeong Ok Kim.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Additional information

Mr. Shafiq Ur Rehman and Mr. Shahid Ali Shah contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rehman, S.U., Shah, S.A., Ali, T. et al. Anthocyanins Reversed D-Galactose-Induced Oxidative Stress and Neuroinflammation Mediated Cognitive Impairment in Adult Rats. Mol Neurobiol 54, 255–271 (2017). https://doi.org/10.1007/s12035-015-9604-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9604-5

Keywords

Navigation