Skip to main content

Advertisement

Log in

Genetic, Immune-Inflammatory, and Oxidative Stress Biomarkers as Predictors for Disability and Disease Progression in Multiple Sclerosis

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate the TNFβ NcoI polymorphism (rs909253) and immune-inflammatory, oxidative, and nitrosative stress (IO&NS) biomarkers as predictors of disease progression in multiple sclerosis (MS). We included 212 MS patients (150 female, 62 male, mean (±standard deviation (SD)) age = 42.7 ± 13.8 years) and 249 healthy controls (177 female, 72 male, 36.8 ± 11 years). The disability was measured the Expanded Disability Status Scale (EDSS) in 2006 and 2011. We determined the TNFβ NcoI polymorphism and serum levels of interleukin (IL)-6, tumor necrosis factor (TNF)-α, interferon (IFN)-γ, IL-4, IL-10, and IL-17, albumin, ferritin, and plasma levels of lipid hydroperoxides (CL-LOOH), carbonyl protein, advanced oxidation protein products (AOPPs), nitric oxide metabolites (NOx), and total radical-trapping antioxidant parameter (TRAP). The mean EDSS (±SD) in 2006 was 1.62 ± 2.01 and in 2011 3.16 ± 2.29, and disease duration was 7.34 ± 7.0 years. IL-10, TNF-α, IFN-γ, AOPP, and NOx levels were significantly higher and IL-4 lower in MS patients with a higher 2011 EDSS scores (≥3) as compared with those with EDSS < 3. The actual increases in EDSS from 2006 to 2011 were positively associated with TNF-α and IFN-γ. Increased IFN-γ values were associated with higher pyramidal symptoms and increased IL-6 with sensitive symptoms. Increased carbonyl protein and IL-10 but lowered albumin levels predicted cerebellar symptoms. The TNFB1/B2 genotype decreased risk towards progression of pyramidal symptoms. Treatments with IFN-β and glatiramer acetate significantly reduced TNF-α but did not affect the other IO&NS biomarkers or disease progression. Taken together, IO&NS biomarkers and NcoI TNFβ genotypes predict high disability in MS and are associated with different aspects of disease progression. New drugs to treat MS should also target oxidative stress pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kamali-Sarvestani E, Nikseresht A, Aflaki E, Sarvari J, Gharesi-Fard B (2007) TNF-α, TNF-β and IL-4 polymorphisms in Iranian patients with multiple sclerosis. Acta Neurol Scand 115:161–166

    Article  CAS  PubMed  Google Scholar 

  2. Witherick J, Wilkins A, Scolding N, Kemp K (2010) Mechanisms of oxidative stress damage in multiple sclerosis and a cell therapy approach to treatment. Autoimmune Dis 2011:1–11

    Article  Google Scholar 

  3. Fraussen J, Claes N, de Bock L, Somers V (2014) Targets of the autoimmune response in multiple sclerosis. Autoimmun Rev 13:1126–1137

    Article  CAS  PubMed  Google Scholar 

  4. Kabat EA, Moore DH, Landow H (1942) An electrophoretic study of the protein components in cerebrospinal fluid and their relationship to the serum proteins. J Clin Invest 21:571–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lumsden CE (1971) The immunogenesis of the multiple sclerosis plaque. Brain Res 28:365–390

    Article  CAS  PubMed  Google Scholar 

  6. Lucchinetti C, Bruck W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H (2000) Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 47:707–717

    Article  CAS  PubMed  Google Scholar 

  7. Breij EC, Brink BP, Veerhuis R, van den Berg C, Vloet R, Yan R et al (2008) Homogeneity of active demyelinating lesions in established multiple sclerosis. Ann Neurol 63:16–25

    Article  CAS  PubMed  Google Scholar 

  8. von Budingen HC, Gulati M, Kuenzle S, Fischer K, Rupprecht TA, Goebels N (2010) Clonally expanded plasma cells in the cerebrospinal fluid of patients with central nervous system autoimmune demyelination produce ‘oligoclonal bands’. J Neuroimmunol 218:134–139

    Article  CAS  Google Scholar 

  9. Ozawa K, Suchanek G, Breitschopf H, Brück W, Budka H, Jellinger K, Lassmann H (1994) Patterns of oligodendroglia pathology in multiple sclerosis. Brain 117:1311–1322

    Article  PubMed  Google Scholar 

  10. Reindl M, Kuenz B, Berger T (2010) B-cells and antibodies in MS. Results Probl Cell Differ 51:99–113

    Article  CAS  PubMed  Google Scholar 

  11. Voskuhl RR, Gold SM (2012) Sex-related factors in multiple sclerosis susceptibility and progression. Nat Rev Neurol 8:255–263. doi:10.1038/nrneurol.2012.43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Maürer M, Kruse N, Giess R, Kyriallis K, Toyka KV, Rieckmann P (1999) Gene polymorphism at position −308 of the tumor necrosis factor α promoter is not associated with disease progression in multiple sclerosis. J Neurol 246:949–954

    Article  PubMed  Google Scholar 

  13. Kallaur AP, Kaimen-Maciel DM, Morimoto HK, Watanabe MAE, Reiche EMV (2011) Genetic polymorphisms associated with the development and clinical course of multiple sclerosis. Inter J Mol Med 28:467–479. doi:10.3892/ijmm.2011.731

    CAS  Google Scholar 

  14. Selmaj K, Raine CS, Cannella B, Brosnan CF (1991) Identification of lymphotoxin and tumor necrosis factor in multiple sclerosis lesions. J Clin Invest 87:949–954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Vassali P (1992) The pathophysiology of tumor necrosis factor. Ann Rev Immunol 10:411–452

    Article  Google Scholar 

  16. Ebers GC, Kukay K, Bulman DE Sadovnick AD, Rice G, Anderson C et al (1996) A full genome search in multiple sclerosis. Nat Genet 13:472–476

    Article  CAS  PubMed  Google Scholar 

  17. Mycko M, Kowalski W, Kwinkowski M, Buenafe AC, Szymanska B, Tronczynska E et al (1998) Multiple sclerosis: the frequency of allelic forms of tumor necrosis factor and lymphotoxin-alpha. Journal of Neuroimmunol 84:198–206

    Article  CAS  Google Scholar 

  18. Nedwin GE, Naylor SL, Sakaguchi AY, Smith D, Jarrett-Nedwin J, Pennica D et al (1985) Human lymphotoxin and tumor necrosis factor genes: structure, homology and chromosomal localization. Nucleic Acids Res 13:6361–6373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Messer G, Spengler U, Jung MC, Messer G, Spengler U, Jung MC et al (1991) Polymorphic structure of the tumor necrosis factor (TNF) locus: an NcoI polymorphism in the first intron of the human TNF-beta gene correlates with a variant amino acid in position 26 and a reduced level of TNF-beta production. J Exp Med 173:209–219

    Article  CAS  PubMed  Google Scholar 

  20. Ebers CG, Sandovnick AD (1994) The role of genetic factor in multiple sclerosis susceptibility. J Neuroimmunol 54:1–17

    Article  CAS  PubMed  Google Scholar 

  21. Sharma S, Sharma A, Kumar S, Sharma SK, Gosh B (2006) Association of TNF haplotypes with asthma, serum IgE levels, and correlation with serum TNF-alpha levels. Am J Resp Cell Mol Biol 35:488–495

    Article  CAS  Google Scholar 

  22. Delongui F, Grion CMC, Watanabe MAE, Morimoto HK, Bonametti AM, Maeda Oda JM et al (2011) Association of tumor necrosis factor β genetic polymorphism and sepsis susceptibility. Exp Ther Med 2:349–356

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Amorini AM, Petzold A, Tavazzi B, Eikelenboom J, Keir G, Belli A et al (2009) Increased of uric acid and purine compounds in biological fluids of multiple sclerosis patients. Clin Biochem 42:1001–1006

    Article  CAS  PubMed  Google Scholar 

  24. Bjartmar C, Trapp BD (2001) Axonal and neuronal degeneration in multiple sclerosis: mechanisms and functional consequences. Curr Opin Neurol 14:271–278

    Article  CAS  PubMed  Google Scholar 

  25. Gilgun-Sherki Y, Melamed E, Offen D (2004) The role of oxidative stress in the pathogenesis of multiple sclerosis: the need for effective antioxidant therapy. J Neurol 251:261–1268

    Article  CAS  PubMed  Google Scholar 

  26. Pirko I, Lucchinetti CF, Sriram S, Bakshi R (2007) Gray matter involvement in multiple sclerosis. Neurology 68:634–642

    Article  PubMed  Google Scholar 

  27. Morgen K, Sammer G, Courtney SM, Wolters T, Melchior H, Blecker CR et al (2006) Evidence for a direct association between cortical atrophy and cognitive impairment in relapsing-remitting MS. NeuroImage 30:891–898

    Article  PubMed  Google Scholar 

  28. Patti F, De Stefano M, Lavorgna L, Messina S, Chisari CG, Ippolito D et al (2015) Lesion load may predict long-term cognitive dysfunction in multiple sclerosis patients. PLOS One 10:e0120754. doi:10.1371/journal.pone.0120754

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Tedeschi G, Lavorgna L, Russo P, Prinster A, Dinacci D, Savettieri G (2005) Brain atrophy and lesion load in a large population of patients with multiple sclerosis. Neurology 65:280–285

    Article  CAS  PubMed  Google Scholar 

  30. Kearney H, Rocca MA, Valsasina P, Balk L, Sastre-Garriga J, Reinhardt J et al (2014) Magnetic resonance imaging correlates of physical disability in relapse onset multiple sclerosis of long disease duration. Mult Scler J 20:72–80

    Article  CAS  Google Scholar 

  31. Polman CH, Reingold SC, Edan G, Filippi M, Hartung HP, Kappos L et al (2005) Diagnostic criteria for multiple sclerosis: 2005 revisions to the "McDonald Criteria". Ann Neurol 58:840–846

    Article  PubMed  Google Scholar 

  32. Polman CH, Reingold SC, Banwell B, Clanet M, Cohen JA, Filippi M et al (2011) Diagnostic criteria for multiple sclerosis: 2010 revision to the McDonald Criteria. Ann Neurol 69:292–302. doi:10.1002/ana.22366

    Article  PubMed  PubMed Central  Google Scholar 

  33. IBGE. Brazilian Institute of Geography and Statistics (2011) Characteristics of the population and households: results of the universe. Available in://http://www.ibge.gov.br/english/estatistica/populacao/censo2010/caracteristicas_da_populacao/default_caracteristicas_da_populacao.shtm. Accessed in July 16, 2013.

  34. Suarez-Kurtz G, Pena SDJ, Struchiner CJ, Hutz MH (2012) Pharmacogenomic diversity among Brazilians: influence of ancestry, self-reported color, and geographical origin. Front Pharmacol 3:191. doi:10.3389/fphar.2012.00191

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kurtzke JF (1983) Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurol 33:1444–1452

    Article  CAS  Google Scholar 

  36. Koch M, Mostert J, Heersema D, De Kayser J (2007) Progression in multiple sclerosis: further evidence of an age dependent process. J Neurol Sci 255:35–41

    Article  CAS  PubMed  Google Scholar 

  37. Brazil. Ministry of Health. (2004) National Health Surveillance Agency Board: Resolution RDC no. 153, June 14, 2004. Official Gazette: 24 June, 2004, Brazil

  38. Teunissen CE, Petzold A, Bennett JL, Berven FS, Brundin L, Comabella M et al (2009) A consensus protocol for the standardization of cerebral fluid collection and biobanking. Neurology 73:1914–1922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Majetschak M, Flohé S, Obertacke U, Schröder J, Staubach K, Nast-Kolb D et al (1999) Relation of a TNF gene polymorphism to severe sepsis in trauma patients. Ann Surg 230:207–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Majetschak M, Obertacke U, Schade FU, Bardenheuer M, Voggenreiter G, Bloemeke B et al (2002) Tumor necrosis factor gene polymorphisms, leukocyte function, and sepsis susceptibility in blunt trauma patients. Clin Diag Lab Immunol 9:1205–1211

    CAS  Google Scholar 

  41. Gonzalez-Flecha BG, Llesuy S, Boveris A (1991) Hydroperoxydeínitiated chemiluminescence: an assay for oxidative stress in biopsy heart, liver, and muscle. Free Radic Biol Med 10:93–100

    Article  CAS  PubMed  Google Scholar 

  42. Resnick AZ, Paccker L (1994) Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods Enzymol 233:257–263

    Google Scholar 

  43. Witko-Sarsat V, Friedlander M, Nguyen KT, Capeillère-Blandin C, Nguyen AT, Canteloup S et al (1998) Advanced oxidation protein products as novel mediators of inflammation and monocyte activation in chronic renal failure. J Immunol 16:2524–2532

    Google Scholar 

  44. Panis C, Herrera ACSA, Victorino VJ, Campos FC, Freitas LF, de Rossi et al (2012) Oxidative stress and hematological profiles of advances breast cancer patients subjected to paclitaxel or doxorubicin chemotherapy. Breast Cancer Res Treat 133:89–97

    Article  CAS  PubMed  Google Scholar 

  45. Reppeto M, Reids C, Gomez Carretero ML, Costa M, Griemberg G, Llesuy S (1996) Oxidative stress in blood of HIV infected patients. Clin Chim Acta 255:107–117

    Article  Google Scholar 

  46. Kalincik T, Buzzard K, Jokubaitis V, Trojano M, Duquette P, Izquierdo G et al (2014) Risk of relapse phenotype recurrence in multiple sclerosis. Mult Scler 20:1511–1522. doi:10.1177/1352458514528762

    Article  PubMed  Google Scholar 

  47. Held U, Heigenhauser L, Shang C, Kappos L, Polman C, Sylvia Lawry Centre for MS Research (2005) Predictors of relapse rate in MS clinical trials. Neurology 65:1769–1773

    Article  CAS  PubMed  Google Scholar 

  48. Mowry EM, Deen S, Malikova I, Pelletier J, Bacchetti P, Waubant E (2009) The onset location of multiple sclerosis predicts the location of subsequent relapses. J Neurol Neurosurg Psychiatry 80:400–403. doi:10.1136/jnnp.2008.157305

    Article  CAS  PubMed  Google Scholar 

  49. Tremlett H, Yousefi M, Devonshire V, Rieckmann P, Zhao Y, Neurologists UBC (2009) Impact of multiple sclerosis relapses on progression diminishes with time. Neurology 73:1616–1623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tremlett H, Zhao Y, Joseph J, Devonshire V, Clinic Neurologists UBCMS (2008) Relapses in multiple sclerosis are age- and time-dependent. J Neurol Neurosurg Psychiatry 79:1368–1374

    Article  CAS  PubMed  Google Scholar 

  51. Kalincik T, Vivek V, Jokubaitis V, Lechner-Scott J, Trojano M, Izquierdo G et al (2013) Sex as a determinant of relapse incidence and progressive course of multiple sclerosis. Brain 136:3609–3617. doi:10.1093/brain/awt281

    Article  PubMed  Google Scholar 

  52. Nguyen LT, Ramanathan M, Weinstock-Guttman B, Baier M, Brownscheidle C, Jacobs LD (2003) Sex differences in in vitro pro-inflammatory cytokine production from peripheral blood of multiple sclerosis patients. J Neurol Sci 209:93–99

    Article  CAS  PubMed  Google Scholar 

  53. Gardner AW, Parker DE, Montgomery PS, Sosnowska D, Casanegra AI, Ungvari Z et al (2015) Gender and racial differences in endothelial oxidative stress and inflammation in patients with symptomatic peripheral artery disease. J Vasc Surg 61:1249–1257. doi:10.1016/j.jvs.2014.02.045

    Article  PubMed  Google Scholar 

  54. Khadir A, Tiss A, Kavalakatt S, Behbehani K, Dehbi M, Elkum N (2015) Gender-specific association of oxidative stress and inflammation with cardiovascular risk factors in Arab population. Mediators Inflamm 2015:512603. doi:10.1155/2015/512603

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Bove R, Chitnis T (2013) Sexual disparities in the incidence and course of MS. Clinical Immunology 149:201–210. doi:10.1016/j.clim.2013.03.005, PMID: 23608496

    Article  CAS  PubMed  Google Scholar 

  56. Cossburn M, Ingram G, Hirst C, Ben-Shlomo Y, Pickersgill TP, Robertson NP (2012) Age at onset as a determinant of presenting phenotype and initial relapse recovery in multiple sclerosis. Multiple Sclerosis Journal 18:45–54. doi:10.1177/1352458511417479, PMID: 21865412

    Article  CAS  PubMed  Google Scholar 

  57. Koch M, Uyttenboogaart M, Van Harten A, De Keyser J (2008) Factors associated with the risk of secondary progression in multiple sclerosis. Multiple Sclerosis 14:799–803. doi:10.1177/1352458508089361, PMID: 18573840

    Article  CAS  PubMed  Google Scholar 

  58. Scalfari A, Neuhaus A, Degenhardt A, Rice GP, Muraro PA, Daumer M et al (2010) The natural history of multiple sclerosis, a geographical based study 10: relapses and long-term disability. Brain 133:1914–1929. doi:10.1093/brain/awq118, PMID: 20534650

    Article  PubMed  PubMed Central  Google Scholar 

  59. Mack CL, Vanderlugt-Castaneda CL, Neville KL, Miller SD (2003) Microglia are activated to become competent antigen presenting and effector cells in the inflammatory environment of the Theiler’s virus model of multiple sclerosis. J Neuroimmunol 144:68–79

    Article  CAS  PubMed  Google Scholar 

  60. Takeuchi H, Wang J, Kawanokuchi J, Mitsuma N, Mizuno T, Suzumura A (2006) Interferon-gamma induces microglial-activation-induced cell death: a hypothetical mechanism of relapse and remission in multiple sclerosis. Neurobiol Dis 22:33–39

    Article  CAS  PubMed  Google Scholar 

  61. Murphy AC, Lalor SJ, Lynch MA, Mills KH (2010) Infiltration of Th1 and Th17 cells and activation of microglia in the CNS during the course of experimental autoimmune encephalomyelitis. Brain Behav Immun 24:641–651. doi:10.1016/j.bbi.2010.01.014

    Article  CAS  PubMed  Google Scholar 

  62. Duddy ME, Armstrong MA, Crockard AD, Hawkins SA (1999) Changes in plasma, cytokines induced by interferon β1a treatment in patients with multiple sclerosis. J Neuroimmunol 101:98–109

    Article  CAS  PubMed  Google Scholar 

  63. Trenova AG, Manova MG, Kostadinova II, Hrsitova DR, Vasileva TV, Zahariev ZI (2011) Clinical and laboratory study of pro-inflammatory and anti-inflammatory cytokines in women with multiple sclerosis. Folia Med (Plovdiv) 53:29–35

    Google Scholar 

  64. Graber JJ, Ford D, Zhan M, Francis G, Panitch H, Dhib-Jalbut S (2007) Cytokine changes during interferon-beta therapy in multiple sclerosis: correlation with interferon dose and MRI response. J Neuroimmunol 185:168–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Benvenuto R, Paroli M, Buttinelli C, Franco A, Barnaba V, Fieschi C et al (1991) Tumor necrosis factor-alpha synthesis by cerebrospinal-fluid-derived T cell clones from patients with multiple sclerosis. Clin Exp Immunol 84:97–102

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Leonard B, Maes M (2012) Mechanistic explanations how cell-mediated immune activation, inflammation and oxidative and nitrosative stress pathways and their sequels and concomitants play a role in the pathophysiology of unipolar depression. Neurosci Biobehav Rev 36:764–785

    Article  CAS  PubMed  Google Scholar 

  67. Probert L (2015) TNF and its receptors in the CNS: the essential, the desirable and the deleterious effects. Neuroscience 302:2–22. doi:10.1016/j.neuroscience.2015.06.038

    Article  CAS  PubMed  Google Scholar 

  68. Montgomery SL, Bowers WJ (2012) Tumor necrosis factor-alpha and the roles it plays in homeostatic and degenerative processes within the central nervous system. J Neuroimmune Pharmacol 7:42–59

    Article  PubMed  Google Scholar 

  69. Brown GC, Vilalta A (2015) How microglia kill neurons. Brain Res pii S0006–8993(15):00672–1. doi:10.1016/j.brainres.2015.08.031

    Google Scholar 

  70. Olsson T (1995) Cytokine-producing cells in experimental autoimmune encephalomyelitis and multiple sclerosis. Neurology 45(Suppl 6):S11–S15

    Article  CAS  PubMed  Google Scholar 

  71. Sosa RA, Forsthuber TG (2011) The critical role of antigen-presentation-induced cytokine crosstalk in the central nervous system in multiple sclerosis and experimental autoimmune encephalomyelitis. J Interferon Cytokine Res 31:753–768. doi:10.1089/jir.2011.0052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Dihb-Jalbut S, Arnold DL, Cleveland DW, Fisher M, Friedlander RM, Mouradian MM et al (2006) Neurodegeneration and neuroprotection in multiple sclerosis and other neurodegenerative diseases. J Neuroimmunol 176:198–215

    Article  CAS  Google Scholar 

  73. Hashioka S, McGeer EG, Miyaoka T, Wake R, Horiguchi J, McGeer PL (2015) Interferon-γ-induced neurotoxicity of human astrocytes. CNS Neurol Disord Drug Targets 14:251–256

    Article  CAS  PubMed  Google Scholar 

  74. Imitola J, Chitnis T, Khoury SJ (2005) Cytokines in multiple sclerosis: from bench to bedside. Pharmacol Ther 106:163–177

    Article  CAS  PubMed  Google Scholar 

  75. Cannella B, Raine CS (1995) The adhesion molecule and cytokine profile of multiple sclerosis lesions. Ann Neurol 37:424–435

    Article  CAS  PubMed  Google Scholar 

  76. Ireland SJ, Monson NL, Davis LS (2015) Seeking balance: potentiation and inhibition of multiple sclerosis autoimmune responses by IL-6 and IL-10. Cytokine 73:236–244. doi:10.1016/j.cyto.2015.01.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Samoilova EB, Horton JL, Chen Y (1998) Acceleration of experimental autoimmune encephalomyelitis in interleukin-10-deficient mice: roles of interleukin-10 in disease progression and recovery. Cell Immunol 188:118–124

    Article  CAS  PubMed  Google Scholar 

  78. Luomala M, Lehtimäki T, Huhtala H, Ukkonen M, Koivula T, Hurme H et al (2003) Promoter polymorphism of IL-10 and severity of multiple sclerosis. Acta Neurol Scand 108:396–400

    Article  CAS  PubMed  Google Scholar 

  79. Maes M, Berk M, Goehler L, Song C, Anderson G, Gałecki P et al (2012) Depression and sickness behavior are Janus-faced responses to shared inflammatory pathways. BMC Med 10:66. doi:10.1186/1741-7015-10-66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Putheti P, Pettersson A, Soderstrom M, Link H, Huang YM (2004) Circulating CD4 + CD25+ T regulatory cells are not altered in multiple sclerosis and unaffected by disease-modulating drugs. J Clin Immunol 24:155–61

    Article  CAS  PubMed  Google Scholar 

  81. Viglietta V, Baecher-Allan C, Weiner HL, Hafler DA (2004) Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis. J Exp Med 199:971–979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Haas J, Hug A, Viehover A, Fritzsching B, Falk CS, Filser A et al (2005) Reduced suppressive effect of CD4+CD25 high regulatory T cells on the T cell immune response against myelin oligodendrocyte glycoprotein in patients with multiple sclerosis. Eur J Immunol 35:3343–3352

    Article  CAS  PubMed  Google Scholar 

  83. Feger U, Luther C, Poeschel S, Melms A, Tolosa E, Wiendl H (2007) Increased frequency of CD4+ CD25+ regulatory T cells in the cerebrospinal fluid but not in the blood of multiple sclerosis patients. Clin Exp Immunol 147:412–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Oliveira SR, Kallaur AP, Simão AN, Morimoto HK, Lopes J, Panis C et al (2012) Oxidative stress in multiple sclerosis patients in clinical remission: association with the expanded disability status scale. J Neurol Sci 321:49–53. doi:10.1016/j.jns.2012.07.045

    Article  CAS  PubMed  Google Scholar 

  85. Maes M, Galecki P, Chang YS, Berk M (2011) A review on the oxidative and nitrosative stress (O&NS) pathways in major depression and their possible contribution to the (neuro)degenerative processes in that illness. Prog Neuropsychopharmacol Biol Psychiatry 35:676–692

    Article  CAS  PubMed  Google Scholar 

  86. Andersen JK (2004) Oxidative stress in neurodegeneration: cause or consequence? Nat Med 10(Suppl):S18–S25

    Article  PubMed  Google Scholar 

  87. Morris G, Walder K, Puri BK, Berk M, Maes M (2015) The deleterious effects of oxidative and nitrosative stress on palmitoylation, membrane lipid rafts and lipid-based cellular signalling: new drug targets in neuroimmune disorders. Mol Neurobiol [Epub ahead of print] PubMed

  88. Esterbauer H, Schaur RJ, Zollner H (1991) Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med 11:81–128

    Article  CAS  PubMed  Google Scholar 

  89. Ortiz GG, Pacheco-Moisés FP, Bitzer-Quintero OK, Ramírez-Anguiano AC, Flores-Alvarado LJ, Ramírez-Ramírez V et al (2013) Immunology and oxidative stress in multiple sclerosis: clinical and basic approach. Clin Dev Immunol 2013:708659. doi:10.1155/2013/708659

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Lull ME, Block ML (2010) Microglial activation and chronic neurodegeneration. Neurotherapeutics 7:354–365. doi:10.1016/j.nurt.2010.05.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. De Bustos F, Navarro JA, De Andres C, Molina JA, Jiménez-Jiménez FJ, Ortí‐Pareja M et al (1999) Cerebrospinal fluid nitrate levels in patients with multiple sclerosis. Eur Neurol 41:44–47

    Article  PubMed  Google Scholar 

  92. Danilov AI, Andersson M, Bavand N, Wiklund NP, Olsson T, Brundin L (2003) Nitric oxide metabolite determinations reveal continuous inflammation in multiple sclerosis. J Neuroimmunol 136:112–118

    Article  CAS  PubMed  Google Scholar 

  93. Ferreti G, Bacchetti T, Principi F, Ludovico DL, Viti B, Angeleri VA et al (2005) Increased levels of lipid hydroperoxides in plasma of patients with multiple sclerosis: a relationship with paraoxonase activity. Mult Scler 11:677–682

    Article  Google Scholar 

  94. Koch M, Mostert J, Arutjunyan AV, Stepanov M, Teelken A, Heersema D et al (2007) Plasma lipid peroxidation and progression of disability in multiple sclerosis. Eur J Neurol 14:529–33

    Article  CAS  PubMed  Google Scholar 

  95. Sayre LM, Perry G, Smith MA (2008) Oxidative stress and neurotoxicity. Chem Res Toxicol 21:172–88

    Article  PubMed  Google Scholar 

  96. Miller E, Mrowicka M, Saluk-Juszczak J, Ireneusz M (2011) The level of isoprostanes as a non-invasive marker for in vivo lipid peroxidation in secondary progressive multiple sclerosis. Neurochem Res 36:1012101–6

    Article  CAS  Google Scholar 

  97. Miller E, Walczak A, Saluk J, Ponczek MB, Majsterek I (2012) Oxidative modification of patient’s plasma proteins and its role in pathogenesis of multiple sclerosis. Clin Biochem 45:26–30

    Article  CAS  PubMed  Google Scholar 

  98. Bizzozero OA, De Jesus G, Callahan K, Pastuszyn A (2005) Elevated protein carbonylation in the brain white matter and gray matter of patients with multiple sclerosis. J Neurosci Res 81:687–695

    Article  CAS  PubMed  Google Scholar 

  99. Sheikh Z, Ahmad R, Sheikh N, Ali R (2007) Enhanced recognition of reactive oxygen species damage human serum albumin by circulating systemic lupus erythematosus autoantibodies. Autoimmunity 40:512–20

    Article  CAS  PubMed  Google Scholar 

  100. Moylan S, Berk M, Dean OM, Samuni Y, Williams LJ, O’Neil A et al (2014) Oxidative & nitrosative stress in depression: why so much stress? Neurosci Biobehav Rev 45:46–62

    Article  CAS  PubMed  Google Scholar 

  101. Dasgupta S, Jana M, Liu X, Pahan K (2002) Myelin basic protein-primed T cells induced nitric oxide synthase in microglial cells. Implications for multiple sclerosis. J Biol Chem 277:39327–39333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Brown GC, Neher JJ (2010) Inflammatory neurodegeneration and mechanisms of microglial killing of neurons. Mol Neurobiol 41:242–247. doi:10.1007/s12035-010-8105-9

    Article  CAS  PubMed  Google Scholar 

  103. Boullerne AI, Petry KG, Meynard M, Geffard M (1995) Indirect evidence for nitric oxide involvement in multiple sclerosis by characterization of circulating antibodies directed against conjugated S-nitrosocysteine. J Neuroimmunol 60:117–124

    Article  CAS  PubMed  Google Scholar 

  104. Kallaur AP, Oliveira SR, Simão AN, de Almeida ER, Morimoto HK, Alfieri DF et al (2014) Tumor necrosis factor beta NcoI polymorphism is associated with inflammatory and metabolic markers in multiple sclerosis patients. J Neurol Sci 346:156–163. doi:10.1016/j.jns.2014.08.016

    Article  CAS  PubMed  Google Scholar 

  105. Brown MG, Kirby S, Skedgel C, Fisk JD, Murray TJ, Bhan V et al (2007) How effective are disease-modifying drugs in delaying progression in relapsing-onset MS? Neurology 69:1498–1507

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The study was supported by grants from Coordination for the Improvement of Higher Level of Education Personnel (CAPES) of Brazilian Ministry of Education; Institutional Program for Scientific Initiation Scholarship (PIBIC) of the National Council for Scientific and Technological Development (CNPq); State University of Londrina (PROPPG). We thank the University Hospital of State University of Londrina and HUTec Foundation for technical and administrative supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edna Maria Vissoci Reiche.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kallaur, A.P., Reiche, E.M.V., Oliveira, S.R. et al. Genetic, Immune-Inflammatory, and Oxidative Stress Biomarkers as Predictors for Disability and Disease Progression in Multiple Sclerosis. Mol Neurobiol 54, 31–44 (2017). https://doi.org/10.1007/s12035-015-9648-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9648-6

Keywords

Navigation