Skip to main content
Log in

Decreased Coupling Between Functional Connectivity Density and Amplitude of Low Frequency Fluctuation in Non-Neuropsychiatric Systemic Lupus Erythematosus: a Resting-Stage Functional MRI Study

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

In this study, we seek to explore alterations of coupling between functional connectivity density (FCD) and amplitude of low frequency fluctuation (ALFF) in systemic lupus erythematosus patients without overt neuropsychiatric symptoms (non-NPSLE) by using resting-state functional MR imaging. This study was approved by the institutional ethical review board, and all participants signed written informed consent prior to the study. Twenty six non-NPSLE patients and 35 matched healthy controls underwent resting-state functional MR imaging. The correlation analysis between FCD and ALFF was conducted to assess the imaging coupling. Pearson correlation analysis was performed to correlate imaging variables to clinical and neuropsychological data in non-NPSLE patients. According to the consistent alteration of FCD and ALFF, region of interests were identified including the right inferior temporal gyrus, bilateral hippocampus-parahippocampus (H-PH), left posterior cingulate cortex, superior parietal gyrus, postcentral gyrus, and bilateral precuneus. Across-voxel correlation analysis showed decreased coupling strengths in some brain regions. Correlations between FCD, ALFF, and coupling strength in H-PH and C3/C4/MoCA were found. The imaging coupling between FCD and ALFF was decreased in non-NPSLE patients, indicating brain function alteration in non-NPSLE patients, especially the abnormal coupling between FCD and ALFF of the hippocampus-parahippocampus might be an imaging biomarker of brain dysfunction in non-NPSLE patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

rs-fMRI:

Resting-state fMRI

SLE:

Systemic lupus erythematosus

SLEDAI:

Systemic lupus erythematosus disease activity index

FCD:

Functional connectivity density

ALFF:

Amplitude of low frequency fluctuation

References

  1. Gono T, Kawaguchi Y, Yamanaka H (2013) Discoveries in the pathophysiology of neuropsychiatric lupus erythematosus: consequences for therapy. BMC Med 11:91. doi:10.1186/1741-7015-11-91

    Article  PubMed  PubMed Central  Google Scholar 

  2. Toledano P, Sarbu N, Espinosa G, Bargalló N, Cervera R (2013) Neuropsychiatric systemic lupus erythematosus: magnetic resonance imaging findings and correlation with clinical and immunological features. Autoimmun Rev 12(12):1166–1170. doi:10.1016/j.autrev.2013.07.004

    Article  PubMed  Google Scholar 

  3. Sarbu N, Alobeidi F, Toledano P, Espinosa G, Giles I, Rahman A, Yousry T, Capurro S, et al. (2015) Brain abnormalities in newly diagnosed neuropsychiatric lupus: systematic MRI approach and correlation with clinical and laboratory data in a large multicenter cohort. Autoimmun Rev 14(2):153–159. doi:10.1016/j.autrev.2014.11.001

    Article  PubMed  Google Scholar 

  4. (1999) The American College of Rheumatology nomenclature and case definitions for neuropsychiatric lupus syndromes. Arthritis Rheum 42(4):599–608.

  5. Schmidt-Wilcke T, Cagnoli P, Wang P, Schultz T, Lotz A, Mccune WJ, Sundgren PC (2014) Diminished white matter integrity in patients with systemic lupus erythematosus. Neuroimage Clin 5:291–297. doi:10.1016/j.nicl.2014.07.001 eCollection 2014

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kozora E, Filley CM (2011) Cognitive dysfunction and white matter abnormalities in systemic lupus erythematosus. J Int Neuropsychol Soc 17(3):385–392. doi:10.1017/S1355617711000191

    Article  PubMed  Google Scholar 

  7. Sciascia S, Bertolaccini ML, Baldovino S, Roccatello D, Khamashta MA, Sanna G (2013) Central nervous system involvement in systemic lupus erythematosus: overview on classification criteria. Autoimmun Rev 12(3):426–429. doi:10.1016/j.autrev.2012.08.014

    Article  PubMed  Google Scholar 

  8. Monastero R, Bettini P, Del Zotto E, Cottini E, Tincani A, Balestrieri G, Cattaneo R, Camarda R, et al. (2001) Prevalence and pattern of cognitive impairment in systemic lupus erythematosus patients with and without overt neuropsychiatric manifestations. J Neurol Sci 184(1):33–39

    Article  CAS  PubMed  Google Scholar 

  9. Hanly JG (2014) Diagnosis and management of neuropsychiatric SLE. Nat Rev Rheumatol 10(6):338–347. doi:10.1038/nrrheum.2014.15

    Article  CAS  PubMed  Google Scholar 

  10. Jeltsch-David H, Muller S (2014) Neuropsychiatric systemic lupus erythematosus: pathogenesis and biomarkers. Nat Rev Neurol 10(10):579–596. doi:10.1038/nrneurol.2014.148

    Article  CAS  PubMed  Google Scholar 

  11. Snyder AZ, Raichle ME (2012) A brief history of the resting state: the Washington University perspective. NeuroImage 62(2):902–910. doi:10.1016/j.neuroimage.2012.01.044

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lin Y, Zou QH, Wang J, Wang Y, Zhou DQ, Zhang RH, Zhang YW, Lii HT, et al. (2011) Localization of cerebral functional deficits in patients with non-neuropsychiatric systemic lupus erythematosus. Hum Brain Mapp 32(11):1847–1855. doi:10.1002/hbm.21158

    Article  PubMed  Google Scholar 

  13. Hou J, Lin Y, Zhang W, Song L, Wu W, Wang J, Zhou D, Zou Q, et al. (2013) Abnormalities of frontal-parietal resting-state functional connectivity are related to disease activity in patients with systemic lupus erythematosus. PLoS One 8(9):e74530. doi:10.1371/journal.pone.0074530 eCollection 2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li X, Liang Y, Chen Y, Zhang J, Wei D, Chen K, Shu N, Reiman EM, et al. (2015) Disrupted frontoparietal network mediates white matter structure dysfunction associated with cognitive decline in hypertension patients. J Neurosci 35(27):10015–10024. doi:10.1523/JNEUROSCI.5113-14.2015

    Article  CAS  PubMed  Google Scholar 

  15. Toyoda K, Ninomiya T (2014) Stroke and cerebrovascular diseases in patients with chronic kidney disease. Lancet Neurol 13(8):823–833. doi:10.1016/S1474-4422(14)70026-2

    Article  PubMed  Google Scholar 

  16. Tomasi D, Wang GJ, Volkow ND (2013) Energetic cost of brain functional connectivity. Proc Natl Acad Sci U S A 110(33):13642–13647. doi:10.1073/pnas.1303346110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liang X, Zou Q, He Y, Yang Y (2013) Coupling of functional connectivity and regional cerebral blood flow reveals a physiological basis for network hubs of the human brain. Proc Natl Acad Sci U S A 110(5):1929–1934. doi:10.1073/pnas.1214900110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tomasi D, Wang R, Wang GJ, Volkow ND (2014) Functional connectivity and brain activation: a synergistic approach. Cereb Cortex 24(10):2619–2629. doi:10.1093/cercor/bht119

    Article  PubMed  Google Scholar 

  19. Takeuchi H, Taki Y, Nouchi R, Sekiguchi A, Hashizume H, Sassa Y, Kotozaki Y, Miyauchi CM, et al. (2015) Degree centrality and fractional amplitude of low-frequency oscillations associated with Stroop interference. NeuroImage 119:197–209. doi:10.1016/j.neuroimage.2015.06.058

    Article  PubMed  Google Scholar 

  20. Zhang Z, Xu Q, Liao W, Wang Z, Li Q, Yang F, Zhang Z, Liu Y, et al. (2015) Pathological uncoupling between amplitude and connectivity of brain fluctuations in epilepsy. Hum Brain Mapp 36(7):2756–2766. doi:10.1002/hbm.22805

    Article  PubMed  Google Scholar 

  21. Hochberg MC (1997) Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 40(9):1725

    Article  CAS  PubMed  Google Scholar 

  22. Bombardier C, Gladman DD, Urowitz MB, Caron D, Chang CH (1992) Derivation of the SLEDAI. A disease activity index for lupus patients. The Committee on Prognosis Studies in SLE Arthritis Rheum 35(6):630–640

    Article  CAS  Google Scholar 

  23. Cockrell JR, Folstein MF (1988) Mini-mental state examination (MMSE). Psychopharmacol Bull 24(4):689–692

    CAS  PubMed  Google Scholar 

  24. Nasreddine ZS, Phillips NA, Bédirian V, Charbonneau S, Whitehead V, Collin I, Cummings JL, Chertkow H (2005) The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc 53(4):695–699

    Article  PubMed  Google Scholar 

  25. Bajaj JS, Wade JB, Sanyal AJ (2009) Spectrum of neurocognitive impairment in cirrhosis: implications for the assessment of hepatic encephalopathy. Hepatology 50(6):2014–2021. doi:10.1002/hep.23216

    Article  PubMed  Google Scholar 

  26. Zung WW (1971) A rating instrument for anxiety disorders. Psychosomatics 12(6):371–379

    Article  CAS  PubMed  Google Scholar 

  27. Zung WW, Richards CB, Short MJ (1965) Self-rating depression scale in an outpatient clinic. Further validation of the SDS. Arch Gen Psychiatry 13(6):508–515

    Article  CAS  PubMed  Google Scholar 

  28. Liao W, Chen H, Feng Y, Mantini D, Gentili C, Pan Z, Ding J, Duan X, et al. (2010) Selective aberrant functional connectivity of resting state networks in social anxiety disorder. NeuroImage 52(4):1549–1558. doi:10.1016/j.neuroimage.2010.05.010

    Article  PubMed  Google Scholar 

  29. Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A 102(27):9673–9678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zuo XN, Ehmke R, Mennes M, Imperati D, Castellanos FX, Sporns O, Milham MP (2012) Network centrality in the human functional connectome. Cereb Cortex 22(8):1862–1875. doi:10.1093/cercor/bhr269

    Article  PubMed  Google Scholar 

  31. Buckner RL, Sepulcre J, Talukdar T, Krienen FM, Liu H, Hedden T, Andrews-Hanna JR, Sperling RA, et al. (2009) Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer’s disease. J Neurosci 29(6):1860–1873. doi:10.1523/JNEUROSCI.5062-08.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zang YF, He Y, Zhu CZ, Cao QJ, Sui MQ, Liang M, Tian LX, Jiang TZ, et al. (2007) Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain and Development 29(2):83–91

    Article  PubMed  Google Scholar 

  33. Anderson JS, Zielinski BA, Nielsen JA, Ferguson MA (2014) Complexity of low-frequency blood oxygen level-dependent fluctuations covaries with local connectivity. Hum Brain Mapp 35(4):1273–1283. doi:10.1002/hbm.22251

    Article  PubMed  Google Scholar 

  34. Baria AT, Mansour A, Huang L, Baliki MN, Cecchi GA, Mesulam MM, Apkarian AV (2013) Linking human brain local activity fluctuations to structural and functional network architectures. NeuroImage 73:144–155. doi:10.1016/j.neuroimage.2013.01.072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kao CH, Ho YJ, Lan JL, Changlai SP, Liao KK, Chieng PU (1999) Discrepancy between regional cerebral blood flow and glucose metabolism of the brain in systemic lupus erythematosus patients with normal brain magnetic resonance imaging findings. Arthritis Rheum 42(1):61–68

    Article  CAS  PubMed  Google Scholar 

  36. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default mode of brain function. Proc Natl Acad Sci U S A 98(2):676–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Whitfield-Gabrieli S, Ford JM (2012) Default mode network activity and connectivity in psychopathology. Annu Rev Clin Psychol 8:49–76. doi:10.1146/annurev-clinpsy-032511-143049

    Article  PubMed  Google Scholar 

  38. Shapira-Lichter I, Vakil E, Litinsky I, Oren N, Glikmann-Johnston Y, Caspi D, Hendler T, Paran D (2013) Learning and memory-related brain activity dynamics are altered in systemic lupus erythematosus: a functional magnetic resonance imaging study. Lupus 22(6):562–573. doi:10.1177/0961203313480399

    Article  PubMed  Google Scholar 

  39. Nemanic S, Alvarado MC, Bachevalier J (2004) The hippocampal/parahippocampal regions and recognition memory: insights from visual paired comparison versus object-delayed nonmatching in monkeys. J Neurosci 24(8):2013–2026

    Article  CAS  PubMed  Google Scholar 

  40. Aminoff EM, Kveraga K, Bar M (2013) The role of the parahippocampal cortex in cognition. Trends Cogn Sci 17(8):379–390. doi:10.1016/j.tics.2013.06.009

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kozora E, Brown MS, Filley CM, Zhang L, Miller DE, West SG, Pelzman J, Arciniegas DB (2011) Memory impairment associated with neurometabolic abnormalities of the hippocampus in patients with non-neuropsychiatric systemic lupus erythematosus. Lupus 20(6):598–606. doi:10.1177/0961203310392425

    Article  CAS  PubMed  Google Scholar 

  42. Ren T, Ho RC, Mak A (2012) Dysfunctional cortico-basal ganglia-thalamic circuit and altered hippocampal-amygdala activity on cognitive set-shifting in non-neuropsychiatric systemic lupus erythematosus. Arthritis Rheum 64(12):4048–4059. doi:10.1002/art.34660

    Article  PubMed  Google Scholar 

  43. Elkon KB, Santer DM (2012) Complement, interferon and lupus. Curr Opin Immunol 24(6):665–670. doi:10.1016/j.coi.2012.08.004

    Article  CAS  PubMed  Google Scholar 

  44. Zhang S, Su J, Li X, Zhang X, Liu S, Wu L, Ma L, Bi L, et al. (2015) Chinese SLE Treatment and Research group (CSTAR) registry: V. gender impact on Chinese patients with systemic lupus erythematosus. Lupus 24(12):1267–1275. doi:10.1177/0961203315585813

    Article  CAS  PubMed  Google Scholar 

  45. Mikdashi JA (2016) Altered functional neuronal activity in neuropsychiatric lupus: a systematic review of the fMRI investigations. Semin Arthritis Rheum Feb 45(4):455–462. doi:10.1016/j.semarthrit.2015.08.002

    Article  Google Scholar 

Download references

Acknowledgments

We express our sincere thanks for grants from the National Natural Science Foundation of China, Nos. 30700194, 81171313, 81322020, and 81230032 (to L. J. Zhang); and the Program for New Century Excellent Talents in University, No. NCET-12-0260 (to L. J. Zhang).

Author Contributions

Xiao Dong Zhang, Xiao Lu Jiang, and Zhen Cheng contributed equally to this work. Long Jiang Zhang and Guang Ming Lu designed the research. Xiao Dong Zhang, Xiao Lu Jiang, Zhen Cheng, Yan Zhou, Qiang Xu, Zhi qiang Zhang, Rongfeng Qi, Song Luo, Yun Yan Su, Hui Juan Chen, Xiang Kong, Guang Ming Lu, and Long Jiang Zhang contributed to the writing of the paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guang Ming Lu or Long Jiang Zhang.

Ethics declarations

Conflicts of Interests

The authors declare that they have no conflict of interest.

Additional information

Drs. Zhang, Jiang and Cheng had equal contribution to this work.

Electronic supplementary material

ESM 1

(DOC 682 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X.D., Jiang, X.L., Cheng, Z. et al. Decreased Coupling Between Functional Connectivity Density and Amplitude of Low Frequency Fluctuation in Non-Neuropsychiatric Systemic Lupus Erythematosus: a Resting-Stage Functional MRI Study. Mol Neurobiol 54, 5225–5235 (2017). https://doi.org/10.1007/s12035-016-0050-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0050-9

Keywords

Navigation