Skip to main content

Advertisement

Log in

Thiamine Deficiency and Neurodegeneration: the Interplay Among Oxidative Stress, Endoplasmic Reticulum Stress, and Autophagy

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Thiamine (vitamin B1) is an essential nutrient and indispensable for normal growth and development of the organism due to its multilateral participation in key biochemical and physiological processes. Humans must obtain thiamine from their diet since it is synthesized only in bacteria, fungi, and plants. Thiamine deficiency (TD) can result from inadequate intake, increased requirement, excessive deletion, and chronic alcohol consumption. TD affects multiple organ systems, including the cardiovascular, muscular, gastrointestinal, and central and peripheral nervous systems. In the brain, TD causes a cascade of events including mild impairment of oxidative metabolism, neuroinflammation, and neurodegeneration, which are commonly observed in neurodegenerative diseases, such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and Huntington’s disease (HD). Thiamine metabolites may serve as promising biomarkers for neurodegenerative diseases, and thiamine supplementations exhibit therapeutic potential for patients of some neurodegenerative diseases. Experimental TD has been used to model aging-related neurodegenerative diseases. However, to date, the cellular and molecular mechanisms underlying TD-induced neurodegeneration are not clear. Recent research evidence indicates that TD causes oxidative stress, endoplasmic reticulum (ER) stress, and autophagy in the brain, which are known to contribute to the pathogenesis of various neurodegenerative diseases. In this review, we discuss the role of oxidative stress, ER stress, and autophagy in TD-mediated neurodegeneration. We propose that it is the interplay of oxidative stress, ER stress, and autophagy that contributes to TD-mediated neurodegeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

ALS:

Amyotrophic lateral sclerosis

ATF6:

Activating transcription factor-6

ER:

Endoplasmic reticulum

HD:

Huntington’s disease

HNE:

4-Hydroxynonenal

IRE1:

Inositol requiring protein-1

KGDHC:

α-Ketoglutarate dehydrogenase complex

PD:

Parkinson’s disease

PDHC:

Pyruvate dehydrogenase complex

PERK:

Protein kinase RNA-like ER kinase

PRD:

Prion-related diseases

ROS:

Reactive oxygen species

TD:

Thiamine deficiency

TPP:

Thiamine pyrophosphate

UPR:

Unfolded protein response

WKS:

Wernicke-Korsakoff syndrome

References

  1. Sica DA (2007) Loop diuretic therapy, thiamine balance, and heart failure. Congest Heart Fail 13(4):244–247

    Article  CAS  PubMed  Google Scholar 

  2. Wooley JA (2008) Characteristics of thiamin and its relevance to the management of heart failure. Nutr Clin Pract 23(5):487–493

    Article  PubMed  Google Scholar 

  3. Pacal L, Kuricova K, Kankova K (2014) Evidence for altered thiamine metabolism in diabetes: is there a potential to oppose gluco- and lipotoxicity by rational supplementation? World J Diabetes 5(3):288–295

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kerns JC, Arundel C, Chawla LS (2015) Thiamin deficiency in people with obesity. Adv Nutr 6(2):147–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Saif MW (2003) Is there a role for thiamine in the management of congestive heart failure? South Med J 96(1):114–115

    Article  PubMed  Google Scholar 

  6. Osiezagha K et al. (2013) Thiamine deficiency and delirium. Innov Clin Neurosci 10(4):26–32

    PubMed  PubMed Central  Google Scholar 

  7. Balakumar P et al. (2010) The multifaceted therapeutic potential of benfotiamine. Pharmacol Res 61(6):482–488

    Article  CAS  PubMed  Google Scholar 

  8. Zhao R, Goldman ID (2013) Folate and thiamine transporters mediated by facilitative carriers (SLC19A1-3 and SLC46A1) and folate receptors. Mol Asp Med 34(2–3):373–385

    Article  CAS  Google Scholar 

  9. Alstrup Lie M (2008) And B. Schiott, a DFT study of solvation effects on the tautomeric equilibrium and catalytic ylide generation of thiamin models. J Comput Chem 29(7):1037–1047

    Article  PubMed  CAS  Google Scholar 

  10. Moulin P et al. (2014) Thiamine deficiency in infants: a case report. Arch Pediatr 21(4):392–395

    Article  CAS  PubMed  Google Scholar 

  11. Vimokesant SL et al. (1975) Effects of betel nut and fermented fish on the thiamin status of northeastern Thais. Am J Clin Nutr 28(12):1458–1463

    CAS  PubMed  Google Scholar 

  12. Boniol S et al. (2007) Wernicke encephalopathy complicating lymphoma therapy: case report and literature review. South Med J 100(7):717–719

    Article  PubMed  Google Scholar 

  13. Zhang G et al. (2013) Thiamine nutritional status and depressive symptoms are inversely associated among older Chinese adults. J Nutr 143(1):53–58

    Article  CAS  PubMed  Google Scholar 

  14. Afadlal S, Labetoulle R, Hazell AS (2014) Role of astrocytes in thiamine deficiency. Metab Brain Dis 29(4):1061–1068

    Article  CAS  PubMed  Google Scholar 

  15. Hoyumpa AM Jr (1980) Mechanisms of thiamin deficiency in chronic alcoholism. Am J Clin Nutr 33(12):2750–2761

  16. Martin PR, Singleton CK, Hiller-Sturmhofel S (2003) The role of thiamine deficiency in alcoholic brain disease. Alcohol Res Health 27(2):134–142

    PubMed  Google Scholar 

  17. Abdou E, Hazell AS (2015) Thiamine deficiency: an update of pathophysiologic mechanisms and future therapeutic considerations. Neurochem Res 40(2):353–361

    Article  CAS  PubMed  Google Scholar 

  18. Ahmed M et al. (2015) Thiamin deficiency and heart failure: the current knowledge and gaps in literature. Heart Fail Rev 20(1):1–11

    Article  CAS  PubMed  Google Scholar 

  19. Koike H et al. (2006) Myopathy in thiamine deficiency: analysis of a case. J Neurol Sci 249(2):175–179

    Article  PubMed  Google Scholar 

  20. Francini-Pesenti F et al. (2007) Wernicke’s encephalopathy during parenteral nutrition. JPEN J Parenter Enteral Nutr 31(1):69–71

    Article  PubMed  Google Scholar 

  21. Nardone R et al. (2013) Thiamine deficiency induced neurochemical, neuroanatomical, and neuropsychological alterations: a reappraisal. ScientificWorldJournal 2013:309143

    Article  PubMed  PubMed Central  Google Scholar 

  22. Vernau K et al. (2014) Thiamine deficiency-mediated brain mitochondrial pathology in Alaskan huskies with mutation in SLC19A3.1. Brain Pathol 25(4):441–453

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Rao SN, Chandak GR (2010) Cardiac beriberi: often a missed diagnosis. J Trop Pediatr 56(4):284–285

    Article  PubMed  Google Scholar 

  24. Haas RH (1988) Thiamin and the brain. Annu Rev Nutr 8:483–515

    Article  CAS  PubMed  Google Scholar 

  25. Dror V et al. (2014) Rasagiline prevents neurodegeneration in thiamine deficient rats—a longitudinal MRI study. Brain Res 1557:43–54

    Article  CAS  PubMed  Google Scholar 

  26. Sechi G, Serra A (2007) Wernicke’s encephalopathy: new clinical settings and recent advances in diagnosis and management. Lancet Neurol 6(5):442–455

    Article  CAS  PubMed  Google Scholar 

  27. Tanev KS, Roether M, Yang C (2008) Alcohol dementia and thermal dysregulation: a case report and review of the literature. Am J Alzheimers Dis Other Demen 23(6):563–570

    Article  PubMed  Google Scholar 

  28. Costantini A et al. (2013) High-dose thiamine as initial treatment for Parkinson’s disease. BMJ Case Rep 2013

  29. Lu’o’ng K, Nguyen LT (2011) Role of thiamine in Alzheimer’s disease. Am J Alzheimers Dis Other Demen 26(8):588–598

    Article  PubMed  Google Scholar 

  30. Costantini A et al. (2015) Long-term treatment with high-dose thiamine in Parkinson disease: an open-label pilot study. J Altern Complement Med 21(12):740–747

    Article  PubMed  Google Scholar 

  31. Karuppagounder SS et al. (2008) Translocation of amyloid precursor protein C-terminal fragment(s) to the nucleus precedes neuronal death due to thiamine deficiency-induced mild impairment of oxidative metabolism. Neurochem Res 33(7):1365–1372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mouton-Liger F et al. (2015) PKR downregulation prevents neurodegeneration and beta-amyloid production in a thiamine-deficient model. Cell Death Dis 6:e1594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hazell AS et al. (2013) The impact of oxidative stress in thiamine deficiency: a multifactorial targeting issue. Neurochem Int 62(5):796–802

    Article  CAS  PubMed  Google Scholar 

  34. Ke ZJ, Bowen WM, Gibson GE (2006) Peripheral inflammatory mechanisms modulate microglial activation in response to mild impairment of oxidative metabolism. Neurochem Int 49(5):548–556

    Article  CAS  PubMed  Google Scholar 

  35. Chen Z, Zhong C (2013) Decoding Alzheimer’s disease from perturbed cerebral glucose metabolism: implications for diagnostic and therapeutic strategies. Prog Neurobiol 108:21–43

    Article  CAS  PubMed  Google Scholar 

  36. Doyle KM et al. (2011) Unfolded proteins and endoplasmic reticulum stress in neurodegenerative disorders. J Cell Mol Med 15(10):2025–2039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tanida I (2011) Autophagosome formation and molecular mechanism of autophagy. Antioxid Redox Signal 14(11):2201–2214

    Article  CAS  PubMed  Google Scholar 

  38. Gangolf M et al. (2010) Thiamine status in humans and content of phosphorylated thiamine derivatives in biopsies and cultured cells. PLoS One 5(10):e13616

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Thomson AD, Guerrini I, Marshall EJ (2012) The evolution and treatment of Korsakoff’s syndrome: out of sight, out of mind? Neuropsychol Rev 22(2):81–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Parkin AJ et al. (1993) Neuropsychological sequelae of Wernicke’s encephalopathy in a 20-year-old woman: selective impairment of a frontal memory system. Brain Cogn 21(1):1–19

    Article  CAS  PubMed  Google Scholar 

  41. Sullivan EV, Fama R (2012) Wernicke’s encephalopathy and Korsakoff’s syndrome revisited. Neuropsychol Rev 22(2):69–71

    Article  PubMed  PubMed Central  Google Scholar 

  42. Jhala SS, Hazell AS (2011) Modeling neurodegenerative disease pathophysiology in thiamine deficiency: consequences of impaired oxidative metabolism. Neurochem Int 58(3):248–260

    Article  CAS  PubMed  Google Scholar 

  43. McCormick LM et al. (2011) Beyond alcoholism: Wernicke-Korsakoff syndrome in patients with psychiatric disorders. Cogn Behav Neurol 24(4):209–216

    Article  PubMed  PubMed Central  Google Scholar 

  44. Liu M et al. (2014) Thiamine deficiency induces anorexia by inhibiting hypothalamic AMPK. Neuroscience 267:102–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hohsfield LA, Humpel C (2015) Intravenous infusion of monocytes isolated from 2-week-old mice enhances clearance of Beta-amyloid plaques in an Alzheimer mouse model. PLoS One 10(4):e0121930

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Gross AL et al. (2013) Cortical signatures of cognition and their relationship to Alzheimer’s disease. Brain Imaging Behav 6(4):584–598

    Article  Google Scholar 

  47. Rafii MS, Aisen PS (2015) Advances in Alzheimer’s disease drug development. BMC Med 13:62

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Wimo A et al. (2013) The worldwide economic impact of dementia 2010. Alzheimers Dement 9(1):1–11 e3

    Article  PubMed  Google Scholar 

  49. Gold M, Hauser RA, Chen MF (1998) Plasma thiamine deficiency associated with Alzheimer’s disease but not Parkinson’s disease. Metab Brain Dis 13(1):43–53

    Article  CAS  PubMed  Google Scholar 

  50. Furst AJ et al. (2012) Cognition, glucose metabolism and amyloid burden in Alzheimer’s disease. Neurobiol Aging 33(2):215–225

    Article  CAS  PubMed  Google Scholar 

  51. Mosconi L, Pupi A, De Leon MJ (2008) Brain glucose hypometabolism and oxidative stress in preclinical Alzheimer’s disease. Ann N Y Acad Sci 1147:180–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yao J, Brinton RD (2011) Targeting mitochondrial bioenergetics for Alzheimer’s prevention and treatment. Curr Pharm Des 17(31):3474–3479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gibson GE et al. (1988) Reduced activities of thiamine-dependent enzymes in the brains and peripheral tissues of patients with Alzheimer’s disease. Arch Neurol 45(8):836–840

    Article  CAS  PubMed  Google Scholar 

  54. Gibson GE, Blass JP (2007) Thiamine-dependent processes and treatment strategies in neurodegeneration. Antioxid Redox Signal 9(10):1605–1619

    Article  CAS  PubMed  Google Scholar 

  55. Butterworth RF, Besnard AM (1990) Thiamine-dependent enzyme changes in temporal cortex of patients with Alzheimer’s disease. Metab Brain Dis 5(4):179–184

    Article  CAS  PubMed  Google Scholar 

  56. Gibson GE et al. (2013) Abnormal thiamine-dependent processes in Alzheimer’s disease. Lessons from diabetes. Mol Cell Neurosci 55:17–25

    Article  CAS  PubMed  Google Scholar 

  57. Karuppagounder SS et al. (2009) Thiamine deficiency induces oxidative stress and exacerbates the plaque pathology in Alzheimer’s mouse model. Neurobiol Aging 30(10):1587–1600

    Article  CAS  PubMed  Google Scholar 

  58. Zhang Q et al. (2011) Thiamine deficiency increases beta-secretase activity and accumulation of beta-amyloid peptides. Neurobiol Aging 32(1):42–53

    Article  PubMed  CAS  Google Scholar 

  59. Pan X et al. (2011) Powerful beneficial effects of benfotiamine on cognitive impairment and beta-amyloid deposition in amyloid precursor protein/presenilin-1 transgenic mice. Brain 133(Pt 5):1342–1351

    Google Scholar 

  60. Meador K et al. (1993) Preliminary findings of high-dose thiamine in dementia of Alzheimer’s type. J Geriatr Psychiatry Neurol 6(4):222–229

    Article  CAS  PubMed  Google Scholar 

  61. Blass JP et al. (1988) Thiamine and Alzheimer’s disease. A pilot study. Arch Neurol 45(8):833–835

    Article  CAS  PubMed  Google Scholar 

  62. Nolan KA et al. (1991) A trial of thiamine in Alzheimer’s disease. Arch Neurol 48(1):81–83

    Article  CAS  PubMed  Google Scholar 

  63. K LN, Nguyen L (2012) Role of vitamin d in Parkinson’s disease. ISRN Neurol 2012:134289

    Google Scholar 

  64. de Rijk MC et al. (1997) Prevalence of parkinsonism and Parkinson’s disease in Europe: the EUROPARKINSON collaborative study. European Community concerted action on the epidemiology of Parkinson’s disease. J Neurol Neurosurg Psychiatry 62(1):10–15

    Article  PubMed  PubMed Central  Google Scholar 

  65. Grenier K, Kontogiannea M, Fon EA (2014) Short mitochondrial ARF triggers Parkin/PINK1-dependent mitophagy. J Biol Chem 289(43):29519–29530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Jimenez-Jimenez FJ et al. (1999) Cerebrospinal fluid levels of thiamine in patients with Parkinson’s disease. Neurosci Lett 271(1):33–36

    Article  CAS  PubMed  Google Scholar 

  67. Mizuno Y et al. (1994) An immunohistochemical study on alpha-ketoglutarate dehydrogenase complex in Parkinson’s disease. Ann Neurol 35(2):204–210

    Article  CAS  PubMed  Google Scholar 

  68. Gibson GE, Zhang H (2002) Interactions of oxidative stress with thiamine homeostasis promote neurodegeneration. Neurochem Int 40(6):493–504

    Article  CAS  PubMed  Google Scholar 

  69. Vetreno RP, Hall JM, Savage LM (2011) Alcohol-related amnesia and dementia: animal models have revealed the contributions of different etiological factors on neuropathology, neurochemical dysfunction and cognitive impairment. Neurobiol Learn Mem 96(4):596–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Parsons OA, Nixon SJ (1993) Neurobehavioral sequelae of alcoholism. Neurol Clin 11(1):205–218

    CAS  PubMed  Google Scholar 

  71. Pitel AL et al. (2011) Signs of preclinical Wernicke’s encephalopathy and thiamine levels as predictors of neuropsychological deficits in alcoholism without Korsakoff’s syndrome. Neuropsychopharmacology 36(3):580–588

    Article  PubMed  Google Scholar 

  72. Zhang Q et al. (2009) Senescence accelerated mouse strain is sensitive to neurodegeneration induced by mild impairment of oxidative metabolism. Brain Res 1264:111–118

    Article  CAS  PubMed  Google Scholar 

  73. Meng Y et al. (2013) Autophagy alleviates neurodegeneration caused by mild impairment of oxidative metabolism. J Neurochem 126(6):805–818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Fischer R, Maier O (2015) Interrelation of oxidative stress and inflammation in neurodegenerative disease: role of TNF. Oxidative Med Cell Longev 2015:610813

    Article  CAS  Google Scholar 

  75. Chiurchiu V, Orlacchio A, Maccarrone M (2015) Is modulation of oxidative stress an answer? The State of the Art of Redox Therapeutic Actions in Neurodegenerative Diseases Oxid Med Cell Longev 2016:7909380

    PubMed  Google Scholar 

  76. Radi E et al. (2014) Apoptosis and oxidative stress in neurodegenerative diseases. J Alzheimers Dis 42(Suppl 3):S125–S152

    PubMed  Google Scholar 

  77. Cobb CA, Cole MP (2015) Oxidative and nitrative stress in neurodegeneration. Neurobiol Dis 84:4–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Calingasan NY et al. (1998) Induction of nitric oxide synthase and microglial responses precede selective cell death induced by chronic impairment of oxidative metabolism. Am J Pathol 153(2):599–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Langlais PJ et al. (1997) Increased cerebral free radical production during thiamine deficiency. Metab Brain Dis 12(2):137–143

    Article  CAS  PubMed  Google Scholar 

  80. Calingasan NY et al. (1999) Oxidative stress is associated with region-specific neuronal death during thiamine deficiency. J Neuropathol Exp Neurol 58(9):946–958

    Article  CAS  PubMed  Google Scholar 

  81. Sharma A, Bist R, Bubber P (2013) Thiamine deficiency induces oxidative stress in brain mitochondria of Mus musculus. J Physiol Biochem 69(3):539–546

    Article  CAS  PubMed  Google Scholar 

  82. Yang G et al. (2011) Neuronal MCP-1 mediates microglia recruitment and neurodegeneration induced by the mild impairment of oxidative metabolism. Brain Pathol 21(3):279–297

    Article  CAS  PubMed  Google Scholar 

  83. Leong DK et al. (1994) Increased densities of binding sites for the "peripheral-type" benzodiazepine receptor ligand [3H]PK11195 in vulnerable regions of the rat brain in thiamine deficiency encephalopathy. J Cereb Blood Flow Metab 14(1):100–105

    Article  CAS  PubMed  Google Scholar 

  84. Terlecky SR, Terlecky LJ, Giordano CR (2012) Peroxisomes, oxidative stress, and inflammation. World J Biol Chem 3(5):93–97

    Article  PubMed  PubMed Central  Google Scholar 

  85. Wu Z et al. (2016) Nutrients, microglia aging, and brain aging. Oxidative Med Cell Longev 2016:7498528

    Google Scholar 

  86. Schroder M (2008) Endoplasmic reticulum stress responses. Cell Mol Life Sci 65(6):862–894

    Article  CAS  PubMed  Google Scholar 

  87. Bravo R et al. (2013) Endoplasmic reticulum and the unfolded protein response: dynamics and metabolic integration. Int Rev Cell Mol Biol 301:215–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ozcan L, Tabas I (2012) Role of endoplasmic reticulum stress in metabolic disease and other disorders. Annu Rev Med 63:317–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Morishima N et al. (2004) Translocation of Bim to the endoplasmic reticulum (ER) mediates ER stress signaling for activation of caspase-12 during ER stress-induced apoptosis. J Biol Chem 279(48):50375–50381

    Article  CAS  PubMed  Google Scholar 

  90. Tabas I, Ron D (2011) Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat Cell Biol 13(3):184–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hetz C et al. (2011) The unfolded protein response: integrating stress signals through the stress sensor IRE1alpha. Physiol Rev 91(4):1219–1243

    Article  CAS  PubMed  Google Scholar 

  92. Yang F, Luo J (2015) Endoplasmic reticulum stress and ethanol neurotoxicity. Biomolecules 5(4):2538–2553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Perri ER et al. (2016) The unfolded protein response and the role of protein disulfide isomerase in neurodegeneration. Front Cell Dev Biol 3:80

    Article  PubMed  PubMed Central  Google Scholar 

  94. Matus S, Glimcher LH, Hetz C (2011) Protein folding stress in neurodegenerative diseases: a glimpse into the ER. Curr Opin Cell Biol 23(2):239–252

    Article  CAS  PubMed  Google Scholar 

  95. Homma K et al. (2009) Targeting ASK1 in ER stress-related neurodegenerative diseases. Expert Opin Ther Targets 13(6):653–664

    Article  CAS  PubMed  Google Scholar 

  96. Placido AI et al. (2015) Modulation of endoplasmic reticulum stress: an opportunity to prevent neurodegeneration? CNS Neurol Disord Drug Targets 14(4):518–533

    Article  CAS  PubMed  Google Scholar 

  97. Wang X et al. (2007) Thiamine deficiency induces endoplasmic reticulum stress in neurons. Neuroscience 144(3):1045–1056

    Article  CAS  PubMed  Google Scholar 

  98. Ke ZJ et al. (2009) Ethanol promotes thiamine deficiency-induced neuronal death: involvement of double-stranded RNA-activated protein kinase. Alcohol Clin Exp Res 33(6):1097–1103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Mota SI et al. (2015) Oxidative stress involving changes in Nrf2 and ER stress in early stages of Alzheimer’s disease. Biochim Biophys Acta 1852(7):1428–1441

    Article  CAS  PubMed  Google Scholar 

  100. Begum G et al. (2013) ER stress and effects of DHA as an ER stress inhibitor. Transl Stroke Res 4(6):635–642

    Article  CAS  PubMed  Google Scholar 

  101. Lee S et al. (2010) ADAR2-dependent RNA editing of GluR2 is involved in thiamine deficiency-induced alteration of calcium dynamics. Mol Neurodegener 5:54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Levine B, Klionsky DJ (2004) Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6(4):463–477

    Article  CAS  PubMed  Google Scholar 

  103. Mizushima N, Klionsky DJ (2007) Protein turnover via autophagy: implications for metabolism. Annu Rev Nutr 27:19–40

    Article  CAS  PubMed  Google Scholar 

  104. Jia G, Sowers JR (2015) Autophagy: a housekeeper in cardiorenal metabolic health and disease. Biochim Biophys Acta 1852(2):219–224

    Article  CAS  PubMed  Google Scholar 

  105. Osna NA, Thomes PG, Jr TM (2011) Involvement of autophagy in alcoholic liver injury and hepatitis C pathogenesis. World J Gastroenterol 17(20):2507–2514

    Article  PubMed  PubMed Central  Google Scholar 

  106. Mizushima N (2007) Autophagy: process and function. Genes Dev 21(22):2861–2873

    Article  CAS  PubMed  Google Scholar 

  107. Navone F, Genevini P, Borgese N (2015) Autophagy and neurodegeneration: insights from a cultured cell model of ALS. Cells 4(3):354–386

    Article  PubMed  PubMed Central  Google Scholar 

  108. Shibata M et al. (2006) Regulation of intracellular accumulation of mutant huntingtin by Beclin 1. J Biol Chem 281(20):14474–14485

    Article  CAS  PubMed  Google Scholar 

  109. Nah J, Yuan J, Jung YK (2015) Autophagy in neurodegenerative diseases: from mechanism to therapeutic approach. Mol Cells 38(5):381–389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Cherra SJ 3rd (2008) and C.T. Chu, Autophagy in neuroprotection and neurodegeneration: a question of balance. Future Neurol 3(3):309–323

    PubMed  PubMed Central  Google Scholar 

  111. Luo J (2014) Autophagy and ethanol neurotoxicity. Autophagy 10(12):2099–2108

    Article  CAS  PubMed  Google Scholar 

  112. Zhang K (2010) Integration of ER stress, oxidative stress and the inflammatory response in health and disease. Int J Clin Exp Med 3(1):33–40

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Chen G et al. (2012) Autophagy is a protective response to ethanol neurotoxicity. Autophagy 8(11):1577–1589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Greenwood J, Love ER, Pratt OE (1982) Kinetics of thiamine transport across the blood-brain barrier in the rat. J Physiol 327:95–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Chen G, Luo J (2010) Anthocyanins: are they beneficial in treating ethanol neurotoxicity? Neurotox Res 17(1):91–101

    Article  CAS  PubMed  Google Scholar 

  116. Rivas A, Vidal RL, Hetz C (2015) Targeting the unfolded protein response for disease intervention. Expert Opin Ther Targets 19(9):1203–1218

    Article  CAS  PubMed  Google Scholar 

  117. Scheper W, Hoozemans JJ (2015) The unfolded protein response in neurodegenerative diseases: a neuropathological perspective. Acta Neuropathol 130(3):315–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Tan CC et al. (2013) Autophagy in aging and neurodegenerative diseases: implications for pathogenesis and therapy. Neurobiol Aging 35(5):941–957

    Article  PubMed  Google Scholar 

  119. Sarkar S (2013) Regulation of autophagy by mTOR-dependent and mTOR-independent pathways: autophagy dysfunction in neurodegenerative diseases and therapeutic application of autophagy enhancers. Biochem Soc Trans 41(5):1103–1130

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Jacqueline Frank for reading this manuscript. This work was supported by grants from the National Institutes of Health (NIH) (AA017226 and AA015407). It is also supported in part by the Department of Veterans Affairs, Veterans Health Administration, Office of Research and Development (Biomedical Laboratory Research and Development BX001721).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia Luo.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, D., Ke, Z. & Luo, J. Thiamine Deficiency and Neurodegeneration: the Interplay Among Oxidative Stress, Endoplasmic Reticulum Stress, and Autophagy. Mol Neurobiol 54, 5440–5448 (2017). https://doi.org/10.1007/s12035-016-0079-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0079-9

Keywords

Navigation