Skip to main content

Advertisement

Log in

Serum Markers of Neurodegeneration in Maple Syrup Urine Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

An Erratum to this article was published on 04 November 2016

This article has been updated

Abstract

Maple syrup urine disease (MSUD) is an inherited disorder caused by deficient activity of the branched-chain α-keto acid dehydrogenase complex involved in the degradation pathway of branched-chain amino acids (BCAAs) and their respective α-keto-acids. Patients affected by MSUD present severe neurological symptoms and brain abnormalities, whose pathophysiology is poorly known. However, preclinical studies have suggested alterations in markers involved with neurodegeneration. Because there are no studies in the literature that report the neurodegenerative markers in MSUD patients, the present study evaluated neurodegenerative markers (brain-derived neurotrophic factor (BDNF), cathepsin D, neural cell adhesion molecule (NCAM), plasminogen activator inhibitor-1 total (PAI-1 (total)), platelet-derived growth factor AA (PDGF-AA), PDGF-AB/BB) in plasma from 10 MSUD patients during dietary treatment. Our results showed a significant decrease in BDNF and PDGF-AA levels in MSUD patients. On the other hand, NCAM and cathepsin D levels were significantly greater in MSUD patients compared to the control group, while no significant changes were observed in the levels of PAI-1 (total) and PDGF-AB/BB between the control and MSUD groups. Our data show that MSUD patients present alterations in proteins involved in the neurodegenerative process. Thus, the present findings corroborate previous studies that demonstrated that neurotrophic factors and lysosomal proteases may contribute, along with other mechanisms, to the intellectual deficit and neurodegeneration observed in MSUD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Change history

  • 04 November 2016

    An erratum to this article has been published.

References

  1. Chuang DT, Shih VE (2001) Maple syrup urine disease (branched-chain ketoaciduria). In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease. McGraw-Hill, New York, pp. 1971–2005

    Google Scholar 

  2. Schonberger S, Schweiger B, Schwahn B, Schwarz M, Wendel U (2004) Dysmyelination in the brain of adolescents and young adults with maple syrup urine disease. Mol Genet Metab 82(1):69–75. doi:10.1016/j.ymgme.2004.01.016

    Article  CAS  PubMed  Google Scholar 

  3. Snyderman SE, LE H Jr (1964) Maple syrup urine disease. J Maine Med Assoc 55:3–5

    CAS  PubMed  Google Scholar 

  4. Kamei A, Takashima S, Chan F, Becker LE (1992) Abnormal dendritic development in maple syrup urine disease. Pediatr Neurol 8(2):145–147

    Article  CAS  PubMed  Google Scholar 

  5. Araujo P, Wassermann GF, Tallini K, Furlanetto V, Vargas CR, Wannmacher CM, Dutra-Filho CS, Wyse AT, Wajner M (2001) Reduction of large neutral amino acid levels in plasma and brain of hyperleucinemic rats. Neurochem Int 38(6):529–537

    Article  CAS  PubMed  Google Scholar 

  6. Wajner M, Coelho DM, Barschak AG, Araujo PR, Pires RF, Lulhier FL, Vargas CR (2000) Reduction of large neutral amino acid concentrations in plasma and CSF of patients with maple syrup urine disease during crises. J Inherit Metab Dis 23(5):505–512

    Article  CAS  PubMed  Google Scholar 

  7. Zinnanti WJ, Lazovic J, Griffin K, Skvorak KJ, Paul HS, Homanics GE, Bewley MC, Cheng KC, Lanoue KF, Flanagan JM (2009) Dual mechanism of brain injury and novel treatment strategy in maple syrup urine disease. Brain 132(Pt 4):903–918. doi:10.1093/brain/awp024

    PubMed  PubMed Central  Google Scholar 

  8. Howell RK, Lee M (1963) Influence of alpha-ketoacids on the respiration of brain in vitro. Proc Soc Exp Biol Med 113:660–663

    Article  CAS  PubMed  Google Scholar 

  9. Sgaravatti AM, Rosa RB, Schuck PF, Ribeiro CA, Wannmacher CM, Wyse AT, Dutra-Filho CS, Wajner M (2003) Inhibition of brain energy metabolism by the alpha-keto acids accumulating in maple syrup urine disease. Biochim Biophys Acta 1639(3):232–238

    Article  CAS  PubMed  Google Scholar 

  10. Ribeiro CA, Sgaravatti AM, Rosa RB, Schuck PF, Grando V, Schmidt AL, Ferreira GC, Perry ML, Dutra-Filho CS, Wajner M (2008) Inhibition of brain energy metabolism by the branched-chain amino acids accumulating in maple syrup urine disease. Neurochem Res 33(1):114–124. doi:10.1007/s11064-007-9423-9

    Article  CAS  PubMed  Google Scholar 

  11. Amaral AU, Leipnitz G, Fernandes CG, Seminotti B, Schuck PF, Wajner M (2010) Alpha-ketoisocaproic acid and leucine provoke mitochondrial bioenergetic dysfunction in rat brain. Brain Res 1324:75–84. doi:10.1016/j.brainres.2010.02.018

    Article  CAS  PubMed  Google Scholar 

  12. Jouvet P, Kozma M, Mehmet H (2000) Primary human fibroblasts from a maple syrup urine disease patient undergo apoptosis following exposure to physiological concentrations of branched chain amino acids. Ann N Y Acad Sci 926:116–121

    Article  CAS  PubMed  Google Scholar 

  13. Jouvet P, Rustin P, Taylor DL, Pocock JM, Felderhoff-Mueser U, Mazarakis ND, Sarraf C, Joashi U, Kozma M, Greenwood K, Edwards AD, Mehmet H (2000) Branched chain amino acids induce apoptosis in neural cells without mitochondrial membrane depolarization or cytochrome c release: implications for neurological impairment associated with maple syrup urine disease. Mol Biol Cell 11(5):1919–1932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fontella FU, Gassen E, Pulrolnik V, Wannmacher CM, Klein AB, Wajner M, Dutra-Filho CS (2002) Stimulation of lipid peroxidation in vitro in rat brain by the metabolites accumulating in maple syrup urine disease. Metab Brain Dis 17(1):47–54

    Article  CAS  PubMed  Google Scholar 

  15. Bridi R, Araldi J, Sgarbi MB, Testa CG, Durigon K, Wajner M, Dutra-Filho CS (2003) Induction of oxidative stress in rat brain by the metabolites accumulating in maple syrup urine disease. Int J Dev Neurosci Off J Int Soc Dev Neurosci 21(6):327–332

    Article  CAS  Google Scholar 

  16. Bridi R, Braun CA, Zorzi GK, Wannmacher CM, Wajner M, Lissi EG, Dutra-Filho CS (2005) Alpha-keto acids accumulating in maple syrup urine disease stimulate lipid peroxidation and reduce antioxidant defences in cerebral cortex from young rats. Metab Brain Dis 20(2):155–167

    Article  CAS  PubMed  Google Scholar 

  17. Barschak AG, Sitta A, Deon M, Barden AT, Dutra-Filho CS, Wajner M, Vargas CR (2008) Oxidative stress in plasma from maple syrup urine disease patients during treatment. Metab Brain Dis 23(1):71–80. doi:10.1007/s11011-007-9077-y

    Article  CAS  PubMed  Google Scholar 

  18. Barschak AG, Sitta A, Deon M, Busanello EN, Coelho DM, Cipriani F, Dutra-Filho CS, Giugliani R, Wajner M, Vargas CR (2009) Amino acids levels and lipid peroxidation in maple syrup urine disease patients. Clin Biochem 42(6):462–466. doi:10.1016/j.clinbiochem.2008.12.005

    Article  CAS  PubMed  Google Scholar 

  19. Mescka CP, Guerreiro G, Hammerschmidt T, Faverzani J, de Moura Coelho D, Mandredini V, Wayhs CA, Wajner M, Dutra-Filho CS, Vargas CR (2015) L-Carnitine supplementation decreases DNA damage in treated MSUD patients. Mutat Res 775:43–47. doi:10.1016/j.mrfmmm.2015.03.008

    Article  CAS  PubMed  Google Scholar 

  20. Mescka CP, Wayhs CA, Vanzin CS, Biancini GB, Guerreiro G, Manfredini V, Souza C, Wajner M, Dutra-Filho CS, Vargas CR (2013) Protein and lipid damage in maple syrup urine disease patients: l-carnitine effect. International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience 31(1):21–24. doi:10.1016/j.ijdevneu.2012.10.109

    Article  CAS  Google Scholar 

  21. Scaini G, Jeremias IC, Morais MO, Borges GD, Munhoz BP, Leffa DD, Andrade VM, Schuck PF, Ferreira GC, Streck EL (2012) DNA damage in an animal model of maple syrup urine disease. Mol Genet Metab 106(2):169–174. doi:10.1016/j.ymgme.2012.04.009

    Article  CAS  PubMed  Google Scholar 

  22. Scaini G, Comim CM, Oliveira GM, Pasquali MA, Quevedo J, Gelain DP, Moreira JC, Schuck PF, Ferreira GC, Bogo MR, Streck EL (2013) Chronic administration of branched-chain amino acids impairs spatial memory and increases brain-derived neurotrophic factor in a rat model. J Inherit Metab Dis 36(5):721–730. doi:10.1007/s10545-012-9549-z

    Article  CAS  PubMed  Google Scholar 

  23. Scaini G, Mello-Santos LM, Furlanetto CB, Jeremias IC, Mina F, Schuck PF, Ferreira GC, Kist LW, Pereira TC, Bogo MR, Streck EL (2013) Acute and chronic administration of the branched-chain amino acids decreases nerve growth factor in rat hippocampus. Mol Neurobiol 48(3):581–589. doi:10.1007/s12035-013-8447-1

    Article  CAS  PubMed  Google Scholar 

  24. Scaini G, Morais MO, Furlanetto CB, Kist LW, Pereira TC, Schuck PF, Ferreira GC, Pasquali MA, Gelain DP, Moreira JC, Bogo MR, Streck EL (2015) Acute administration of branched-chain amino acids increases the pro-BDNF/Total-BDNF ratio in the rat brain. Neurochem Res 40(5):885–893. doi:10.1007/s11064-015-1541-1

    Article  CAS  PubMed  Google Scholar 

  25. Scaini G, de Rochi N, Jeremias IC, Deroza PF, Zugno AI, Pereira TC, Oliveira GM, Kist LW, Bogo MR, Schuck PF, Ferreira GC, Streck EL (2012) Evaluation of acetylcholinesterase in an animal model of maple syrup urine disease. Mol Neurobiol 45(2):279–286. doi:10.1007/s12035-012-8243-3

    Article  CAS  PubMed  Google Scholar 

  26. Capsoni S, Brandi R, Arisi I, D’Onofrio M, Cattaneo A (2011) A dual mechanism linking NGF/proNGF imbalance and early inflammation to Alzheimer’s disease neurodegeneration in the AD11 anti-NGF mouse model. CNS & neurological disorders drug targets 10(5):635–647

    Article  CAS  Google Scholar 

  27. Capsoni S, Cattaneo A (2006) On the molecular basis linking nerve growth factor (NGF) to Alzheimer’s disease. Cell Mol Neurobiol 26(4–6):619–633. doi:10.1007/s10571-006-9112-2

    CAS  PubMed  Google Scholar 

  28. Contestabile A, Ciani E, Contestabile A (2008) The place of choline acetyltransferase activity measurement in the “cholinergic hypothesis” of neurodegenerative diseases. Neurochem Res 33(2):318–327. doi:10.1007/s11064-007-9497-4

    Article  CAS  PubMed  Google Scholar 

  29. Bierer LM, Haroutunian V, Gabriel S, Knott PJ, Carlin LS, Purohit DP, Perl DP, Schmeidler J, Kanof P, Davis KL (1995) Neurochemical correlates of dementia severity in Alzheimer’s disease: relative importance of the cholinergic deficits. J Neurochem 64(2):749–760

    Article  CAS  PubMed  Google Scholar 

  30. Teipel SJ, Meindl T, Grinberg L, Grothe M, Cantero JL, Reiser MF, Moller HJ, Heinsen H, Hampel H (2011) The cholinergic system in mild cognitive impairment and Alzheimer’s disease: an in vivo MRI and DTI study. Hum Brain Mapp 32(9):1349–1362. doi:10.1002/hbm.21111

    Article  PubMed  Google Scholar 

  31. Talesa VN (2001) Acetylcholinesterase in Alzheimer’s disease. Mech Ageing Dev 122(16):1961–1969

    Article  CAS  PubMed  Google Scholar 

  32. Mori S (2002) Responses to donepezil in Alzheimer’s disease and Parkinson’s disease. Ann N Y Acad Sci 977:493–500

    Article  CAS  PubMed  Google Scholar 

  33. Sberna G, Saez-Valero J, Beyreuther K, Masters CL, Small DH (1997) The amyloid beta-protein of Alzheimer’s disease increases acetylcholinesterase expression by increasing intracellular calcium in embryonal carcinoma P19 cells. J Neurochem 69(3):1177–1184

    Article  CAS  PubMed  Google Scholar 

  34. Fu AL, Zhang XM, Sun MJ (2005) Antisense inhibition of acetylcholinesterase gene expression for treating cognition deficit in Alzheimer’s disease model mice. Brain Res 1066(1–2):10–15. doi:10.1016/j.brainres.2005.09.063

    Article  CAS  PubMed  Google Scholar 

  35. Bruno MA, Leon WC, Fragoso G, Mushynski WE, Almazan G, Cuello AC (2009) Amyloid beta-induced nerve growth factor dysmetabolism in Alzheimer disease. J Neuropathol Exp Neurol 68(8):857–869. doi:10.1097/NEN.0b013e3181aed9e6

    Article  CAS  PubMed  Google Scholar 

  36. Covaceuszach S, Capsoni S, Ugolini G, Spirito F, Vignone D, Cattaneo A (2009) Development of a non invasive NGF-based therapy for Alzheimer’s disease. Current Alzheimer research 6(2):158–170

    Article  CAS  PubMed  Google Scholar 

  37. Woo NH, Teng HK, Siao CJ, Chiaruttini C, Pang PT, Milner TA, Hempstead BL, Lu B (2005) Activation of p75NTR by proBDNF facilitates hippocampal long-term depression. Nat Neurosci 8(8):1069–1077. doi:10.1038/nn1510

    Article  CAS  PubMed  Google Scholar 

  38. Holsinger RM, Schnarr J, Henry P, Castelo VT, Fahnestock M (2000) Quantitation of BDNF mRNA in human parietal cortex by competitive reverse transcription-polymerase chain reaction: decreased levels in Alzheimer’s disease. Brain Res Mol Brain Res 76(2):347–354

    Article  CAS  PubMed  Google Scholar 

  39. Howells DW, Porritt MJ, Wong JY, Batchelor PE, Kalnins R, Hughes AJ, Donnan GA (2000) Reduced BDNF mRNA expression in the Parkinson’s disease substantia nigra. Exp Neurol 166(1):127–135. doi:10.1006/exnr.2000.7483

    Article  CAS  PubMed  Google Scholar 

  40. Zuccato C, Ciammola A, Rigamonti D, Leavitt BR, Goffredo D, Conti L, MacDonald ME, Friedlander RM, Silani V, Hayden MR, Timmusk T, Sipione S, Cattaneo E (2001) Loss of huntingtin-mediated BDNF gene transcription in Huntington’s disease. Science 293(5529):493–498. doi:10.1126/science.1059581

    Article  CAS  PubMed  Google Scholar 

  41. Tasset I, Sanchez-Lopez F, Aguera E, Fernandez-Bolanos R, Sanchez FM, Cruz-Guerrero A, Gascon-Luna F, Tunez I (2012) NGF and nitrosative stress in patients with Huntington’s disease. J Neurol Sci 315(1–2):133–136. doi:10.1016/j.jns.2011.12.014

    Article  CAS  PubMed  Google Scholar 

  42. Brennaman LH, Maness PF (2010) NCAM in neuropsychiatric and neurodegenerative disorders. Adv Exp Med Biol 663:299–317. doi:10.1007/978-1-4419-1170-4_19

    Article  CAS  PubMed  Google Scholar 

  43. Sandi C, Merino JJ, Cordero MI, Kruyt ND, Murphy KJ, Regan CM (2003) Modulation of hippocampal NCAM polysialylation and spatial memory consolidation by fear conditioning. Biol Psychiatry 54(6):599–607

    Article  CAS  PubMed  Google Scholar 

  44. Stoenica L, Senkov O, Gerardy-Schahn R, Weinhold B, Schachner M, Dityatev A (2006) In vivo synaptic plasticity in the dentate gyrus of mice deficient in the neural cell adhesion molecule NCAM or its polysialic acid. Eur J Neurosci 23(9):2255–2264. doi:10.1111/j.1460-9568.2006.04771.x

    Article  PubMed  Google Scholar 

  45. Bukalo O, Fentrop N, Lee AY, Salmen B, Law JW, Wotjak CT, Schweizer M, Dityatev A, Schachner M (2004) Conditional ablation of the neural cell adhesion molecule reduces precision of spatial learning, long-term potentiation, and depression in the CA1 subfield of mouse hippocampus. The Journal of neuroscience : the official journal of the Society for Neuroscience 24(7):1565–1577. doi:10.1523/JNEUROSCI.3298-03.2004

    Article  CAS  Google Scholar 

  46. Rosa L, Galant LS, Dall’Igna DM, Kolling J, Siebert C, Schuck PF, Ferreira GC, Wyse AT, Dal-Pizzol F, Scaini G, Streck EL (2015) Cerebral Oedema. Blood-brain barrier breakdown and the decrease in Na, K-ATPase activity in the cerebral cortex and hippocampus are prevented by dexamethasone in an animal model of maple syrup urine disease Molecular neurobiology. doi:10.1007/s12035-015-9313-0

    Google Scholar 

  47. Mescka CP, Guerreiro G, Donida B, Marchetti D, Wayhs CA, Ribas GS, Coitinho AS, Wajner M, Dutra-Filho CS, Vargas CR (2015) Investigation of inflammatory profile in MSUD patients: benefit of L-carnitine supplementation. Metab Brain Dis. doi:10.1007/s11011-015-9686-9

    PubMed  Google Scholar 

  48. Joseph MH, Marsden CA (1986) Amino acids and small peptides. In: CF L (ed) HPLC of small peptides. IRL Press, Oxford, pp. 13–27

    Google Scholar 

  49. Victora CG, Huttly SR, Fuchs SC, Olinto MT (1997) The role of conceptual frameworks in epidemiological analysis: a hierarchical approach. Int J Epidemiol 26(1):224–227

    Article  CAS  PubMed  Google Scholar 

  50. le Roux C, Murphy E, Hallam P, Lilburn M, Orlowska D, Lee P (2006) Neuropsychometric outcome predictors for adults with maple syrup urine disease. J Inherit Metab Dis 29(1):201–202. doi:10.1007/s10545-006-0223-1

    Article  PubMed  Google Scholar 

  51. Muelly ER, Moore GJ, Bunce SC, Mack J, Bigler DC, Morton DH, Strauss KA (2013) Biochemical correlates of neuropsychiatric illness in maple syrup urine disease. J Clin Invest 123(4):1809–1820. doi:10.1172/JCI67217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Simon E, Schwarz M, Wendel U (2007) Social outcome in adults with maple syrup urine disease (MSUD). J Inherit Metab Dis 30(2):264. doi:10.1007/s10545-007-0475-4

    Article  CAS  PubMed  Google Scholar 

  53. Klee D, Thimm E, Wittsack HJ, Schubert D, Primke R, Pentang G, Schaper J, Modder U, Antoch A, Wendel U, Cohnen M (2013) Structural white matter changes in adolescents and young adults with maple syrup urine disease. J Inherit Metab Dis 36(6):945–953. doi:10.1007/s10545-012-9582-y

    Article  CAS  PubMed  Google Scholar 

  54. Packman W, Henderson SL, Mehta I, Ronen R, Danner D, Chesterman B, Packman S (2007) Psychosocial issues in families affected by maple syrup urine disease. J Genet Couns 16(6):799–809. doi:10.1007/s10897-007-9114-3

    Article  PubMed  Google Scholar 

  55. Carecchio M, Schneider SA, Chan H, Lachmann R, Lee PJ, Murphy E, Bhatia KP (2011) Movement disorders in adult surviving patients with maple syrup urine disease. Mov Disord 26(7):1324–1328. doi:10.1002/mds.23629

    Article  PubMed  PubMed Central  Google Scholar 

  56. Walsh KS, Scott MN (2010) Neurocognitive profile in a case of maple syrup urine disease. Clin Neuropsychol 24(4):689–700. doi:10.1080/13854040903527279

    Article  PubMed  Google Scholar 

  57. Schuch U, Lohse MJ, Schachner M (1989) Neural cell adhesion molecules influence second messenger systems. Neuron 3(1):13–20

    Article  CAS  PubMed  Google Scholar 

  58. Walsh FS, Meiri K, Doherty P (1997) Cell signalling and CAM-mediated neurite outgrowth. Soc Gen Physiol Ser 52:221–226

    CAS  PubMed  Google Scholar 

  59. Walmod PS, Kolkova K, Berezin V, Bock E (2004) Zippers make signals: NCAM-mediated molecular interactions and signal transduction. Neurochem Res 29(11):2015–2035

    Article  CAS  PubMed  Google Scholar 

  60. Kim JH, Lee JH, Park JY, Park CH, Yun CO, Lee SH, Lee YS, Son H (2005) Retrovirally transduced NCAM140 facilitates neuronal fate choice of hippocampal progenitor cells. J Neurochem 94(2):417–424. doi:10.1111/j.1471-4159.2005.03208.x

    Article  CAS  PubMed  Google Scholar 

  61. Doherty P, Cohen J, Walsh FS (1990) Neurite outgrowth in response to transfected N-CAM changes during development and is modulated by polysialic acid. Neuron 5(2):209–219

    Article  CAS  PubMed  Google Scholar 

  62. Jorgensen OS (1995) Neural cell adhesion molecule (NCAM) as a quantitative marker in synaptic remodeling. Neurochem Res 20(5):533–547

    Article  CAS  PubMed  Google Scholar 

  63. Chekhonin VP, Shepeleva II, Gurina OI (2008) Disturbances in the expression of neuronal cell adhesion proteins NCAM. Clinical aspects. Neurochem J 2(4):239–251. doi:10.1134/S1819712408040028

    Article  Google Scholar 

  64. Liu G, Jiang Y, Wang P, Feng R, Jiang N, Chen X, Song H, Chen Z (2012) Cell adhesion molecules contribute to Alzheimer’s disease: multiple pathway analyses of two genome-wide association studies. J Neurochem 120(1):190–198. doi:10.1111/j.1471-4159.2011.07547.x

    Article  CAS  PubMed  Google Scholar 

  65. Todaro L, Puricelli L, Gioseffi H, Guadalupe Pallotta M, Lastiri J, Bal de Kier Joffe E, Varela M, Sacerdote de Lustig E (2004) Neural cell adhesion molecule in human serum. Increased levels in dementia of the Alzheimer type. Neurobiol Dis 15(2):387–393. doi:10.1016/j.nbd.2003.11.014

    Article  CAS  PubMed  Google Scholar 

  66. Yew DT, Li WP, Webb SE, Lai HW, Zhang L (1999) Neurotransmitters, peptides, and neural cell adhesion molecules in the cortices of normal elderly humans and Alzheimer patients: a comparison. Exp Gerontol 34(1):117–133

    Article  CAS  PubMed  Google Scholar 

  67. Aisa B, Gil-Bea FJ, Solas M, Garcia-Alloza M, Chen CP, Lai MK, Francis PT, Ramirez MJ (2010) Altered NCAM expression associated with the cholinergic system in Alzheimer’s disease. Journal of Alzheimer’s disease : JAD 20(2):659–668. doi:10.3233/JAD-2010-1398

    Article  CAS  PubMed  Google Scholar 

  68. Strekalova H, Buhmann C, Kleene R, Eggers C, Saffell J, Hemperly J, Weiller C, Muller-Thomsen T, Schachner M (2006) Elevated levels of neural recognition molecule L1 in the cerebrospinal fluid of patients with Alzheimer disease and other dementia syndromes. Neurobiol Aging 27(1):1–9. doi:10.1016/j.neurobiolaging.2004.11.013

    Article  CAS  PubMed  Google Scholar 

  69. Bibel M, Barde YA (2000) Neurotrophins: key regulators of cell fate and cell shape in the vertebrate nervous system. Genes Dev 14(23):2919–2937

    Article  CAS  PubMed  Google Scholar 

  70. Huang EJ, Reichardt LF (2001) Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci 24:677–736. doi:10.1146/annurev.neuro.24.1.677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wisniewski MS, Carvalho-Silva M, Gomes LM, Zapelini HG, Schuck PF, Ferreira GC, Scaini G, Streck EL (2016) Intracerebroventricular administration of alpha-ketoisocaproic acid decreases brain-derived neurotrophic factor and nerve growth factor levels in brain of young rats. Metab Brain Dis 31(2):377–383. doi:10.1007/s11011-015-9768-8

    Article  CAS  PubMed  Google Scholar 

  72. Cunha C, Brambilla R, Thomas KL (2010) A simple role for BDNF in learning and memory? Front Mol Neurosci 3:1. doi:10.3389/neuro.02.001.2010

    PubMed  PubMed Central  Google Scholar 

  73. Tyler WJ, Perrett SP, Pozzo-Miller LD (2002) The role of neurotrophins in neurotransmitter release. Neuroscientist 8(6):524–531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Tyler WJ, Alonso M, Bramham CR, Pozzo-Miller LD (2002) From acquisition to consolidation: on the role of brain-derived neurotrophic factor signaling in hippocampal-dependent learning. Learn Mem 9(5):224–237. doi:10.1101/lm.51202

    Article  PubMed  PubMed Central  Google Scholar 

  75. Blurton-Jones M, Kitazawa M, Martinez-Coria H, Castello NA, Muller FJ, Loring JF, Yamasaki TR, Poon WW, Green KN, LaFerla FM (2009) Neural stem cells improve cognition via BDNF in a transgenic model of Alzheimer disease. Proc Natl Acad Sci U S A 106(32):13594–13599. doi:10.1073/pnas.0901402106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Allen SJ, Watson JJ, Dawbarn D (2011) The neurotrophins and their role in Alzheimer’s disease. Curr Neuropharmacol 9(4):559–573. doi:10.2174/157015911798376190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Murer MG, Yan Q, Raisman-Vozari R (2001) Brain-derived neurotrophic factor in the control human brain, and in Alzheimer’s disease and Parkinson’s disease. Prog Neurobiol 63(1):71–124

    Article  CAS  PubMed  Google Scholar 

  78. Ciammola A, Sassone J, Cannella M, Calza S, Poletti B, Frati L, Squitieri F, Silani V (2007) Low brain-derived neurotrophic factor (BDNF) levels in serum of Huntington’s disease patients. American journal of medical genetics part B, neuropsychiatric genetics: the official publication of the International Society of. Psychiatr Genet 144B(4):574–577. doi:10.1002/ajmg.b.30501

    CAS  Google Scholar 

  79. Scalzo P, Kummer A, Bretas TL, Cardoso F, Teixeira AL (2010) Serum levels of brain-derived neurotrophic factor correlate with motor impairment in Parkinson’s disease. J Neurol 257(4):540–545. doi:10.1007/s00415-009-5357-2

    Article  CAS  PubMed  Google Scholar 

  80. Diniz BS, Teixeira AL (2011) Brain-derived neurotrophic factor and Alzheimer’s disease: physiopathology and beyond. Neruomol Med 13(4):217–222. doi:10.1007/s12017-011-8154-x

    Article  CAS  Google Scholar 

  81. Narisawa-Saito M, Wakabayashi K, Tsuji S, Takahashi H, Nawa H (1996) Regional specificity of alterations in NGF, BDNF and NT-3 levels in Alzheimer’s disease. Neuroreport 7(18):2925–2928

    Article  CAS  PubMed  Google Scholar 

  82. Phillips HS, Hains JM, Armanini M, Laramee GR, Johnson SA, Winslow JW (1991) BDNF mRNA is decreased in the hippocampus of individuals with Alzheimer’s disease. Neuron 7(5):695–702

    Article  CAS  PubMed  Google Scholar 

  83. Connor B, Young D, Yan Q, Faull RL, Synek B, Dragunow M (1997) Brain-derived neurotrophic factor is reduced in Alzheimer’s disease. Brain Res Mol Brain Res 49(1–2):71–81

    Article  CAS  PubMed  Google Scholar 

  84. Laske C, Stransky E, Leyhe T, Eschweiler GW, Wittorf A, Richartz E, Bartels M, Buchkremer G, Schott K (2006) Stage-dependent BDNF serum concentrations in Alzheimer’s disease. J Neural Transm 113(9):1217–1224. doi:10.1007/s00702-005-0397-y

    Article  CAS  PubMed  Google Scholar 

  85. Platenik J, Fisar Z, Buchal R, Jirak R, Kitzlerova E, Zverova M, Raboch J (2014) GSK3beta, CREB, and BDNF in peripheral blood of patients with Alzheimer’s disease and depression. Prog Neuro-Psychopharmacol Biol Psychiatry 50:83–93. doi:10.1016/j.pnpbp.2013.12.001

    Article  CAS  Google Scholar 

  86. Komulainen P, Pedersen M, Hanninen T, Bruunsgaard H, Lakka TA, Kivipelto M, Hassinen M, Rauramaa TH, Pedersen BK, Rauramaa R (2008) BDNF is a novel marker of cognitive function in ageing women: the DR’s EXTRA Study. Neurobiol Learn Mem 90(4):596–603. doi:10.1016/j.nlm.2008.07.014

    Article  CAS  PubMed  Google Scholar 

  87. Silva A, Pereira J, Oliveira CR, Relvas JB, Rego AC (2009) BDNF and extracellular matrix regulate differentiation of mice neurosphere-derived cells into a GABAergic neuronal phenotype. J Neurosci Res 87(9):1986–1996. doi:10.1002/jnr.22041

    Article  CAS  PubMed  Google Scholar 

  88. Soltys J, Perrone C, Knight J, Mao-Draayer Y (2011) PDGF-AA and BDNF promote neural stem cell differentiation. Journal of Neurology & Neurophysiology S4. doi:10.4172/2155-9562.S4-002

  89. Cellerino A, Carroll P, Thoenen H, Barde YA (1997) Reduced size of retinal ganglion cell axons and hypomyelination in mice lacking brain-derived neurotrophic factor. Mol Cell Neurosci 9(5–6):397–408. doi:10.1006/mcne.1997.0641

    Article  CAS  PubMed  Google Scholar 

  90. JG H, SL F, Wang YX, Li Y, Jiang XY, Wang XF, Qiu MS, PH L, XM X (2008) Platelet-derived growth factor-AA mediates oligodendrocyte lineage differentiation through activation of extracellular signal-regulated kinase signaling pathway. Neuroscience 151(1):138–147. doi:10.1016/j.neuroscience.2007.10.050

    Article  CAS  Google Scholar 

  91. Jackson EL, Garcia-Verdugo JM, Gil-Perotin S, Roy M, Quinones-Hinojosa A, VandenBerg S, Alvarez-Buylla A (2006) PDGFR alpha-positive B cells are neural stem cells in the adult SVZ that form glioma-like growths in response to increased PDGF signaling. Neuron 51(2):187–199. doi:10.1016/j.neuron.2006.06.012

    Article  CAS  PubMed  Google Scholar 

  92. Baumann N, Pham-Dinh D (2001) Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol Rev 81(2):871–927

    CAS  PubMed  Google Scholar 

  93. Vana AC, Flint NC, Harwood NE, Le TQ, Fruttiger M, Armstrong RC (2007) Platelet-derived growth factor promotes repair of chronically demyelinated white matter. J Neuropathol Exp Neurol 66(11):975–988. doi:10.1097/NEN.0b013e3181587d46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Harirchian MH, Tekieh AH, Modabbernia A, Aghamollaii V, Tafakhori A, Ghaffarpour M, Sahraian MA, Naji M, Yazdankhah M (2012) Serum and CSF PDGF-AA and FGF-2 in relapsing-remitting multiple sclerosis: a case-control study. European journal of neurology: the official journal of the European Federation of Neurological. Societies 19(2):241–247. doi:10.1111/j.1468-1331.2011.03476.x

    CAS  Google Scholar 

  95. Murtie JC, Zhou YX, Le TQ, Vana AC, Armstrong RC (2005) PDGF and FGF2 pathways regulate distinct oligodendrocyte lineage responses in experimental demyelination with spontaneous remyelination. Neurobiol Dis 19(1–2):171–182. doi:10.1016/j.nbd.2004.12.006

    Article  CAS  PubMed  Google Scholar 

  96. Mackenzie DY, Woolf LI (1959) Maple syrup urine disease; an inborn error of the metabolism of valine, leucine, and isoleucine associated with gross mental deficiency. Br Med J 1(5114):90–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Agostini M, Tucci P, Melino G (2011) Cell death pathology: perspective for human diseases. Biochem Biophys Res Commun 414(3):451–455. doi:10.1016/j.bbrc.2011.09.081

    Article  CAS  PubMed  Google Scholar 

  98. Hetman M, Danysz W, Kaczmarek L (1997) Increased expression of cathepsin D in retrosplenial cortex of MK-801-treated rats. Exp Neurol 147(2):229–237. doi:10.1006/exnr.1997.6603

    Article  CAS  PubMed  Google Scholar 

  99. Moechars D, Lorent K, Van Leuven F (1999) Premature death in transgenic mice that overexpress a mutant amyloid precursor protein is preceded by severe neurodegeneration and apoptosis. Neuroscience 91(3):819–830

    Article  CAS  PubMed  Google Scholar 

  100. German DC, Liang CL, Song T, Yazdani U, Xie C, Dietschy JM (2002) Neurodegeneration in the Niemann-Pick C mouse: glial involvement. Neuroscience 109(3):437–450

    Article  CAS  PubMed  Google Scholar 

  101. Gowran A, Campbell VA (2008) A role for p53 in the regulation of lysosomal permeability by delta 9-tetrahydrocannabinol in rat cortical neurones: implications for neurodegeneration. J Neurochem 105(4):1513–1524. doi:10.1111/j.1471-4159.2008.05278.x

    Article  CAS  PubMed  Google Scholar 

  102. Wirths O, Breyhan H, Marcello A, Cotel MC, Bruck W, Bayer TA (2010) Inflammatory changes are tightly associated with neurodegeneration in the brain and spinal cord of the APP/PS1KI mouse model of Alzheimer’s disease. Neurobiol Aging 31(5):747–757. doi:10.1016/j.neurobiolaging.2008.06.011

    Article  CAS  PubMed  Google Scholar 

  103. Yelamanchili SV, Chaudhuri AD, Flynn CT, Fox HS (2011) Upregulation of cathepsin D in the caudate nucleus of primates with experimental parkinsonism. Mol Neurodegener 6:52. doi:10.1186/1750-1326-6-52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Dean RT (1975) Lysosomal enzymes as agents of turnover of soluble cytoplasmic proteins. European journal of biochemistry / FEBS 58(1):9–14

    Article  CAS  Google Scholar 

  105. Deiss LP, Galinka H, Berissi H, Cohen O, Kimchi A (1996) Cathepsin D protease mediates programmed cell death induced by interferon-gamma, Fas/APO-1 and TNF-alpha. EMBO J 15(15):3861–3870

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Zuzarte-Luis V, Montero JA, Kawakami Y, Izpisua-Belmonte JC, Hurle JM (2007) Lysosomal cathepsins in embryonic programmed cell death. Dev Biol 301(1):205–217. doi:10.1016/j.ydbio.2006.08.008

    Article  CAS  PubMed  Google Scholar 

  107. Minarowska A, Minarowski L, Karwowska A, Gacko M (2007) Regulatory role of cathepsin D in apoptosis. Folia histochemica et cytobiologica / Polish Academy of Sciences, Polish Histochemical and Cytochemical Society 45(3):159–163

    CAS  Google Scholar 

  108. Liaudet-Coopman E, Beaujouin M, Derocq D, Garcia M, Glondu-Lassis M, Laurent-Matha V, Prebois C, Rochefort H, Vignon F (2006) Cathepsin D: newly discovered functions of a long-standing aspartic protease in cancer and apoptosis. Cancer Lett 237(2):167–179. doi:10.1016/j.canlet.2005.06.007

    Article  CAS  PubMed  Google Scholar 

  109. Heinrich M, Neumeyer J, Jakob M, Hallas C, Tchikov V, Winoto-Morbach S, Wickel M, Schneider-Brachert W, Trauzold A, Hethke A, Schutze S (2004) Cathepsin D links TNF-induced acid sphingomyelinase to Bid-mediated caspase-9 and -3 activation. Cell Death Differ 11(5):550–563. doi:10.1038/sj.cdd.4401382

    Article  CAS  PubMed  Google Scholar 

  110. Emert-Sedlak L, Shangary S, Rabinovitz A, Miranda MB, Delach SM, Johnson DE (2005) Involvement of cathepsin D in chemotherapy-induced cytochrome c release, caspase activation, and cell death. Mol Cancer Ther 4(5):733–742. doi:10.1158/1535-7163.MCT-04-0301

    Article  CAS  PubMed  Google Scholar 

  111. GS W, Saftig P, Peters C, El-Deiry WS (1998) Potential role for cathepsin D in p53-dependent tumor suppression and chemosensitivity. Oncogene 16(17):2177–2183. doi:10.1038/sj.onc.1201755

    Article  CAS  Google Scholar 

  112. Roberg K, Johansson U, Ollinger K (1999) Lysosomal release of cathepsin D precedes relocation of cytochrome c and loss of mitochondrial transmembrane potential during apoptosis induced by oxidative stress. Free Radic Biol Med 27(11–12):1228–1237

    Article  CAS  PubMed  Google Scholar 

  113. Kagedal K, Johansson U, Ollinger K (2001) The lysosomal protease cathepsin D mediates apoptosis induced by oxidative stress. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 15(9):1592–1594

    CAS  Google Scholar 

  114. Fusek M, Vetvickova J, Vetvicka V (2007) Secretion of cytokines in breast cancer cells: the molecular mechanism of procathepsin D proliferative effects. Journal of interferon & cytokine research : the official journal of the International Society for Interferon and Cytokine Research 27(3):191–199. doi:10.1089/jir.2006.0105

    Article  CAS  Google Scholar 

  115. Erdmann S, Ricken A, Hummitzsch K, Merkwitz C, Schliebe N, Gaunitz F, Strotmann R, Spanel-Borowski K (2008) Inflammatory cytokines increase extracellular procathepsin D in permanent and primary endothelial cell cultures. Eur J Cell Biol 87(5):311–323. doi:10.1016/j.ejcb.2008.01.005

    Article  CAS  PubMed  Google Scholar 

  116. Kim S, Ock J, Kim AK, Lee HW, Cho JY, Kim DR, Park JY, Suk K (2007) Neurotoxicity of microglial cathepsin D revealed by secretome analysis. J Neurochem 103(6):2640–2650. doi:10.1111/j.1471-4159.2007.04995.x

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Laboratory of Bioenergetics (Brazil) is one of the centers of the National Institute for Molecular Medicine (INCT-MM) and one of the members of the Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC). This research was supported by grants from CNPq (402047/2010-9), FAPESC, and UNESC. The authors acknowledge all the members of the Brazilian MSUD Network and Dr. Kevin Strauss and Dr. Erik Puffenberger (Clinical for Special Children, PA, USA) for helping us with the alloisoleucine measurement. The authors declare that they have not had any financial, personal, or other relationships that have influenced the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio L. Streck.

Ethics declarations

The present study was approved by the Ethical Committee of Hospital de Clínicas de Porto Alegre, RS, Brazil. All parents of the patients included in the present study provided informed consent according to the guidelines of our committee.

Additional information

An erratum to this article is available at https://doi.org/10.1007/s12035-016-0263-y.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scaini, G., Tonon, T., de Souza, C.F.M. et al. Serum Markers of Neurodegeneration in Maple Syrup Urine Disease. Mol Neurobiol 54, 5709–5719 (2017). https://doi.org/10.1007/s12035-016-0116-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0116-8

Keywords

Navigation