Skip to main content

Advertisement

Log in

HDAC Inhibitor Sodium Butyrate-Mediated Epigenetic Regulation Enhances Neuroprotective Function of Microglia During Ischemic Stroke

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Cerebral ischemia leads to neuroinflammation and activation of microglia which further contribute to stroke pathology. Understanding regulation of microglial activation will aid in the development of therapeutic strategies that mitigate microglia-mediated neurotoxicity in neuropathologies, including ischemia. In this study, we investigated the epigenetic regulation of microglial activation by studying histone modification histone 3-lysine 9-acetylation (H3K9ac) and its regulation by histone deacetylase (HDAC) inhibitors. In vitro analysis of activated microglia showed that HDAC inhibitor, sodium butyrate (SB), alters H3K9ac enrichment and transcription at the promoters of pro-inflammatory (Tnf-α, Nos2, Stat1, Il6) and anti-inflammatory (Il10) genes while inducing the expression of genes downstream of the IL10/STAT3 anti-inflammatory pathway. In an experimental mouse (C57BL/6NTac) model of middle cerebral artery occlusion (MCAO), we observed that SB mediates neuroprotection by epigenetically regulating the microglial inflammatory response, via downregulating the expression of pro-inflammatory mediators, TNF-α and NOS2, and upregulating the expression of anti-inflammatory mediator IL10, in activated microglia. Interestingly, H3K9ac levels were found to be upregulated in activated microglia distributed in the cortex, striatum, and hippocampus of MCAO mice. A similar upregulation of H3K9ac was detected in lipopolysaccharide (LPS)-activated microglia in the Wistar rat brain, indicating that H3K9ac upregulation is consistently associated with microglial activation in vivo. Altogether, these results show evidence of HDAC inhibition being a promising molecular switch to epigenetically modify microglial behavior from pro-inflammatory to anti-inflammatory which could mitigate microglia-mediated neuroinflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Lai SM, Alter M, Friday G, Sobel E (1994) A multifactorial analysis of risk factors for recurrence of ischemic stroke. Stroke 25(5):958–962

    Article  CAS  PubMed  Google Scholar 

  2. Bersano A, Ballabio E, Bresolin N, Candelise L (2008) Genetic polymorphisms for the study of multifactorial stroke. Hum Mutat 29(6):776–795. doi:10.1002/humu.20666

    Article  CAS  PubMed  Google Scholar 

  3. McColl B, Allan S, Rothwell N (2009) Systemic infection, inflammation and acute ischemic stroke. Neuroscience 158(3):1049–1061

    Article  CAS  PubMed  Google Scholar 

  4. Gelderblom M, Leypoldt F, Steinbach K, Behrens D, Choe C-U, Siler DA, Arumugam TV, Orthey E et al (2009) Temporal and spatial dynamics of cerebral immune cell accumulation in stroke. Stroke 40(5):1849–1857

    Article  PubMed  Google Scholar 

  5. Benakis C, Garcia-Bonilla L, Iadecola C, Anrather J (2014) The role of microglia and myeloid immune cells in acute cerebral ischemia. Frontiers in cellular neuroscience 8

  6. Paolicelli RC, Bolasco G, Pagani F, Maggi L, Scianni M, Panzanelli P, Giustetto M, Ferreira TA et al (2011) Synaptic pruning by microglia is necessary for normal brain development. Science 333(6048):1456–1458. doi:10.1126/science.1202529

    Article  CAS  PubMed  Google Scholar 

  7. Zhan Y, Paolicelli RC, Sforazzini F, Weinhard L, Bolasco G, Pagani F, Vyssotski AL, Bifone A et al (2014) Deficient neuron-microglia signaling results in impaired functional brain connectivity and social behavior. Nat Neurosci 17(3):400–406

    Article  CAS  PubMed  Google Scholar 

  8. Wake H, Moorhouse AJ, Miyamoto A, Nabekura J (2013) Microglia: actively surveying and shaping neuronal circuit structure and function. Trends Neurosci 36(4):209–217

    Article  CAS  PubMed  Google Scholar 

  9. Gomez-Nicola D, Perry VH (2015) Microglial dynamics and role in the healthy and diseased brain a paradigm of functional plasticity. Neuroscientist 21(2):169–184

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Davalos D, Grutzendler J, Yang G, Kim J, Zuo Y, Jung S, Littman D, Dustin M et al (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8(6):752–758. doi:10.1038/nn1472

    Article  CAS  PubMed  Google Scholar 

  11. Dheen S, Kaur C, Ling E-A (2007) Microglial activation and its implications in the brain diseases. Curr Med Chem 14(11):1189–1197

    Article  CAS  PubMed  Google Scholar 

  12. Morrison HW, Filosa JA (2013) A quantitative spatiotemporal analysis of microglia morphology during ischemic stroke and reperfusion. J Neuroinflammation 10(4)

  13. Neumann H, Kotter M, Franklin R (2009) Debris clearance by microglia: an essential link between degeneration and regeneration. Brain 132(2):288–295

    Article  CAS  PubMed  Google Scholar 

  14. Hu X, Li P, Guo Y, Wang H, Leak RK, Chen S, Gao Y, Chen J (2012) Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia. Stroke 43(11):3063–3070

    Article  CAS  PubMed  Google Scholar 

  15. Nayak D, Roth T, McGavern D (2014) Microglia development and function. Annu Rev Immunol 32:367–402. doi:10.1146/annurev-immunol-032713-120240

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Ransohoff R, Perry V (2009) Microglial physiology: unique stimuli, specialized responses. Annu Rev Immunol 27:119–145. doi:10.1146/annurev.immunol.021908.132528

    Article  CAS  PubMed  Google Scholar 

  17. Christova R, Jones T, Wu P-J, Bolzer A, Costa-Pereira A, Watling D, Kerr I, Sheer D (2007) P-STAT1 mediates higher-order chromatin remodelling of the human MHC in response to IFNgamma. J Cell Sci 120(Pt 18):3262–3270. doi:10.1242/jcs.012328

    Article  CAS  PubMed  Google Scholar 

  18. Przanowski P, Dabrowski M, Ellert-Miklaszewska A, Kloss M, Mieczkowski J, Kaza B, Ronowicz A, Hu F et al (2014) The signal transducers Stat1 and Stat3 and their novel target Jmjd3 drive the expression of inflammatory genes in microglia. Journal of molecular medicine (Berlin, Germany) 92(3):239–254. doi:10.1007/s00109-013-1090-5

    Article  CAS  Google Scholar 

  19. Strle K, Zhou J-H, Broussard SR, Venters HD, Johnson RW, Freund GG, Dantzer R, Kelley KW (2002) IL-10 promotes survival of microglia without activating Akt. J Neuroimmunol 122(1):9–19

    Article  CAS  PubMed  Google Scholar 

  20. Murray PJ (2006) Understanding and exploiting the endogenous interleukin-10/STAT3-mediated anti-inflammatory response. Curr Opin Pharmacol 6(4):379–386. doi:10.1016/j.coph.2006.01.010

    Article  CAS  PubMed  Google Scholar 

  21. Shuai K, Liu B (2003) Regulation of JAK-STAT signalling in the immune system. Nature reviews. Immunology 3(11):900–911. doi:10.1038/nri1226

    CAS  PubMed  Google Scholar 

  22. Shahbazian MD, Grunstein M (2007) Functions of site-specific histone acetylation and deacetylation. Annu Rev Biochem 76:75–100

    Article  CAS  PubMed  Google Scholar 

  23. New M, Olzscha H, La Thangue N (2012) HDAC inhibitor-based therapies: can we interpret the code? Mol Oncol 6(6):637–656. doi:10.1016/j.molonc.2012.09.003

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Xuefei W, Shao L, Qiong W, Yan P, Deqin Y, Hecheng W, Dehua C, Jie Z (2013) Histone deacetylase inhibition leads to neuroprotection through regulation on glial function. Mol Neurodegener 8. doi:10.1186/1750-1326-8-S1-P49

  25. Dietz K, Casaccia P (2010) HDAC inhibitors and neurodegeneration: at the edge between protection and damage. Pharmacological Research: the Official Journal of the Italian Pharmacological Society 62(1):11–17. doi:10.1016/j.phrs.2010.01.011

    Article  CAS  Google Scholar 

  26. Kannan V, Brouwer N, Hanisch U-K, Regen T, Eggen B, Boddeke H (2013) Histone deacetylase inhibitors suppress immune activation in primary mouse microglia. J Neurosci Res 91(9):1133–1142. doi:10.1002/jnr.23221

    Article  CAS  PubMed  Google Scholar 

  27. Davie JR (2003) Inhibition of histone deacetylase activity by butyrate. J Nutr 133(7):2485S–2493S

    CAS  PubMed  Google Scholar 

  28. Kim HJ, Rowe M, Ren M, Hong J-SS, Chen P-SS, Chuang D-MM (2007) Histone deacetylase inhibitors exhibit anti-inflammatory and neuroprotective effects in a rat permanent ischemic model of stroke: multiple mechanisms of action. J Pharmacol Exp Ther 321(3):892–901. doi:10.1124/jpet.107.120188

    Article  CAS  PubMed  Google Scholar 

  29. Murphy SP, Lee RJ, McClean ME, Pemberton HE, Uo T, Morrison RS, Bastian C, Baltan S (2014) MS-275, a class I histone deacetylase inhibitor, protects the p53-deficient mouse against ischemic injury. J Neurochem 129(3):509–515. doi:10.1111/jnc.12498

    Article  CAS  PubMed  Google Scholar 

  30. Fessler EB, Chibane FL, Wang Z, Chuang D-MM (2013) Potential roles of HDAC inhibitors in mitigating ischemia-induced brain damage and facilitating endogenous regeneration and recovery. Curr Pharm Des 19(28):5105–5120

    Article  CAS  PubMed  Google Scholar 

  31. Kim HJ, Leeds P, Chuang DM (2009) The HDAC inhibitor, sodium butyrate, stimulates neurogenesis in the ischemic brain. J Neurochem 110(4):1226–1240. doi:10.1111/j.1471-4159.2009.06212.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Lanzillotta A, Pignataro G, Branca C, Cuomo O, Sarnico I, Benarese M, Annunziato L, Spano P et al (2012) Targeted acetylation of NF-kappaB/RelA and histones by epigenetic drugs reduces post-ischemic brain injury in mice with an extended therapeutic window. Neurobiol Dis 49C:177–189. doi:10.1016/j.nbd.2012.08.018

    Google Scholar 

  33. Peterson C, Laniel M-A (2004) Histones and histone modifications. Current biology : CB 14(14):51. doi:10.1016/j.cub.2004.07.007

    Article  Google Scholar 

  34. Lok KZ, Basta M, Manzanero S, Arumugam TV (2015) Intravenous immunoglobulin (IVIg) dampens neuronal toll-like receptor-mediated responses in ischemia. J Neuroinflammation 12(1):1

    Article  CAS  Google Scholar 

  35. Low PC, Manzanero S, Mohannak N, Narayana VK, Nguyen TH, Kvaskoff D, Brennan FH, Ruitenberg MJ et al (2014) PI3Kδ inhibition reduces TNF secretion and neuroinflammation in a mouse cerebral stroke model. Nat Commun 5

  36. Ferrante RJ, Kubilus JK, Lee J, Ryu H, Beesen A, Zucker B, Smith K, Kowall NW et al (2003) Histone deacetylase inhibition by sodium butyrate chemotherapy ameliorates the neurodegenerative phenotype in Huntington’s disease mice. J Neurosci 23(28):9418–9427

    CAS  PubMed  Google Scholar 

  37. Hu X, Zhang K, Xu C, Chen Z, Jiang H (2014) Anti-inflammatory effect of sodium butyrate preconditioning during myocardial ischemia/reperfusion. Experimental and therapeutic medicine 8(1):229–232

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Langley B, D’Annibale MA, Suh K, Ayoub I, Tolhurst A, Bastan B, Yang L, Ko B et al (2008) Pulse inhibition of histone deacetylases induces complete resistance to oxidative death in cortical neurons without toxicity and reveals a role for cytoplasmic p21waf1/cip1 in cell cycle-independent neuroprotection. J Neurosci 28(1):163–176

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Bocchini V, Mazzolla R, Barluzzi R, Blasi E, Sick P, Kettenmann H (1992) An immortalized cell line expresses properties of activated microglial cells. J Neurosci Res 31(4):616–621

    Article  CAS  PubMed  Google Scholar 

  40. Henn A, Lund S, Hedtjärn M, Schrattenholz A, Pörzgen P, Leist M (2009) The suitability of BV2 cells as alternative model system for primary microglia cultures or for animal experiments examining brain inflammation. ALTEX: Alternatives to animal experimentation 26(2):83–94

    Article  PubMed  Google Scholar 

  41. Huuskonen J, Suuronen T, Nuutinen T, Kyrylenko S, Salminen A (2004) Regulation of microglial inflammatory response by sodium butyrate and short-chain fatty acids. Br J Pharmacol 141(5):874–880. doi:10.1038/sj.bjp.0705682

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Baby N, Li Y, Ling E-A, Lu J, Dheen ST (2014) Runx1t1 (runt-related transcription factor 1; translocated to, 1) epigenetically regulates the proliferation and nitric oxide production of microglia. PLoS One 9(2):e89326

    Article  PubMed Central  PubMed  Google Scholar 

  43. Schindelin J, Rueden CT, Hiner MC, Eliceiri KW (2015) The ImageJ ecosystem: an open platform for biomedical image analysis. Mol Reprod Dev 82(7–8):518–529. doi:10.1002/mrd.22489

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682

    Article  CAS  PubMed  Google Scholar 

  45. Bolte S, Cordelieres F (2006) A guided tour into subcellular colocalization analysis in light microscopy. J Microsc 224(3):213–232

    Article  CAS  PubMed  Google Scholar 

  46. Spandidos A, Wang X, Wang H, Seed B (2010) PrimerBank: a resource of human and mouse PCR primer pairs for gene expression detection and quantification. Nucleic Acids Res 38(suppl 1):D792–D799

    Article  CAS  PubMed  Google Scholar 

  47. Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL (2012) Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC bioinformatics 13(1):1

    Article  Google Scholar 

  48. Couper KN, Blount DG, Riley EM (2008) IL-10: the master regulator of immunity to infection. J Immunol 180(9):5771–5777

    Article  CAS  PubMed  Google Scholar 

  49. Murray PJ (2006) STAT3-mediated anti-inflammatory signalling. Biochem Soc Trans 34(Pt 6):1028–1031

    Article  CAS  PubMed  Google Scholar 

  50. Sleeman JE, Trinkle-Mulcahy L (2014) Nuclear bodies: new insights into assembly/dynamics and disease relevance. Curr Opin Cell Biol 28:76–83. doi:10.1016/j.ceb.2014.03.004

    Article  CAS  PubMed  Google Scholar 

  51. Herrmann A, Sommer U, Pranada AL, Giese B, Küster A, Haan S, Becker W, Heinrich PC et al (2004) STAT3 is enriched in nuclear bodies. J Cell Sci 117(2):339–349. doi:10.1242/jcs.00833

    Article  CAS  PubMed  Google Scholar 

  52. Hutchins AP, Poulain S, Miranda-Saavedra D (2012) Genome-wide analysis of STAT3 binding in vivo predicts effectors of the anti-inflammatory response in macrophages. Blood 119(13):e110–e119. doi:10.1182/blood-2011-09-381483

    Article  CAS  PubMed  Google Scholar 

  53. Qin H, Wilson CA, Lee SJ, Benveniste EN (2006) IFN-β-induced SOCS-1 negatively regulates CD40 gene expression in macrophages and microglia. FASEB J 20(7):985–987. doi:10.1096/fj.05-5493fje

    Article  CAS  PubMed  Google Scholar 

  54. Koshida R, Oishi H, Hamada M, Takahashi S (2015) MafB antagonizes phenotypic alteration induced by GM-CSF in microglia. Biochemical and Biophysical Research Communications 463(1–2):109–115. doi:10.1016/j.bbrc.2015.05.036

    Article  CAS  PubMed  Google Scholar 

  55. Matcovitch-Natan O, Winter DR, Giladi A, Aguilar S, Spinrad A, Sarrazin S, Ben-Yehuda H, David E et al (2016) Microglia development follows a stepwise program to regulate brain homeostasis. Science. doi:10.1126/science.aad8670

    PubMed  Google Scholar 

  56. Zhang Y, Hoppe AD, Swanson JA (2010) Coordination of Fc receptor signaling regulates cellular commitment to phagocytosis. Proc Natl Acad Sci 107(45):19332–19337. doi:10.1073/pnas.1008248107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Yang TAO, Gu J, Kong BIN, Kuang Y, Cheng LIN, Cheng J, Xia XUN, Ma Y et al (2014) Gene expression profiles of patients with cerebral hematoma following spontaneous intracerebral hemorrhage. Mol Med Rep 10(4):1671–1678. doi:10.3892/mmr.2014.2421

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Tseveleki V, Rubio R, Vamvakas S-S, White J, Taoufik E, Petit E, Quackenbush J, Probert L (2010) Comparative gene expression analysis in mouse models for multiple sclerosis, Alzheimer’s disease and stroke for identifying commonly regulated and disease-specific gene changes. Genomics 96(2):82–91. doi:10.1016/j.ygeno.2010.04.004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Karmodiya K, Krebs AR, Oulad-Abdelghani M, Kimura H, Tora L (2012) H3K9 and H3K14 acetylation co-occur at many gene regulatory elements, while H3K14ac marks a subset of inactive inducible promoters in mouse embryonic stem cells. BMC Genomics 13(1):424

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Yarilina A, Park-Min K-H, Antoniv T, Hu X, Ivashkiv L (2008) TNF activates an IRF1-dependent autocrine loop leading to sustained expression of chemokines and STAT1-dependent type I interferon-response genes. Nat Immunol 9(4):378–387. doi:10.1038/ni1576

    Article  CAS  PubMed  Google Scholar 

  61. Block M, Zecca L, Hong J-S (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8(1):57–69. doi:10.1038/nrn2038

    Article  CAS  PubMed  Google Scholar 

  62. Hanisch U-K, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10(11):1387–1394. doi:10.1038/nn1997

    Article  CAS  PubMed  Google Scholar 

  63. Emmanuel LG, Tal S, Jennifer M, Melanie G, Claudia J, Stoyan I, Julie H, Andrew C et al (2012) Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nat Immunol 13(11):1118–1128. doi:10.1038/ni.2419

    Article  Google Scholar 

  64. Lim P, Shannon M, Hardy K (2010) Epigenetic control of inducible gene expression in the immune system. Epigenomics 2(6):775–795. doi:10.2217/epi.10.55

    Article  CAS  PubMed  Google Scholar 

  65. Smale ST, Natoli G (2014) Transcriptional control of inflammatory responses. Cold Spring Harb Perspect Biol 6(11):a016261

    Article  PubMed Central  PubMed  Google Scholar 

  66. Eichhoff G, Brawek B, Garaschuk O (2011) Microglial calcium signal acts as a rapid sensor of single neuron damage in vivo. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1813(5):1014–1024. doi:10.1016/j.bbamcr.2010.10.018

    Article  CAS  Google Scholar 

  67. Dokmanovic M, Clarke C, Marks PA (2007) Histone deacetylase inhibitors: overview and perspectives. Molecular cancer research: MCR 5(10):981–989. doi:10.1158/1541-7786.MCR-07-0324

    Article  CAS  PubMed  Google Scholar 

  68. Montalvo-Ortiz JL, Keegan J, Gallardo C, Gerst N, Tetsuka K, Tucker C, Matsumoto M, Fang D et al (2014) HDAC inhibitors restore the capacity of aged mice to respond to haloperidol through modulation of histone acetylation. Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology 39(6):1469–1478. doi:10.1038/npp.2013.346

    Article  CAS  Google Scholar 

  69. Falkenberg KJ, Johnstone RW (2014) Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat Rev Drug Discov 13(9):673–691. doi:10.1038/nrd4360

    Article  CAS  PubMed  Google Scholar 

  70. Faraco G, Pittelli M, Cavone L, Fossati S, Porcu M, Mascagni P, Fossati G, Moroni F et al (2009) Histone deacetylase (HDAC) inhibitors reduce the glial inflammatory response in vitro and in vivo. Neurobiol Dis 36(2):269–279. doi:10.1016/j.nbd.2009.07.019

    Article  CAS  PubMed  Google Scholar 

  71. Suh H-SS, Choi S, Khattar P, Choi N, Lee SC (2010) Histone deacetylase inhibitors suppress the expression of inflammatory and innate immune response genes in human microglia and astrocytes. Journal of neuroimmune pharmacology: the official journal of the Society on NeuroImmune Pharmacology 5(4):521–532. doi:10.1007/s11481-010-9192-0

    Article  Google Scholar 

  72. Chen PS, Wang CCC, Bortner CD, Peng GSS, Wu X, Pang H, RBB L, Gean PWW et al (2007) Valproic acid and other histone deacetylase inhibitors induce microglial apoptosis and attenuate lipopolysaccharide-induced dopaminergic neurotoxicity. Neuroscience 149(1):203–212. doi:10.1016/j.neuroscience.2007.06.053

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Kaminska B, Mota M, Pizzi M (2016) Signal transduction and epigenetic mechanisms in the control of microglia activation during neuroinflammation. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease 1862(3):339–351

    Article  CAS  Google Scholar 

  74. Xuan A, Long D, Li J, Ji W, Hong L, Zhang M, Zhang W (2012) Neuroprotective effects of valproic acid following transient global ischemia in rats. Life Sci 90(11):463–468

    Article  CAS  PubMed  Google Scholar 

  75. Pereira L, Font-Nieves M, Van den Haute C, Baekelandt V, Planas AM, Pozas E (2015) IL-10 regulates adult neurogenesis by modulating ERK and STAT3 activity. Frontiers in cellular neuroscience 9

  76. Rafehi H, Balcerczyk A, Lunke S, Kaspi A, Ziemann M, Kn H, Okabe J, Khurana I et al (2014) Vascular histone deacetylation by pharmacological HDAC inhibition. Genome Res 24(8):1271–1284. doi:10.1101/gr.168781.113

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Sharma S, Yang B, Xi X, Grotta JC, Aronowski J, Savitz SI (2011) IL-10 directly protects cortical neurons by activating PI-3 kinase and STAT-3 pathways. Brain Res 1373:189–194

    Article  CAS  PubMed  Google Scholar 

  78. Weber-Nordt RM, Riley JK, Greenlund AC, Moore KW, Darnell JE, Schreiber RD (1996) Stat3 recruitment by two distinct ligand-induced, tyrosine-phosphorylated docking sites in the interleukin-10 receptor intracellular domain. J Biol Chem 271(44):27954–27961

    Article  CAS  PubMed  Google Scholar 

  79. Williams L, Bradley L, Smith A, Foxwell B (2004) Signal transducer and activator of transcription 3 is the dominant mediator of the anti-inflammatory effects of IL-10 in human macrophages. J Immunol 172(1):567–576

    Article  CAS  PubMed  Google Scholar 

  80. Sawada M, Suzumura A, Hosoya H, Marunouchi T, Nagatsu T (1999) Interleukin-10 inhibits both production of cytokines and expression of cytokine receptors in microglia. J Neurochem 72(4):1466–1471

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was funded by the NUHS seed fund for basic science research (Grant No. T1-BSRG 2014-02; WBS No. R181-000-166-112).

Authors’ Contributions

RP, graduate student conceived the study, designed and performed experiments, and wrote the manuscript. TVA performed tMCAO and in vivo SB treatment. NG performed in vitro experiments relating to pSTAT3 targets and analyzed data. TVA, NG, and STD provided intellectual contribution and edited the manuscript. STD is the principal investigator of the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Thameem Dheen.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Declarations

Ethics Approval and Consent to Participate

All animal procedures were carried out in accordance with the National University of Singapore Institutional Animal Care and Use committee (IACUC) guidelines (NUS/IACUC/R15-0051). All efforts were made to minimize pain and number of animals used.

Electronic supplementary material

Online resource 1

Table 1: Antibodies. The following table lists the antibodies used in the study and their optimal dilutions and the secondary antibody pairing respective to the experiment. Table 2: Primer sets used for qPCR gene expression analysis. Table 3: Primer sets used for CHIP-qPCR analysis (PDF 135 kb)

Online resource 2

Expression of H3K9ac, pSTAT1, and IL10 in primary microglia subject to SB treatment. a Immunofluorescence staining displayed an upregulation of H3K9ac (red) levels in primary microglia in response to SB treatment. b Immunofluorescence staining displayed an upregulation of pSTAT1 in response to LPS-mediated microglial activation in primary microglial cultures. The pSTAT1 (red) expression was suppressed in the presence of SB treatment. c Immunofluorescence staining displayed an upregulation of IL10 (red) in response to SB treatment. Primary microglial cells stained with CD11b (green) used as microglial marker. DAPI (blue) staining nuclei; n = 3. Scale bars (white) denote 20 μm. (PDF 344 kb)

Online resource 3

Enrichment of total H3 indicates nucleosome density, from cell cultures consisting of untreated control, 1 h, and 6 h LPS treatment, with and without pre-treatment with SB (2.5 mM) analyzed by chromatin immunoprecipitation assay. Primers flank promoter approx. 100 bp regions near and downstream of transcription start sites (TSS) of gene promoters Il10 (a), Fcrlb (b), Tnf-α (c), Il6 (d), Nos2 (e), and Stat1 (f), respectively. Data represented as mean + SEM; n = 3 cultures; One-way ANOVA, Tukey’s post hoc test; *p value <0.05, **<0.01; ***<0.001. (PDF 211 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patnala, R., Arumugam, T.V., Gupta, N. et al. HDAC Inhibitor Sodium Butyrate-Mediated Epigenetic Regulation Enhances Neuroprotective Function of Microglia During Ischemic Stroke. Mol Neurobiol 54, 6391–6411 (2017). https://doi.org/10.1007/s12035-016-0149-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0149-z

Keywords

Navigation