Skip to main content

Advertisement

Log in

Analysis of the Impact of CD200 on Phagocytosis

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

One factor that impacts on microglial activation is the interaction between the ubiquitously expressed CD200 and CD200R, which is expressed only on microglia in the brain. Decreased signalling through CD200R, when CD200 expression is reduced, results in microglial activation and may, at least in part, explain the increased cell activity that is observed with age, in models of Alzheimer’s and Parkinson’s disease as well as in the human diseases. There is evidence of increased microglial activation in CD200-deficient mice, and isolated microglia prepared from these mice are more reactive to inflammatory stimuli like Toll-like receptor 2 and 4 agonists, and interferon-γ. Here, we examined the impact of CD200 deficiency on amyloid-β (Aβ)-induced changes in microglia and report, perhaps unexpectedly, that the effect of Aβ was attenuated in microglia prepared from CD200-deficient mice. The evidence indicates that this is a consequence of increased phagocytosis, associated with increased lysosomal activity in CD200-deficient microglia. The data suggest that mTOR-related signalling is decreased in these cells and that inhibiting mTOR by rapamycin increases phagocytosis. Thus, while the findings to date have emphasized the anti-inflammatory effects of CD200-CD200R interaction, the present evidence indicates a previously unreported impact on lysosomal function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lyons A, Downer EJ, Crotty S, Nolan YM, Mills KH, Lynch MA (2007) CD200 ligand receptor interaction modulates microglial activation in vivo and in vitro: a role for IL-4. J Neurosci 27:8309–8313. doi:10.1523/JNEUROSCI.1781-07.2007

    Article  CAS  PubMed  Google Scholar 

  2. Lyons A et al (2009) Decreased neuronal CD200 expression in IL-4-deficient mice results in increased neuroinflammation in response to lipopolysaccharide. Brain Behav Immun 23:1020–1027. doi:10.1016/j.bbi.2009.05.060

    Article  CAS  PubMed  Google Scholar 

  3. Cox FF, Carney D, Miller AM, Lynch MA (2012) CD200 fusion protein decreases microglial activation in the hippocampus of aged rats. Brain Behav Immun 26:789–796. doi:10.1016/j.bbi.2011.10.004

    Article  CAS  PubMed  Google Scholar 

  4. Miller AM, Deighan BF, Henrich-Noack P, Nolan Y, Lynch MA (2011) Analysis of the impact of CD200 on neurodegenerative diseases, neurodegenerative diseases—processes, prevention, protection and monitoring. In: Chang RC-C (ed), ISBN: 978–953–307-485-6, InTech

  5. Koning N, Swaab DF, Hoek RM, Huitinga I (2009) Distribution of the immune inhibitory molecules CD200 and CD200R in the normal central nervous system and multiple sclerosis lesions suggests neuron-glia and glia-glia interactions. J Neuropathol Exp Neurol 68:159–167. doi:10.1097/NEN.0b013e3181964113

    Article  CAS  PubMed  Google Scholar 

  6. Tan MS et al (2013) NLRP3 polymorphisms are associated with late-onset Alzheimer’s disease in Han Chinese. J Neuroimmunol 265:91–95. doi:10.1016/j.jneuroim.2013.10.002

    Article  CAS  PubMed  Google Scholar 

  7. Walker DG, Dalsing-Hernandez JE, Campbell NA, Lue LF (2009) Decreased expression of CD200 and CD200 receptor in Alzheimer’s disease: a potential mechanism leading to chronic inflammation. Exp Neurol 215:5–19. doi:10.1016/j.expneurol.2008.09.003

    Article  CAS  PubMed  Google Scholar 

  8. Walker, D.G., L.F. Lue (2013) Understanding the neurobiology of CD200 and the CD200 receptor: a therapeutic target for controlling inflammation in human brains? Future Neurol 8. doi:10.2217/fnl.13.14

  9. Zhang S et al (2011) CD200-CD200R dysfunction exacerbates microglial activation and dopaminergic neurodegeneration in a rat model of Parkinson’s disease. J Neuroinflammation 8:154. doi:10.1186/1742-2094-8-154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Denieffe S, Kelly RJ, McDonald C, Lyons A, Lynch MA (2013) Classical activation of microglia in CD200-deficient mice is a consequence of blood brain barrier permeability and infiltration of peripheral cells. Brain Behavior and Immunity 34:86–97. doi:10.1016/J.Bbi.2013.07.174

    Article  CAS  Google Scholar 

  11. Costello DA, Lyons A, Denieffe S, Browne TC, Cox FF, Lynch MA (2011) Long term potentiation is impaired in membrane glycoprotein CD200-deficient mice: a role for Toll-like receptor activation. J Biol Chem 286:34722–34732. doi:10.1074/jbc.M111.280826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Noonan J, Tanveer R, Klompas A, Gowran A, McKiernan J, Campbell VA (2010) Endocannabinoids prevent beta-amyloid-mediated lysosomal destabilization in cultured neurons. J Biol Chem 285:38543–38554. doi:10.1074/jbc.M110.162040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Halle A et al (2008) The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat Immunol 9:857–865. doi:10.1038/ni.1636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Costello DA, Carney DG, Lynch MA (2015) Alpha-TLR2 antibody attenuates the Abeta-mediated inflammatory response in microglia through enhanced expression of SIGIRR. Brain Behav Immun 46:70–79. doi:10.1016/j.bbi.2015.01.005

    Article  CAS  PubMed  Google Scholar 

  15. Jana M, Palencia CA, Pahan K (2008) Fibrillar amyloid-beta peptides activate microglia via TLR2: implications for Alzheimer’s disease. J Immunol 181:7254–7262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Reed-Geaghan EG, Savage JC, Hise AG, Landreth GE (2009) CD14 and toll-like receptors 2 and 4 are required for fibrillar A{beta}-stimulated microglial activation. J Neurosci 29:11982–11992. doi:10.1523/JNEUROSCI.3158-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Man SM, Kanneganti TD (2015) Regulation of inflammasome activation. Immunol Rev 265:6–21. doi:10.1111/imr.12296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fu R, Shen Q, Xu P, Luo JJ, Tang Y (2014) Phagocytosis of microglia in the central nervous system diseases. Mol Neurobiol 49:1422–1434. doi:10.1007/s12035-013-8620-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sokolowski JD, Mandell JW (2011) Phagocytic clearance in neurodegeneration. Am J Pathol 178:1416–1428. doi:10.1016/j.ajpath.2010.12.051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu S et al (2012) TLR2 is a primary receptor for Alzheimer’s amyloid beta peptide to trigger neuroinflammatory activation. J Immunol 188:1098–1107. doi:10.4049/jimmunol.1101121

    Article  CAS  PubMed  Google Scholar 

  21. Song M et al (2011) TLR4 mutation reduces microglial activation, increases Abeta deposits and exacerbates cognitive deficits in a mouse model of Alzheimer’s disease. J Neuroinflammation 8:92. doi:10.1186/1742-2094-8-92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hayakawa K et al (2016) CD200 restrains macrophage attack on oligodendrocyte precursors via toll-like receptor 4 downregulation. J Cereb Blood Flow Metab 36:781–793. doi:10.1177/0271678X15606148

    Article  CAS  PubMed  Google Scholar 

  23. Varnum MM, Kiyota T, Ingraham KL, Ikezu S, Ikezu T (2015) The anti-inflammatory glycoprotein, CD200, restores neurogenesis and enhances amyloid phagocytosis in a mouse model of Alzheimer’s disease. Neurobiol Aging 36:2995–3007. doi:10.1016/j.neurobiolaging.2015.07.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Huynh KK, Eskelinen EL, Scott CC, Malevanets A, Saftig P, Grinstein S (2007) LAMP proteins are required for fusion of lysosomes with phagosomes. EMBO J 26:313–324. doi:10.1038/sj.emboj.7601511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Thomson AW, Turnquist HR, Raimondi G (2009) Immunoregulatory functions of mTOR inhibition. Nat Rev Immunol 9:324–337. doi:10.1038/nri2546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lyons A, Downer EJ, Costello DA, Murphy N, Lynch MA (2012) Dok2 mediates the CD200Fc attenuation of Abeta-induced changes in glia. J Neuroinflammation 9:107. doi:10.1186/1742-2094-9-107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge funding from the Science Foundation Ireland to MAL (07/IN.1/B949 and 11/PI/1014). AL was supported by a post-doctoral fellowship from the Health Research Board Ireland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina A. Lynch.

Ethics declarations

Animal experimentation was performed under a licence granted by the Minister for Health and Children (Ireland) under the Cruelty to Animals Act 1876 and the European Community Directive, 86/609/EEC, and in accordance with local ethical guidelines.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyons, A., Minogue, A.M., Jones, R.S. et al. Analysis of the Impact of CD200 on Phagocytosis. Mol Neurobiol 54, 5730–5739 (2017). https://doi.org/10.1007/s12035-016-0223-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0223-6

Keywords

Navigation