Skip to main content
Log in

Clearance of Damaged Mitochondria Through PINK1 Stabilization by JNK and ERK MAPK Signaling in Chlorpyrifos-Treated Neuroblastoma Cells

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Mitochondrial quality control and clearance of damaged mitochondria through mitophagy are important cellular activities. Studies have shown that PTEN-induced putative protein kinase 1 (PINK1) and Parkin play central roles in triggering mitophagy; however, little is known regarding the mechanism by which PINK1 modulates mitophagy in response to reactive oxygen species (ROS)-induced stress. In this study, chlorpyrifos (CPF)-induced ROS caused mitochondrial damage and subsequent engulfing of mitochondria in double-membrane autophagic vesicles, indicating that clearance of damaged mitochondria is due to mitophagy. CPF treatment resulted in PINK1 stabilization on the outer mitochondrial membrane and subsequently increased Parkin recruitment from the cytosol to the abnormal mitochondria. We found that PINK1 physically interacts with Parkin in the mitochondria of CPF-treated cells. Furthermore, a knockdown of PINK1 strongly inhibited the LC3-II protein level by blocking Parkin recruitment. This indicates that CPF-induced mitophagy is due to PINK1 stabilization in mitochondria. We observed that PINK1 stabilization was selectively regulated by ROS-mediated c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase 1/2 (ERK1/2) signaling activation but not p38 signaling. In the mitochondria of CPF-exposed cells, pretreatment with specific inhibitors of JNK and ERK1/2 significantly decreased PINK1 stabilization and Parkin recruitment and blocked the LC3-II protein level. Specifically, JNK and ERK1/2 inhibition also dramatically blocked the interaction between PINK1 and Parkin. Our results demonstrated that PINK1 regulation plays a critical role in CPF-induced mitophagy. The simple interpretation of these results is that JNK and ERK1/2 signaling regulates PINK1/Parkin-dependent mitophagy in the mitochondria of CPF-treated cells. Overall, this study proposes a novel molecular regulatory mechanism of PINK1 stabilization under CPF exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wallace DC (2005) A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet 39:359–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gorell JM, Johonson CC, Rybicki BA, Peterson EL, Richardson RJ (1998) The risk of Parkinson’s disease with exposure to pesticides, farming, well water, and rural living. Neurology 50:1346–1350

    Article  CAS  PubMed  Google Scholar 

  3. Huang X, Moir RD, Tanzi RE, Bush AI, Rogers JT (2004) Redox-active metals, oxidative stress, and Alzheimer’s disease pathology. Ann N Y Acad Sci 1012:153–163

    Article  CAS  PubMed  Google Scholar 

  4. Oh-hashi K, Maruyama W, Yi H, Takahashi T, Naoi M, Isobe K (1999) Mitogen-activated protein kinase pathway mediates peroxynitrite-induced apoptosis in human dopaminergic neuroblastoma SH-SY5Y cells. Biochem Biophys Res Commun 263:504–509

    Article  CAS  PubMed  Google Scholar 

  5. Gomez-Santos C, Ferrer I, Reiriz J, Vinals F, Barrachina M, Ambrosio S (2002) MPP+ increases alpha-synuclein expression and ERK/MAP-kinase phosphorylation in human neuroblastoma SH-SY5Y cells. Brain Res 935:32–39

    Article  CAS  PubMed  Google Scholar 

  6. Cheng Y, Qiu F, Tashiro S, Onodera S, Ikejima T (2008) ERK and JNK mediate TNF alpha-induced p53 activation in apoptotic and autophagic L929 cell death. Biochem Biophys Res Commun 376:483–488

    Article  CAS  PubMed  Google Scholar 

  7. Sridharan S, Jain K, Basu A (2011) Regulation of autophagy by kinases. Cancers (Basel) 3:2630–2654

    Article  CAS  Google Scholar 

  8. Dagda RK, Zhu J, Kulich SM, Chu CT (2008) Mitochondrially localized ERK2 regulates mitophagy and autophagic cell stress: implications for Parkinson’s disease. Autophagy 4:770–782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mao K, Klionsky DJ (2011) MAPKs regulate mitophagy in Saccharomyces cerevisiae. Autophagy 7:1564–1565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787–795

    Article  CAS  PubMed  Google Scholar 

  11. Goldman SJ, Taylor R, Zhang Y, Jin S (2010) Autophagy and the degradation of mitochondria. Mitochondrion 10:309–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kim I, Rodriguez-Enriquez S, Lemasters JJ (2007) Selective degradation of mitochondria by mitophagy. Arch Biochem Biophys 462:245–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lemasters JJ (2005) Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging. Rejuvenation Res 8:3–5

    Article  CAS  PubMed  Google Scholar 

  14. Youle RJ, Narendra DP (2011) Mechanisms of mitophagy. Nat Rev Mol Cell Biol 12:9–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Narendra D, Tanaka A, Suen DF, Youle RJ (2008) Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol 183:795–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Narendra DP, Jin SM, Tanaka A, Suen DF, Gautier CA, Shen J, Cookson MR, Youle RJ (2010) PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol 8, e1000298

    Article  PubMed  PubMed Central  Google Scholar 

  17. Vives-Bauza C, Zhou C, Huang Y, Cui M, de Vries RL, Kim J, May J, Tocilescu MA et al (2010) PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc Natl Acad Sci U S A 107:378–383

    Article  CAS  PubMed  Google Scholar 

  18. Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, Yokochi M, Mizuno Y et al (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392:605–608

    Article  CAS  PubMed  Google Scholar 

  19. Valente EM, Abou-Sleiman PM, Caputo V, Muqit MM, Harvey K, Gispert S, Ali Z, Del Turco D et al (2004) Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science 304:1158–1160

    Article  CAS  PubMed  Google Scholar 

  20. Büeler H (2009) Impaired mitochondrial dynamics and function in the pathogenesis of Parkinson’s disease. Exp Neurol 218:235–246

    Article  PubMed  Google Scholar 

  21. Li H, Guo M (2009) Protein degradation in Parkinson disease revisited: it’s complex. J Clin Invest 119:442–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Clark IE, Dodson MW, Jiang C, Cao JH, Huh JR, Seol JH, Yoo SJ, Hay BA et al (2006) Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 441:1162–1166

    Article  CAS  PubMed  Google Scholar 

  23. Park J, Lee SB, Lee S, Kim Y, Song S, Kim S, Bae E, Kim J et al (2006) Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature 441:1157–1161

    Article  CAS  PubMed  Google Scholar 

  24. Yang Y, Gehrke S, Imai Y, Huang Z, Ouyang Y, Wang JW, Yang L, Beal MF et al (2006) Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin. Proc Natl Acad Sci U S A 103:10793–10798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Meissner C, Lorenz H, Weihofen A, Selkoe DJ, Lemberg MK (2011) The mitochondrial intramembrane protease PARL cleaves human Pink1 to regulate Pink1 trafficking. J Neurochem 117:856–867

    Article  CAS  PubMed  Google Scholar 

  26. Greene AW, Grenier K, Aguileta MA, Muise S, Farazifard R, Haque ME, McBride HM, Park DS et al (2012) Mitochondrial processing peptidase regulates PINK1 processing, import and Parkin recruitment. EMBO Rep 13:378–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kane LA, Lazarou M, Fogel AI, Li Y, Yamano K, Sarraf SA, Banerjee S, Youle RJ (2014) PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. J Cell Biol 205:143–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Geisler S, Holmström KM, Skujat D, Fiesel FC, Rothfuss OC, Kahle PJ, Springer W (2010) PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol 12:119–131

    Article  CAS  PubMed  Google Scholar 

  29. Matsuda N, Sato S, Shiba K, Okatsu K, Saisho K, Gautier CA, Sou YS, Saiki S et al (2010) PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J Cell Biol 189:211–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lee JY, Nagano Y, Taylor JP, Lim KL, Yao TP (2010) Disease-causing mutations in parkin impair mitochondrial ubiquitination, aggregation, and HDAC6-dependent mitophagy. J Cell Biol 189:671–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dai H, Deng Y, Zhang J, Han H, Zhao M, Li Y, Zhang C, Tian J et al (2015) PINK1/Parkin-mediated mitophagy alleviates chlorpyrifos-induced apoptosis in SH-SY5Y cells. Toxicology 334:72–80

    Article  CAS  PubMed  Google Scholar 

  32. Gegg ME, Cooper JM, Schapira AH, Taanman JW (2009) Silencing of PINK1 expression affects mitochondrial DNA and oxidative phosphorylation in dopaminergic cells. PLoS ONE 4, e4756

    Article  PubMed  PubMed Central  Google Scholar 

  33. Fennessey CM, Ivie SE, McClain MS (2012) Coenzyme depletion by members of the aerolysin family of pore-forming toxins leads to diminished ATP levels and cell death. Mol Biosyst 8:2097–2105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hefti M, Albert I, Luginbuehl V (2012) Phenytoin reduces 5-aminolevulinic acid-induced protoporphyrin IX accumulation in malignant glioma cells. J Neurooncol 108:443–450

    Article  CAS  PubMed  Google Scholar 

  35. Nair R, Shaha C (2003) Diethylstilbestrol induces rat spermatogenic cell apoptosis in vivo through increased expression of spermatogenic cell Fas/FasL system. J Biol Chem 278:6470–6481

    Article  CAS  PubMed  Google Scholar 

  36. Hwang J, Sato H, Tang Y, Matsuda D, Maquat LE (2010) UPF1 association with the cap-binding protein, CBP80, promotes nonsense-mediated mRNA decay at two distinct steps. Mol Cell 39:396–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Park JH, Lee JE, Shin IC, Koh HC (2013) Autophagy regulates chlorpyrifos-induced apoptosis in SH-SY5Y cells. Toxicol Appl Pharmacol 268:55–67

    Article  CAS  PubMed  Google Scholar 

  38. Taylor ER, Hurrell F, Shannon RJ, Lin TK, Hirst J, Murphy MP (2003) Reversible glutathionylation of complex I increases mitochondrial superoxide formation. J Biol Chem 278:19603–19610

    Article  CAS  PubMed  Google Scholar 

  39. Liu L, Feng D, Chen G, Chen M, Zheng Q, Song P, Ma Q, Zhu C et al (2012) Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat Cell Biol 14:177–185

    Article  PubMed  Google Scholar 

  40. Garcia-Garcia A, Anandhan A, Burns M, Chen H, Zhou Y, Franco R (2013) Impairment of Atg5-dependent autophagic flux promotes paraquat- and MPP+-induced apoptosis but not rotenone or 6-hydroxydopamine toxicity. Toxicol Sci 136:166–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Amaravadi RK, Yu D, Lum JJ, Bui T, Christophorou MA, Evan GI, Thomas-Tikhonenko A, Thompson CB (2007) Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. J Clin Invest 117:326–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ki YW, Lee JE, Park JH, Shin IC, Koh HC (2012) Reactive oxygen species and mitogen-activated protein kinase induce apoptotic death of SH-SY5Y cells. Toxicol Lett 211:18–28

    Article  CAS  PubMed  Google Scholar 

  43. Horan MP, Pichaud N, Ballard JW (2012) Review: quantifying mitochondrial dysfunction in complex diseases of aging. J Gerontol A Biol Sci Med Sci 67:1022–1035

    Article  PubMed  Google Scholar 

  44. Karbowski M, Neutzner A (2012) Neurodegeneration as a consequence of failed mitochondrial maintenance. Acta Neuropathol 123:157–171

    Article  CAS  PubMed  Google Scholar 

  45. Nunnari J, Suomalainen A (2012) Mitochondria: in sickness and in health. Cell 148:1145–1159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gottlieb RA, Carreira RS (2010) Autophagy in health and disease. 5. Mitophagy as a way of life. Am J Physiol Cell Physiol 299:C203–C210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jin SM, Lazarou M, Wang C, Kane LA, Narendra DP, Youle RJ (2010) Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. J Cell Biol 191:933–942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jin SM, Youle RJ (2012) PINK1- and Parkin-mediated mitophagy at a glance. J Cell Sci 125:795–799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lee JE, Park JH, Shin IC, Koh HC (2012) Reactive oxygen species regulated mitochondria-mediated apoptosis in PC12 cells exposed to chlorpyrifos. Toxicol Appl Pharmacol 263:148–162

    Article  CAS  PubMed  Google Scholar 

  50. Scherz-Shouval R, Shvets E, Fass E, Shorer H, Gil L, Elazar Z (2007) Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J 26:1749–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hamanaka RB, Chandel NS (2010) Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes. Trends Biochem Sci 35:505–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Scherz-Shouval R, Elazar Z (2011) Regulation of autophagy by ROS: physiology and pathology. Trends Biochem Sci 36:30–38

    Article  CAS  PubMed  Google Scholar 

  53. Donati A, Cavallini G, Paradiso C, Vittorini S, Pollera M, Gori Z, Bergamini E (2001) Age-related changes in the autophagic proteolysis of rat isolated liver cells: effects of antiaging dietary restrictions. J Gerontol A Biol Sci Med Sci 56:B375–B383

    Article  CAS  PubMed  Google Scholar 

  54. Underwood BR, Imarisio S, Fleming A, Rose C, Krishna G, Heard P, Quick M, Korolchuk VI et al (2010) Antioxidants can inhibit basal autophagy and enhance neurodegeneration in models of polyglutamine disease. Hum Mol Genet 19:3413–3429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Thyagarajan A, Jedinak A, Nguyen H, Terry C, Baldridge LA, Jiang J, Sliva D (2010) Triterpenes from Ganoderma Lucidum induce autophagy in colon cancer through the inhibition of p38 mitogen-activated kinase (p38 MAPK). Nutr Cancer 62:630–640

    Article  CAS  PubMed  Google Scholar 

  56. Colosetti P, Puissant A, Robert G, Luciano F, Jacquel A, Gounon P, Cassuto JP, Auberger P (2009) Autophagy is an important event for megakaryocytic differentiation of the chronic myelogenous leukemia K562 cell line. Autophagy 5:1092–1098

    Article  CAS  PubMed  Google Scholar 

  57. Menon MB, Kotlyarov A, Gaestel M (2011) SB202190-induced cell type-specific vacuole formation and defective autophagy do not depend on p38 MAP kinase inhibition. PLoS ONE 6, e23054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chaanine AH, Jeong D, Liang L, Chemaly ER, Fish K, Gordon RE, Hajjar RJ (2012) JNK modulates FOXO3a for the expression of the mitochondrial death and mitophagy marker BNIP3 in pathological hypertrophy and in heart failure. Cell Death Dis 3:265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wei Y, Pattingre S, Sinha S, Bassik M, Levine B (2008) JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Mol Cell 30:678–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sivaprasad U, Basu A (2008) Inhibition of ERK attenuates autophagy and potentiates tumour necrosis factor-alpha-induced cell death in MCF-7 cells. J Cell Mol Med 12:1265–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ki YW, Park JH, Lee JE, Shin IC, Koh HC (2013) JNK and p38 MAPK regulate oxidative stress and the inflammatory response in chlorpyrifos-induced apoptosis. Toxicol Lett 218:235–245

    Article  CAS  PubMed  Google Scholar 

  62. Um JW, Stichel-Gunkel C, Lübbert H, Lee G, Chung KC (2009) Molecular interaction between parkin and PINK1 in mammalian neuronal cells. Mol Cell Neurosci 40:421–432

    Article  CAS  PubMed  Google Scholar 

  63. Kondapalli C, Kazlauskaite A, Zhang N, Woodroof HI, Campbell DG, Gourlay R, Burchell L, Walden H et al (2012) PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65. Open Biol 2:120080

    Article  PubMed  PubMed Central  Google Scholar 

  64. Allen GF, Toth R, James J, Ganley IG (2013) Loss of iron triggers PINK1/Parkin-independent mitophagy. EMBO Rep 14:1127–1135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ashrafi G, Schlehe JS, LaVoie MJ, Schwarz TL (2014) Mitophagy of damaged mitochondria occurs locally in distal neuronal axons and requires PINK1 and Parkin. J Cell Biol 206:655–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Korea Science and Engineering Foundation (NRF-2008-0062287) through the Medical Research Center at Hanyang University College of Medicine, Republic of Korea, and by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2010-0024012, NRF-2015R1D1A1A01059531).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jungwook Hwang or Hyun Chul Koh.

Ethics declarations

Conflict of Interest

The authors have no conflicts of interest to declare.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 55 kb)

ESM 2

(DOCX 64 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, J.H., Ko, J., Park, Y.S. et al. Clearance of Damaged Mitochondria Through PINK1 Stabilization by JNK and ERK MAPK Signaling in Chlorpyrifos-Treated Neuroblastoma Cells. Mol Neurobiol 54, 1844–1857 (2017). https://doi.org/10.1007/s12035-016-9753-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-9753-1

Keywords

Navigation