Skip to main content

Advertisement

Log in

The Interaction of UDP-N-Acetylglucosamine 2-Epimerase/N-Acetylmannosamine Kinase (GNE) and Alpha-Actinin 2 Is Altered in GNE Myopathy M743T Mutant

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) is the gene mutated in GNE myopathy. In an attempt to elucidate GNE functions that could account for the muscle pathophysiology of this disorder, the interaction of GNE with α-actinins has been investigated. Surface plasmon resonance and microscale thermophoresis analysis revealed, that in vitro, GNE interacts with α-actinin 2, and that this interaction has a 10-fold higher affinity compared to the GNE-α-actinin 1 interaction. Further, GNE carrying the M743T mutation, the most frequent mutation in GNE myopathy, has a 10-fold lower binding affinity to α-actinin 2 than intact GNE. It is possible that this decrease eventually affects the interaction, thus causing functional imbalance of this complex in skeletal muscle that could contribute to the myopathy phenotype. In vivo, using bi-molecular fluorescent complementation, we show the specific binding of the two proteins inside the intact cell, in a unique interaction pattern between the two partners. This interaction is disrupted in the absence of the C-terminal calmodulin-like domain of α-actinin 2, which is altered in α-actinin 1. Moreover, the binding of GNE to α-actinin 2 prevents additional binding of α-actinin 1 but not vice versa. These results suggest that the interaction between GNE and α-actinin 1 and α-actinin 2 occur at different sites in the α-actinin molecules and that for α-actinin 2 the interaction site is located at the C-terminus of the protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Argov Z, Yarom R (1984) Rimmed vacuole myopathy sparing the quadriceps. A unique disorder in Iranian Jews. J Neurol Sci 64:33–43

    Article  CAS  PubMed  Google Scholar 

  2. Huizing M, Carrillo-Carrasco N, Malicdan MCV, Noguchi S, Gahl WA, Mitrani-Rosenbaum S, Argov Z, Nishino I (2014) GNE myopathy: new name and new mutation nomenclature. Neuromuscul Disord 24:387–389

    Article  PubMed  PubMed Central  Google Scholar 

  3. Argov Z, Mitrani-Rosenbaum S. (2010) Hereditary inclusion body myopathies. In: Karpati G, Hilton Jones D, Bushby C, Griggs R (eds) Disorders of Voluntary Muscle, 8th edn.Cambridge University Press, New York, p 492–498

  4. Nonaka I, Sunohara N, Ishiura S, Satoyoshi E (1981) Familial distal myopathy with rimmed vacuole and lamellar (myeloid) body formation. J Neurol Sci 51:141–155

    Article  CAS  PubMed  Google Scholar 

  5. Hinderlich S, Stäsche R, Weise C, Effertz K, Lucka L, Moormann P, Reutter W (1997) A bifunctional enzyme catalyzes the first two steps in N-acetylneuraminic acid biosynthesis of rat liver. Molecular cloning and functional expression of UDP-N-acetyl-glucosamine 2-epimerase/N-acetylmannosamine kinase. J Biol Chem 272:24319–24324

    Article  PubMed  Google Scholar 

  6. Effertz K, Hinderlich S, Reutter S (1999) Selective loss of either the epimerase or kinase activity of UDP-N- acetylglucosamine 2-epimerase/N-acetylmannosamine kinase due to site- directed mutagenesis based on sequence alignments. J Biol Chem 274:28771–28778

    Article  CAS  PubMed  Google Scholar 

  7. Eisenberg I, Avidan N, Potikha T, Hochner H, Chen M, Olender T, Barash M, Shemesh M, Sadeh M, Grabov-Nardini G, Shmilevich I, Friedmann A, Karpati G, Bradley WG, Baumbach L, Lancet D, Ben Asher E, Beckmann JS, Argov Z, Mitrani-Rosenbaum S (2001) The UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase gene is mutated in recessive hereditary inclusion body myopathy. Nat Genet 29:83–87

    Article  CAS  PubMed  Google Scholar 

  8. Argov Z, Eisenberg I, Grabov-NardiniG SM, Wirguin I, Soffer D, Mitrani-Rosenbaum S (2003) Hereditary inclusion body myopathy: the Middle Eastern genetic cluster. Neurology 60:1519–1523

    Article  CAS  PubMed  Google Scholar 

  9. Kayashima T, Matsuo H, Satoh A, Ohta T, Yoshiura K, Matsumoto N, Nakane Y, Niikawa N, Kishino T (2002) Nonaka myopathy is caused by mutations in the UDP-N-acetylglucosamine-2-epimerase/N-acetylmannosamine kinase gene (GNE). J Hum Genet 47:77–79

    Article  CAS  PubMed  Google Scholar 

  10. Nishino I, Noguchi S, Murayama K, Driss A, Sugie K, Oya Y, Nagata T, Chida K, Takahashi T, Takusa Y, Ohi T, Nishimiya J, Sunohara N, Ciafaloni E, Kawai M, Aoki M, Nonaka I (2002) Distal myopathy with rimmed vacuoles is allelic to hereditary inclusion body myopathy. Neurology 59:1689–1693

    Article  CAS  PubMed  Google Scholar 

  11. Celeste FV, Vilboux T, Ciccone C, de Dios JK, Malicdan MCV, Leoyklang P, McKew JC, Gahl WA, Carrillo-Carrasco N, Huizing M (2014) Mutation update for GNE gene variants associated with GNE myopathy. Hum Mut 35:915–926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Keppler OT, Hinderlich S, Langner J, Schwartz-Albiez R, Reutter W, Pawlita M (1999) UDP-GlcNAc 2-epimerase: a regulator of cell surface sialylation. Science 284:1372–1376

    Article  CAS  PubMed  Google Scholar 

  13. Stäsche R, Hinderlich S, Weise C, Effertz K, Lucka L, Moormann P, Reutter W (1997) A bifunctional enzyme catalyzes the first two steps in N-acetylneuraminic acid biosynthesis of rat liver. Molecular cloning and functional expression of UDP-N-acetyl-glucosamine 2-epimerase/N-acetylmannosamine kinase. J Biol Chem 272:24319–24324

    Article  PubMed  Google Scholar 

  14. Chen X, Varki A (2010) Advances in the biology and chemistry of sialic acids. ACS Chem Biol 5:163–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Varki A, Gagneux P (2012) Multifarious roles of sialic acids in immunity. Ann N Y Acad Sci 1253:16–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hinderlich S, Salama I, Eisenberg I, Potikha T, Mantey LR, Yarema KJ, Horstkorte R, Argov Z, Sadeh M, Reutter W, Mitrani-Rosenbaum S (2004) The homozygous M712T mutation of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase results in reduced enzyme activities but not in altered overall cellular sialylation in hereditary inclusion body myopathy. FEBS Lett 566:105–109

    Article  CAS  PubMed  Google Scholar 

  17. Noguchi S, Keira Y, Murayama K, Ogawa M, Fujita M, Kawahara OGY, Imazawa M, Goto YI, Hayashi YK, Nonaka I, Nishino I (2004) Reduction of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase activity and sialylation in distal myopathy with rimmed vacuoles. J Biol Chem 279:11402–11407

    Article  CAS  PubMed  Google Scholar 

  18. Saito F, Tomimitsu H, Arai K, Nakai S, Kanda T, Shimizu T, Mizusawa H, Matsumura K (2004) A Japanese patient with distal myopathy with rimmed vacuoles: missense mutations in the epimerase domain of the UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) gene accompanied by hyposialylation of skeletal muscle glycoproteins. Neuromuscul Disord 14:158–161

    Article  CAS  PubMed  Google Scholar 

  19. Salama I, Hinderlich S, Shlomai Z, Eisenberg I, Krause S, Yarema K, Argov Z, Lochmuller H, Reutter W, Dabby R, Sadeh M, Ben-Bassat H, Mitrani-Rosenbaum S (2005) No overall hyposialylation in hereditary inclusion body myopathy myoblasts carrying the homozygous M712T GNE mutation. Biochem Biophys Res Commun 328:221–226

    Article  CAS  PubMed  Google Scholar 

  20. Broccolini A, Gidaro T, Tasca G, Morosetti R, Rodolico C, Ricci E, Mirabella M (2010) Analysis of NCAM helps identify unusual phenotypes of hereditary inclusion-body myopathy. Neurology 75:265–272

    Article  CAS  PubMed  Google Scholar 

  21. Krause S, Hinderlich S, Amsili S, Horstkorte R, Wiendl H, Argov Z, Mitrani-Rosenbaum S, Lochmüller H (2005) Localization of UDP-GlcNAc 2-epimerase/ManAc kinase (GNE) in the Golgi complex and the nucleus of mammalian cells. Exp Cell Res 304:365–379

    Article  CAS  PubMed  Google Scholar 

  22. Krause S, Aleo A, Hinderlich S, Merlini L, Tournev I, Walter MC, Argov Z, Mitrani-Rosenbaum S, Lochmüller H (2007) GNE protein expression and subcellular distribution are unaltered in HIBM. Neurology 69:655–659

    Article  CAS  PubMed  Google Scholar 

  23. Amsili S, Zer H, Hinderlich S, Krause S, Becker-Cohen M, MacArthur DG, North KN, Mitrani-Rosenbaum S (2008) UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) binds to alpha-actinin 1: novel pathways in skeletal muscle? PLoS One 3, e2477

    Article  PubMed  PubMed Central  Google Scholar 

  24. Weidemann W, Stelzl U, Lisewski U, Bork K, Wanker EE, Hinderlich S, Horstkorte R (2006) The collapsin response mediator protein 1 (CRMP-1) and the promyelocytic leukemia zinc finger protein (PLZF) bind to UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE), the key enzyme of sialic acid biosynthesis. FEBS Lett 580:6649–6654

    Article  CAS  PubMed  Google Scholar 

  25. Seidel SAI, Dijkman PM, Lea WA, Van Den Bogaart G, Jerabek-Willemsen M, Lazic A, Joseph JS, Srinivasan P, Baaske P, Simeonov A, Katritch I, Duhr S, Melo FA, Ladbury JE, Schreiber G, Watts A, Braun D (2013) Microscale thermophoresis quantifies biomolecular interactions under previously challenging conditions. Methods 59(3):301–315

    Article  CAS  PubMed  Google Scholar 

  26. Millake DB, Blanchard AD, Patel B, Critchley DR (1989) The cDNA sequence of a human placental α-actinin. Nucleic Acids Res 17:6725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kelly DF, Taylor DW, Bakolitsa C, Bobkov A, Bankston L, Liddington RC, Taylor K (2006) Structure of the alpha-actinin-vinculin head domain complex determined by cryo-electron microscopy. J Mol Biol 357:562–573

    Article  CAS  PubMed  Google Scholar 

  28. Möller H, Böhrsch V, Lucka L, Hackenberger CPR, Hinderlich S (2011) Efficient metabolic oligosaccharide engineering of glycoproteins by UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) knock-down. Mol Biosyst 7:2245–2251

    Article  PubMed  Google Scholar 

  29. Weidemann W, Reinhardt A, Thate A, Horstkorte R (2011) Biochemical characterization of the M712T-mutation of the UDP-N-acetylglucosamine 2-epimerase/N-acetyl-mannosaminekinase in hereditary inclusion body myopathy. Neuromuscul Disord 21:824–831

    Article  PubMed  Google Scholar 

  30. Critchley D, Blanchard A, Ohanian V (1989) The structure and function of alpha-actinin. J Muscle Res Cell Motil 10:280–289

    Article  PubMed  Google Scholar 

  31. Otey C, Carpen O (2004) Alpha-actinin revisited: a fresh look at an old player. Cell Motil Cytoskeleton 58:104–111

    Article  CAS  PubMed  Google Scholar 

  32. de Almeida Ribeiro E, Pinotsis N, Ghisleni A, Salmazo A, Konarev PV, Kostan J, Sjöblom B, Schreiner C, Polyansky AA, Gkougkoulia EA, Holt MR, Aachmann FL, Zagrovi B, Bordignon E, Pirker KF, Svergun DI, Gautel M, Djinovi-Carugo K, Shemyakin M, Ovchinnikov Y (2014) The structure and regulation of human muscle and alpha-actinin. Cell 159:1447–1460

    Article  Google Scholar 

  33. Lek M, North KN (2010) Are biological sensors modulated by their structural scaffolds? The role of the structural muscle proteins a-actinin-2 and a-actinin-3 as modulators of biological sensors. FEBS Lett 584:2974–2980

    Article  CAS  PubMed  Google Scholar 

  34. Murphy AC, Young PW (2015) The actinin family of actin cross-linking proteins—a genetic perspective. Cell Biosci 5(49):1–9

    Google Scholar 

  35. Sjöblom B, Salmazo A, Djinović-Carugo K (2008) α-Actinin structure and regulation. Cell Mol Life Sci 65:2688–2701

    Article  PubMed  Google Scholar 

  36. Ghaderi D, Strauss HM, Reinke S, Cirak S, Reutter W, Lucka L, Hinderlich S (2007) Evidence for dynamic interplay of different oligomeric states of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase by biophysical methods. J Mol Biol 369:746–758

    Article  CAS  PubMed  Google Scholar 

  37. Jecklin MC, Schauer S, Dumelin CE, Zenobi R (2009) Label-free determination of protein–ligand binding constants using mass spectrometry and validation using surface plasmon resonance and isothermal titration calorimetry. J Mol Recognit 22:319–329

    Article  CAS  PubMed  Google Scholar 

  38. Kerppola TK (2008) Bimolecular fluorescence complementation (BiFC) analysis as a probe of protein interactions in living cells. Annu Rev Biophys 37:465–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Izaguirre G, Aguirre L, Hu YP, Lee HY, Schlaepfer DD, Aneskievich BJ, Haimovich B (2001) The cytoskeletal/non-muscle isoform of alpha-actinin is phosphorylated on its actin-binding domain by the focal adhesion kinase. J Biol Chem 276:28676–28685

    Article  CAS  PubMed  Google Scholar 

  40. Mitra SK, Hanson DA, Schlaepfer DD (2005) Focal adhesion kinase: in command and control of cell motility. Nat Rev Mol Cell Biol 6:56–68

    Article  CAS  PubMed  Google Scholar 

  41. Reinhard M, Zumbrunn J, Jaquemar D, Kuhn M, Walter U, Trueb B (1999) An alpha-actinin binding site of zyxin is essential for subcellular zyxin localization and alpha-actinin recruitment. J Biol Chem 274:13410–13418

    Article  CAS  PubMed  Google Scholar 

  42. Hirata H, Tatsumi H, Sokabe M (2008) Mechanical forces facilitate actin polymerization at focal adhesions in a zyxin-dependent manner. J Cell Sci 121:2795–2804

    Article  CAS  PubMed  Google Scholar 

  43. Bois PRJ, O’Hara BP, Nietlispach D, Kirkpatrick J, Izard T (2006) The vinculin binding sites of talin and α-actinin are sufficient to activate vinculin. J Biol Chem 281:7228–7236

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

These studies have been supported by a grant from the German-Israeli Foundation for Scientific Research and Development (GIF 1100-53.2/2010). We would like to thank Dr Naomi Melamed-Book from the Bio Imaging Unit at the Hebrew University of Jerusalem for help in confocal microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stella Mitrani-Rosenbaum.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harazi, A., Becker-Cohen, M., Zer, H. et al. The Interaction of UDP-N-Acetylglucosamine 2-Epimerase/N-Acetylmannosamine Kinase (GNE) and Alpha-Actinin 2 Is Altered in GNE Myopathy M743T Mutant. Mol Neurobiol 54, 2928–2938 (2017). https://doi.org/10.1007/s12035-016-9862-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-9862-x

Keywords

Navigation