Skip to main content

Advertisement

Log in

Neural Stem Cell Transplantation Promotes Functional Recovery from Traumatic Brain Injury via Brain Derived Neurotrophic Factor-Mediated Neuroplasticity

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Traumatic brain injury (TBI) induces cognitive impairments, motor and behavioral deficits. Previous evidences have suggested that neural stem cell (NSC) transplantation could facilitate functional recovery from brain insults, but their underlying mechanisms remains to be elucidated. Here, we established TBI model by an electromagnetic-controlled cortical impact device in the rats. Then, 5 μl NSCs (5.0 × 105/μl), derived from green fluorescent protein (GFP) transgenic mouse, was transplanted into the traumatic brain regions of rats at 24 h after injury. After differentiation of the NSCs was determined using immunohistochemistry, neurological severity scores (NSS) and rotarod test were conducted to detect the neurological behavior. Western blot and RT-PCR as well as ELASA were used to evaluate the expression of synaptophysin and brain-derived neurotrophic factor (BDNF). In order to elucidate the role of BDNF on the neural recovery after NSC transplantation, BDNF knockdown in NSC was performed and transplanted into the rats with TBI, and potential mechanism for BDNF knockdown in the NSC was analyzed using microassay analysis. Meanwhile, BDNF antibody blockade was conducted to further confirm the effect of BDNF on neural activity. As a result, an increasing neurological function improvement was seen in NSC transplanted rats, which was associated with the upregulation of synaptophysin and BDNF expression. Moreover, transplantation of BDNF knockdown NSCs and BDNF antibody block reduced not only the level of synaptophysin but also exacerbated neurological function deficits. Microassay analysis showed that 14 genes such as Wnt and Gsk3-β were downregulated after BDNF knockdown. The present data therefore showed that BDNF-mediated neuroplasticity underlie the mechanism of NSC transplantation for the treatment of TBI in adult rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Tashlykov V, Katz Y, Gazit V, Zohar O, Schreiber S, Pick CG (2007) Apoptotic changes in the cortex and hippocampus following minimal brain trauma in mice. Brain Res 1130:197–205

    Article  CAS  PubMed  Google Scholar 

  2. Shin MS, Park HK, Kim TW, Ji ES, Lee JM, Choi HS, Kim MY, Kim YP (2016) Neuroprotective effects of bone marrow stromal cell transplantation in combination with treadmill exercise following traumatic brain injury. Int Neurourol J 20(Suppl 1):S49–S56

    Article  PubMed  PubMed Central  Google Scholar 

  3. Chen J, Qi JG, Zhang W, Zhou X, Wang TH (2007) Acupuncture induced changes in the expression of NGF, BDNF and NT-3 in L6 dorsal root ganglion after removal of adjacent ganglia in cat. Neurosci Res 59:399–405

    Article  CAS  PubMed  Google Scholar 

  4. Khaksari M, Soltani Z, Shahrokhi N, Moshtaghi G, Asadikaram G (2011) The role of estrogen and progesterone, administered alone and in combination, in modulating cytokine concentration following traumatic brain injury. J Physiol 89(1):31–40

    CAS  Google Scholar 

  5. Solomon D, Kim B, Scultetus A et al (2011) The effect of rFVIIa on pro- and anti-inflamatory cytokines in serum and cerebrospinal fluid in a swine model of traumatic brain injury. Cytokine 54(1):20–23

    Article  CAS  PubMed  Google Scholar 

  6. Maller JJ (2014) Neuroplasticity in normal and brain injured patients: potential relevance of ear wiggling locus of control and cortical projections. Med Hypotheses 83(6):838–843

    Article  PubMed  Google Scholar 

  7. Furman JL, Sompol P, Kraner SD, Pleiss MM, Putman EJ, Dunkerson J, Mohmmad Abdul H, Roberts KN et al (2016) Blockade of astrocytic calcineurin/NFAT signaling helps to normalize hippocampal synaptic function and plasticity in a rat model of traumatic brain injury. J Neurosci 36(5):1502–1515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Eriksson PS, Perfilieva E, Bjork ET et al (1998) Neurogenesis in the adult human hippocampus. Nat Med 4(11):1313–1317

    Article  CAS  PubMed  Google Scholar 

  9. Palmer TD, Takahashi J, Gage FH (1997) The adult rat hippocampus contains primordial neural stem cells. Mol Cell Neurosci 8:389–404

    Article  CAS  PubMed  Google Scholar 

  10. Pincus DW, Goodman RR, Fraser RA, Goldman SA (1998) Neural stem and progenitor cells: a strategy for gene theropy and brain repair. Neurosurgery 42(4):858–868

    Article  CAS  PubMed  Google Scholar 

  11. Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255:1707–1710

    Article  CAS  PubMed  Google Scholar 

  12. Wang TT, Jing AH, Luo XY et al (2006) Neural stem cells: isolation and differentiation into cholinergic neurons. Neuroreport 17(13):1433–1436

    Article  PubMed  Google Scholar 

  13. Wei P, Liu J, Zhou HL et al (2007) Effects of engrafted neural stem cells derived from GFP transgenic mice in Parkinson’s disease rats. Neurosci Lett 419:49–54

    Article  CAS  PubMed  Google Scholar 

  14. Chaturvedi RK, Shukla S, Seth K, Agrawal AK (2008) Zuckerkandl’s organ improves long-term survival and function of neural stem cell derived dopaminergic neurons in parkinsonian rats. Exp Neurol 210(2):608–623

    Article  CAS  PubMed  Google Scholar 

  15. Zhou Z, Chen H, Zhang K (2003) Protective effect of nerve growth factor on neurons after traumatic brain injury. Basic Clinic Physiol Pharmacol 14(3):217–224

    CAS  Google Scholar 

  16. Cheng X, Jin G, Zhang X, Tian M, Zou L (2011) Stage-dependent STAT3 activation is involved in the differentiation of rat hippocampus neural stem cells. Neurosci Lett 493(1–2):18–23

    Article  CAS  PubMed  Google Scholar 

  17. Li XL, Zhang W, Zhou X, Wang TH (2007) Temporal changes in the expression of some neurotrophins in spinal cord transected adult rats. Neuropeptides 41(3):135–143

    Article  CAS  PubMed  Google Scholar 

  18. Qin DX, Zou XL, Luo W et al (2006) Expression of some neurotrophins in the spinal motoneurons after cord hemisection in adult rats. Neurosci Lett 410(3):222–227

    Article  CAS  PubMed  Google Scholar 

  19. Zhang HT, Gao ZY, Chen YZ, Wang TH (2008) Temporal changes in the level of neurotrophins in the spinal cord and associated precentral gyrus following spinal hemisection in adult Rhesus monkeys. J Chemical Neuroanatomy 36(3–4):138–143

    Article  CAS  Google Scholar 

  20. Zhang HT, Li LY, Zou XL et al (2007) The immunohistochemical distribution of NGF, BDNF, NT-3, NT-4 in the brains of adult Rhesus monkeys. J Histochem Cytochem 55(1):1–19

    Article  PubMed  Google Scholar 

  21. Feeney DM, Boyeson MG, Linn RT, Murray HM, Dail WG (1981) Responses to cortical injury: methodology and local effects of contusions in the rat. Brain Res 211:67–77

    Article  CAS  PubMed  Google Scholar 

  22. Martinez SA, Rubio FJ, Navarro B, Bueno C, Villa A (2001) Human neural stem and progenitor cell: in vitro and in vivo properties, and potential for gene therapy and cell replacement in the CNS. Curr Gene Ther 1:279–299

    Article  Google Scholar 

  23. Widera D, Heimann P, Zander C et al (2011) Schwann cells can be reprogrammed to multipotency by culture. Stem Cells Dev 20(12):2053–2064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang L, Kisaalita WS (2011) Administration of BDNF/ginsenosides combination enhanced synaptic development in human neural stem cells. J Neurosci Methods 194(2):274–282

    Article  CAS  PubMed  Google Scholar 

  25. Li Y, Zhang WM, Wang TH (2011) Optimal location and time for neural stem cell transplantation into transected rat spinal cord. Cell Mol Neurobiol 31(3):407–414

    Article  PubMed  Google Scholar 

  26. Sun S, Chen G, Xu M, Qiao Y, Zheng S (2013) Differentiation and migration of bone marrow mesenchymal stem cells transplanted through the spleen in rats with portal hypertension. PLoS One 8:e83523

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ba YC, Dai P, Zhou HL, Liu J, Wang TH (2010) Spatiotemporal changes of NGF, BDNF and NT-3 in the developing spinal cords of embryonic chicken. Neurochem Res 35(2):273–278

    Article  CAS  PubMed  Google Scholar 

  28. Yang M, Wei X, Li J, Heinel LA, Rosenwasser R, Iacovitti L (2010) Changes in host blood factors and brain glia accompanying the functional recovery after systemic administration of bone marrow stem cells in ischemic stroke rats. Cell Transplant 19(9):1073–1084

    Article  PubMed  Google Scholar 

  29. Zeng X, Zeng YS, Ma YH et al (2011) Bone marrow mesenchymal stem cells in a three dimensional gelatin sponge scaffold attenuate inflammation, promote angiogenesis and reduce cavity formation in experimental spinal cord injury. Cell Transplant 20(11–12):1881–1899

    Article  PubMed  Google Scholar 

  30. Christophersen NS, Meijer X, Jørgensen JR et al (2006) Induction of dopaminergic neurons from growth factor expanded neural stem/progenitor cell cultures derived from human first trimester forebrain. Brain Res Bull 70(4–6):457–466

    Article  CAS  PubMed  Google Scholar 

  31. Conti L, Reitano E, Cattaneo E (2006) Neural stem cell systems: diversities and properties after transplantation in animal models of diseases. Brain Pathol 16(2):143–154

    Article  CAS  PubMed  Google Scholar 

  32. Kim SU (2007) Genetically engineered human neural stem cells for brain repair in neurological diseases. Brain and Development 29(4):193–201

    Article  CAS  PubMed  Google Scholar 

  33. Zhang Z, Jin D, Yang Z, Shen B, Liu M (2011) Effects of 17β-estradiol pre-treated adult neural stem cells on neuronal differentiation and neurological recovery in rats with cerebral ischemia. Brain Inj 25(2):227–236

    Article  PubMed  Google Scholar 

  34. Hasegawa K, Chang YW, Li H et al (2005) Embryonic radial glia bridge spinal cord lesions and promote functional recovery following spinal cord injury. Exp Neurol 193(2):394–410

    Article  CAS  PubMed  Google Scholar 

  35. Yan J, Welsh AM, Bora SH, Snyder EY, Koliatsos VE (2004) Differentiation and tropic/trophic effects of exogenous neural precursors in the adult spinal cord. J Comp Neurol 480(1):101–114

    Article  PubMed  Google Scholar 

  36. Masliah E, Terry RD, Alford M, DeTeresa R (1990) Quantitative immunohistochemistry of synaptophysin in human neocortex: an alternative method to estimate density of presynaptic terminals in paraffin sections. J Histochem Cytochem 38(6):837–844

    Article  CAS  PubMed  Google Scholar 

  37. Mathew BJ, Kitazawa M, Martinez CH et al (2009) Neural stem cells improve cognition via BDNF in a transgenic model of Alzheimer disease. Proc Natl Acad Sci U S A 106(32):13594–13599

    Article  Google Scholar 

  38. Yang HJ, Yang XY, Ba YC, Pang JX, Meng BL, Lin N, Li LY, Dong XY et al (2009) Role of Neurotrophin 3 in spinal neuroplasticity in rats subjected to cord transection. Growth Factors 27(4):237–246

    Article  PubMed  Google Scholar 

  39. Rong R, Men BL, Hu LQ, You C, Wang TH (2011) Role of BDNF in neuroplasticity of the spinal cord in cats subjected to partial dorsal ganglionectomy. Growth Factors 29(6):263–270

    Article  CAS  PubMed  Google Scholar 

  40. Ramage R, Jiang L, Kim YD, Shaw K, Park JL, Kim HJ (1999) Comparative studies of Nsc and Fmoc as N(alpha)-protecting groups for SPPS. J Pept Sci 5(4):195–200

    Article  CAS  PubMed  Google Scholar 

  41. Chen T, Liu W, Chao X et al (2011) Salvianolic acid B attenuates brain damage and inflammation after traumatic brain injury in mice. Brain Res Bull 84(2):163–168

    Article  CAS  PubMed  Google Scholar 

  42. Lévêque X, Cozzi E, Naveilhan P, Neveu I (2011) Intracerebral xenotransplantation: recent findings and perspectives for local immunosuppression. Curr Opin Organ Transplant 16(2):190–194

    Article  PubMed  Google Scholar 

  43. Xu CJ, Xu L, Huang LD et al (2011) Combined NgR vaccination and neural stem cell transplantation promote functional recovery after spinal cord injury in adult rats. Neuropathol Appl Neurobiol 37(2):135–155

    Article  CAS  PubMed  Google Scholar 

  44. Fu KY, Dai LG, Chiu IM, Chen JR, Hsu SH (2011) Sciatic nerve regeneration by microporous nerve conduits seeded with glial cell line-derived neurotrophic factor or brain-derived neurotrophic factor gene transfected neural stem cells. Artif 35(4):363–372

    CAS  Google Scholar 

  45. Yang JW, Ru J, Ma W, Gao Y, Liang Z, Liu J, Guo JH, Li LY (2015) BDNF promotes the growth of human neurons through crosstalk with the Wnt/β-catenin signaling pathway via GSK-3β. Neuropeptides 54:35–46

    Article  CAS  PubMed  Google Scholar 

  46. Zhang C, Li C, Chen S, Li Z, Jia X, Wang K, Bao J, Liang Y et al (2016) Berberine protects against 6-OHDA-induced neurotoxicity in PC12 cells and zebrafish through hormetic mechanisms involving PI3K/AKT/Bcl-2 and Nrf2/HO-1 pathways. Redox Biol 11:1–11

    Article  PubMed  PubMed Central  Google Scholar 

  47. Beliaeva IS, Nikitina LS, Chernigovskaia EV, Glazova MV (2013) However, recent study reported that inhibition of Bcl-2 stimulates neuronal stem proliferation in organotypic cultures of mice hippocampus. Ross Fiziol Zh Im I M Sechenova 99(8):976–983

    PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by a grant from the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (CN) (No. 2014BAI01B10) and supported by the Program of Innovative Research Team in Science and Technology in University of Yunnan (IRTSTYN), together with program Innovative Research Team in Science and Technology in Yunnan Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting-Hua Wang.

Ethics declarations

Competing Interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, LL., Hu, Y., Zhang, P. et al. Neural Stem Cell Transplantation Promotes Functional Recovery from Traumatic Brain Injury via Brain Derived Neurotrophic Factor-Mediated Neuroplasticity. Mol Neurobiol 55, 2696–2711 (2018). https://doi.org/10.1007/s12035-017-0551-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-017-0551-1

Keywords

Navigation