Skip to main content
Log in

Human papillomavirus E6 and E7 oncoproteins as risk factors for tumorigenesis

  • Review
  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Human papillomavirus (HPV) is small, double-stranded DNA virus that infects mucosal and cutaneous epithelial tissue. HPV is sexually transmitted and the viral DNA replicates extrachromosomally. The virus is non-enveloped and has an icosahedral capsid. There are approximately 118 types of HPV, which are characterized as high-risk or lowrisk types. High-risk HPVs cause malignant transformation while the low-risk ones cause benign warts and lesions. The expression of E6 and E7 is normally controlled during the normal viral life cycle when viral DNA replicates extrachromosomally. HPV E6 and E7 oncoproteins are overexpressed when the viral genome integrates into the host DNA. Deregulated overexpression of E6 and E7 oncoproteins can cause several changes in cellular pathways and functions leading to malignant transformation of cells and tumorigenesis. In this review, we focus on several cellular mechanisms and pathways that are altered in the presence of E6 and E7, the target proteins of E6 and E7 inside the host cell and how they contribute to the development of the transformed phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AAK1:

adaptor protein 2 associated kinase 1

ADA3:

adenosine deaminase 3

BRCA1:

breast cancer-associated protein 1

CAL:

cystic fibrosis receptor-associated ligand

CDK:

cyclin-dependent kinase

CDKI:

cyclin-dependent kinase inhibitor

CBP:

CREB-binding protein

Dlg:

disc large

E6AP:

E6-associated protein

E6TP1:

E6 targeted protein 1

ERBB3:

epidermal growth factor receptor-related protein tyrosine kinase B3

EZH2:

enhancer of zeste homologue 2

FADD:

fas-associated death domain

GIPC:

GAIP-interacting protein c-terminus

HDAC:

histone deacetylase

HPV:

human papillomavirus

hTERT:

human telomerase reverse transcriptase

IAP2:

inhibitor of apoptosis 2

IFN:

interferon

IL:

interleukin

Jak:

janus kinase

LCR:

long control region

PDZ:

PSD95/Dlg/ZO1

IRF:

interferon regulatory factor

MAGI:

membrane-associated guanylate kinase

MCM7:

minichromosome maintenance 7

MDM2:

mediator of DNA damage 2

MMP:

matrix metalloprotease

MUPP1:

multiple PDZ domain-containing protein 1

NF-κB:

nuclear factor kappa B

OSCC:

oesophageal squamous cell carcinoma

PATJ:

PALS-1 associated tight junction protein

PI3K:

phosphatidylinsotol-3-OH kinase

PP2A:

protein phosphatase 2A

PSD95:

post-synaptic density protein 95

PTPN1:

protein tyrosine phosphatase N1

Rb:

retinoblastoma

Scrib:

scribble

STAT1:

signal transducer and activator of transcription

Tyk2:

tyrosine kinase 2

USF:

upstream sequence factor

TNFR1:

tumour necrosis factor receptor 1

TSSK2:

testis-specific serine/threonine kinase 2

References

  • Arroyo M, Bagchi S and Raychaudhuri P 1993 Association of the human papillomavirus type 16 E7 protein with the S-phase E2F-cyclin complex; Mol. Cell. Biol. 13 6537–6546

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baldwin A, Li W, Grace M, Pearlberg J, Harlow E, Munger K and Grueneberg D A 2008 Kinase requirements in human cells: II. Genetic interaction screens identify kinase requirements following HPV16 E7 expression in cancer cells; Proc. Natl. Acad. Sci. USA 105 16478–16483

    CAS  PubMed  Google Scholar 

  • Band V, Dalal S, Delmolino L and Androphy E J 1993 Enhanced degradation of p53 protein in HPV-6 and BPV-1 E6-immortalized human mammary epithelial cells; EMBO J. 12 1847–1852

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barnard P and McMillan N A 1999 The human papillomavirus E7 oncoprotein abrogates signaling mediated by interferon alpha; Virology 259 305–313

    CAS  PubMed  Google Scholar 

  • Blasco M A and Hahn W C 2003 Evolving views of telomerase and cancer; Trends Cell Biol. 13 289–294

    CAS  PubMed  Google Scholar 

  • Boyer S N, Wazer D E and Band V 1996 E7 protein of human papilloma virus 16 induces the degradation of retinoblastoma protein through ubiquitin-proteasome pathway; Cancer Res. 56 4620–4624

    CAS  PubMed  Google Scholar 

  • Brehm A, Nielsen S J, Miska E A, McCance D J, Reid J L, Bannister A J and Kouzarides T 1999 The E7 oncoprotein associates with Mi2 and histone deacetylase activity to promote cell growth; EMBO J. 18 2449–2458

    CAS  PubMed  PubMed Central  Google Scholar 

  • Caberg JH, Hubert PM, Begon DY, Herfs MF, Roncarati PJ, Boniver JJ et al 2008 Silencing of E7 oncogene restores functional Ecadherin expression in human papillomavirus 16-transformed keratinocytes; Carcinogenesis 29 1441–1447

    CAS  PubMed  Google Scholar 

  • Chang F, Syrjanen S, Tervahauta A, Kurvinen K, Wang L and Syrjanen K 1994 Frequent mutations of p53 gene in oesophageal squamous cell carcinomas with and without human papillomavirus (HPV) involvement suggest the dominant role of environmental carcinogens in oesophageal carcinogenesis; Br. J. Cancer 70 346–351

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chang F, Syrjanen S, Wang L, Shen Q and Syrjanen K 1997 p53 overexpression and human papillomavirus (HPV) infection in oesophageal squamous cell carcinomas derived from a highincidence area in China; Anticancer Res. 17 709–715

    CAS  PubMed  Google Scholar 

  • Chen J J, Reid C E, Band V and Androphy E J 1995 Interaction of papillomavirus E6 oncoproteins with a putative calciumbinding protein; Science 269 529–531

    CAS  PubMed  Google Scholar 

  • Chen B, Yin H and Dhurandhar N 1994 Detection of human papillomavirus DNA in esophageal squamous cell carcinomas by the polymerase chain reaction using general consensus primers; Hum. Pathol. 25 920–923

    CAS  PubMed  Google Scholar 

  • Cheng Y W, Lee H, Shiau M Y, Wu T C, Huang T T and Chang Y H 2008 Human papillomavirus type 16/18 upregulates the expression of interleukin-6 and antiapoptotic Mcl-1 in non-small cell lung cancer; Clin. Cancer Res. 14 4705–4712

    CAS  PubMed  Google Scholar 

  • Cheng Y W, Wu M F, Wang J, Yeh K T, Goan Y G, Chiou H L, Chen C Y and Lee H 2007 Human papillomavirus 16/18 E6 oncoprotein is expressed in lung cancer and related with p53 inactivation; Cancer Res. 67 10686–10693

    CAS  PubMed  Google Scholar 

  • Cooper K, Taylor L and Govind S 1995 Human papillomavirus DNA in oesophageal carcinomas in South Africa; J. Pathol. 175 273–277

    CAS  PubMed  Google Scholar 

  • Cooper B, Brimer N and Vande Pol S B 2007 Human papillomavirus E6 regulates the cytoskeleton dynamics of keratinocytes through targeted degradation of p53; J. Virol. 81 12675–12679

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crook T, Tidy J A and Vousden KH 1991 Degradation of p53 can be targeted by HPV E6 sequences distinct from those required for p53 binding and trans-activation; Cell 67 547–556

    CAS  PubMed  Google Scholar 

  • de Villiers E M, Gunst K, Stein H and Scherubl H 2004 Esophageal squamous cell cancer in patients with head and neck cancer: prevalence of human papillomavirus DNA sequences; Int. J. Cancer 109 253–258

    PubMed  Google Scholar 

  • Dianzani C, Bucci M, Pierangeli A, Calvieri S and Degener A M 1998 Association of human papillomavirus type 11 with carcinoma of the penis; Urology 51 1046–1058

    CAS  PubMed  Google Scholar 

  • Dreilich M, Bergqvist M, Moberg M, Brattstrom D, Gustavsson I, Bergstrom S, Wanders A, Hesselius P, Wagenius G and Gyllensten U 2006 High-risk human papilloma virus (HPV) and survival in patients with esophageal carcinoma: a pilot study; BMC Cancer 6 94

    PubMed  PubMed Central  Google Scholar 

  • Duensing S and Munger K 2002 The human papillomavirus type 16 E6 and E7 oncoproteins independently induce numerical and structural chromosome instability; Cancer Res. 62 7075–7082

    CAS  PubMed  Google Scholar 

  • Duerksen-Hughes P J, Yang J and Schwartz S B 1999 HPV 16 E6 blocks TNF-mediated apoptosis in mouse fibroblast LM cells; Virology 264 55–65

    CAS  PubMed  Google Scholar 

  • Dyson N, Howley P M, Munger K and Harlow E 1989 The human papillomavirus 16 E7 oncoprotein is able to bind to the retinoblastoma gene product; Science 17 934–937

    Google Scholar 

  • Dyson N 1998 The regulation of E2F by pRb-family proteins; Genes Dev. 12 2245–2262

    CAS  PubMed  Google Scholar 

  • Eichten A, Westfall M, Pietenpol J A and Münger K 2002 Stabilization and functional impairment of the tumor suppressor p53 by the human papillomavirus type 16 E7 oncoprotein; Virology 295 74–85

    CAS  PubMed  Google Scholar 

  • Elston R C, Napthine S and Doorbar J 1998 The identification of a conserved binding motif within human papillomavirus type 16 E6 binding peptides, E6AP and E6BP; J. Gen. Virol. 79 371–374

    CAS  PubMed  Google Scholar 

  • Evander M, Frazer I H, Payne E, Qi Y M, Hengst K and McMillan N A 1997 Identification of the alpha6 integrin as a candidate receptor for papillomaviruses; J. Virol. 71 2449–2456

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fakhry C and Gillison M L 2006 Clinical implications of human papillomavirus in head and neck cancers; J. Clin. Oncol. 24 2606–2611

    PubMed  PubMed Central  Google Scholar 

  • Favre-Bonvin A, Reynaud C, Kretz-Remy C and Jalinot P 2005 Human papillomavirus type 18 E6 protein binds the cellular PDZ protein TIP-2/GIPC, which is involved in transforming growth factor beta signaling and triggers its degradation by the proteasome; J. Virol. 79 4229–4237

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferris R L, Martinez I, Sirianni N, Wang J, López-Albaitero A, Gollin S M, Johnson J T and Khan S 2005 Human papillomavirus-16 associated squamous cell carcinoma of the head and neck (SCCHN): a natural disease model provides insights into viral carcinogenesis; Eur. J. Cancer 41 807–815

    CAS  PubMed  Google Scholar 

  • Filippova M, Song H, Connolly J L, Dermody T S and Duerksen-Hughes P J 2002 The human papillomavirus 16 E6 protein binds to tumor necrosis factor (TNF) R1 and protects cells from TNF-induced apoptosis; J. Biol. Chem. 277 21730–21739

    CAS  PubMed  Google Scholar 

  • Finzer P, Aguilar-Lemarroy A and Rösl F 2002 The role of human papillomavirus oncoproteins E6 and E7 in apoptosis; Cancer Lett. 188 15–24

    CAS  PubMed  Google Scholar 

  • Foster S A, Demers G W, Etscheid B G and Galloway D A 1994 The ability of human papillomavirus E6 proteins to target p53 for degradation in vivo correlates with their ability to abrogate actinomycin D-induced growth arrest; J. Virol. 68 5698–5705

    CAS  PubMed  PubMed Central  Google Scholar 

  • Funk J O, Waga S, Harry J B, Espling E, Stillman B and Galloway D A 1997 Inhibition of CDK activity and PCNA-dependent DNA replication by p21 is blocked by interaction with HPV16 E7 oncoprotein; Genes Dev. 11 2090–2100

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Q, Singh L, Kumar A, Srinivasan S, Wazer D E and Band V 2001 Human papilloma virus type 16 E6-induced degradation of E6TP1 correlates with its ability to immortalize human mammary epithelial cells; J. Virol. 75 4459–4466

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Q, Srinivasan S, Boyer S N, Wazer D E and Band V 1999 The E6 oncoproteins of high-risk papillomaviruses bind to a novel putative GAP protein, E6TP1, and target it for degradation; Mol. Cell Biol. 19 733–734

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gardiol D, Galizzi S and Banks L 2002 Mutational analysis of the discs large tumour suppressor identifies domains responsible for human papillomavirus type 18 E6-mediated degradation; J. Gen. Virol. 83 283–289

    CAS  PubMed  Google Scholar 

  • Gardiol D, Kuhne C, Glaunsinger B, Lee S S, Javier R and Banks L 1999 Oncogenic human papillomavirus E6 proteins target the discs large tumour suppressor for proteasome-mediated degradation; Oncogene 18 5487–5496

    CAS  PubMed  Google Scholar 

  • Garnett T O, Filippova M and Duerksen-Hughes P J 2006 Accelerated degradation of FADD and procaspase 8 in cells expressing human papilloma virus 16, E6 impairs TRAIL-mediated apoptosis; Cell Death Differ. 13 1915–1926

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gewin L and Galloway D A 2001 E box-dependent activation of telomerase by human papillomavirus type 16 E6 does not require induction of c-myc; J. Virol. 75 7198–7201

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gewin L, Myers H, Kiyono T and Galloway D A 2004 Identification of a novel telomerase repressor that interacts with the human papillomavirus type-16 E6/E6-AP complex; Genes Dev. 18 2269–2282

    CAS  PubMed  PubMed Central  Google Scholar 

  • Glaunsinger B A, Lee S S, Thomas M, Banks L and Javier R 2000 Interactions of the PDZ-protein MAGI-1 with adenovirus E4-ORF1 and high-risk papillomavirus E6 oncoproteins; Oncogene 19 5270–5280

    CAS  PubMed  PubMed Central  Google Scholar 

  • Handa K, Yugawa T, Narisawa-Saito M, Ohno S, Fujita M and Kiyono T 2007 E6AP-dependent degradation of DLG4/PSD95 by high-risk human papillomavirus type 18 E6 protein; J. Virol. 81 1379–1389

    CAS  PubMed  Google Scholar 

  • Havre P A, Yuan J, Hedrick L, Cho K R and Glazer P M 1995 p53 inactivation by HPV16 E6 results in increased mutagenesis in human cells; Cancer Res. 55 4420–4424

    CAS  PubMed  Google Scholar 

  • Hawley-Nelson P, Vousden K H, Hubbert N L, Lowy D R and Schiller J T 1989 HPV16 E6 and E7 proteins cooperate to immortalize human foreskin keratinocytes; EMBO J. 8 3905–3910

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hebner C, Beglin M and Laimins L A 2007 Human papillomavirus E6 proteins mediate resistance to interferon-induced growth arrest through inhibition of p53 acetylation; J. Virol. 81 12740–12747

    CAS  PubMed  PubMed Central  Google Scholar 

  • Holland D, Hoppe-Seyler K, Schuller B, Lohrey C, Maroldt J, Durst M and Hoppe-Seyler F 2008 Activation of the enhancer of zeste homologue 2 gene by the human papillomavirus e7 oncoprotein; Cancer Res. 68 9964–9972

    CAS  PubMed  Google Scholar 

  • Huang S M and McCance D J 2002 Down regulation of the interleukin-8 promoter by human papillomavirus type 16 E6 and E7 through effects on CREB binding protein/p300 and P/CAF; J. Virol. 76 8710–8721

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huh K W, DemAsi J, Ogawa H, Nakatani Y, Howley P M and Munger K 2005 Association of human papillomavirus type 16 E7 oncoprotein with the 600-kDa retinoblastoma proteinassociated factor, p600; Proc. Natl. Acad. Sci. USA 102 11492–11497

    CAS  PubMed  Google Scholar 

  • Inagaki Y, Tsunokawa Y, Takebe N, Nawa H, Nakanishi S, Terada M and Sugimura T 1988 Nucleotide sequences of cDNAs for human papilloma virus type 18 transcripts in HeLa cells; J. Virol. 62 1640–1646

    CAS  PubMed  PubMed Central  Google Scholar 

  • James M A, Lee J H and Klingelhutz AJ 2006 Human papillomavirus type 16 E6 activates NF-kappaB, induces cIAP-2 expression, and protects against apoptosis in a PDZ binding motif-dependent manner; J. Virol. 80 5301–5307

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jelen F, Oleksy A, Smietana K and Otlewski J 2003 PDZ domains — common players in the cell signaling; Acta Biochim. Pol. 50 985–1017

    CAS  PubMed  Google Scholar 

  • Jeon S and Lambert P F 1995 Integration of human papilloma virus type 16 DNA into the human genome leads to increased stability of E6 and E7 mRNAs: implications for cervical carcinogenesis; Proc. Natl. Acad. Sci. USA 92 1654–1658

    CAS  PubMed  Google Scholar 

  • Jeong K W, Kim H Z, Kim S, Kim Y S and Choe J 2007 Human papillomavirus type 16 E6 protein interacts with cystic fibrosis transmembrane regulator-associated ligand and promotes E6-associated protein-mediated ubiquitination and proteasomal degradation; Oncogene 26 487–499

    CAS  PubMed  Google Scholar 

  • Jing M, Bohl J, Brimer N, Kinter M and Vande Pol S B 2007 Degradation of tyrosine phosphatase PTPN3 (PTPH1) by association with oncogenic human papilloma virus E6 proteins; J. Virol. 81 2231–2239

    CAS  PubMed  Google Scholar 

  • Jo H and Kim J W 2005 Implications of HPV infection in uterine cervical cancer; Cancer Ther. 3 419–434

    Google Scholar 

  • Kessis T D, Connolly D C, Hedrick L and Cho K R 1996 Expression of HPV16 E6 or E7 increases integration of foreign DNA; Oncogene 13 427–431

    CAS  PubMed  Google Scholar 

  • Khan N A, Castillo A, Koriyama C, Kijima Y, Umekita Y, Ohi Y, Higashi M, Sagara Y, Yoshinaka H, Tsuji T, Natsugoe S, Douchi T, Eizuru Y and Akiba S 2008 Human papilloma virus detected in female breast carcinomas in Japan; Br. J. Cancer 99 408–414

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kiyono T, Hiraiwa A, Fujita M, Hayashi Y, Akiyama T and Ishibashi M 1997 Binding of high-risk human papillomavirus E6 oncoproteins to the human homologue of the Drosophila discs large tumor suppressor protein; Proc. Natl. Acad. Sci. USA 94 11612–11616

    CAS  PubMed  Google Scholar 

  • Klingelhutz A J, Foster S A and McDougall JK 1996 Telomerase activation by the E6 gene product of human papillomavirus type 16; Nature (London) 380 79–82

    CAS  Google Scholar 

  • Kumar A, Zhao Y, Meng G, Zeng M, Srinivasan S, Delmolino L M, Gao Q, Dimri G, Weber G F, Wazer D E, Band H and Band V 2002 Human papillomavirus oncoprotein E6 inactivates the transcriptional coactivator human ADA3; Mol. Cell Biol. 22 5801–5812

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S S, Weiss R S and Javier R T 1997 Binding of human virus oncoproteins to hDlg/SAP97, a mammalian homolog of the Drosophila discs large tumor suppressor protein; Proc. Natl. Acad. Sci. USA 94 6670–6675

    CAS  PubMed  Google Scholar 

  • Lee S S, Glaunsinger B, Mantovani F, Banks L and Javier R T 2000 Multi-PDZ domain protein MUPP1 is a cellular target for both adenovirus E4-ORF1 and high-risk papillomavirus type 18 E6 oncoproteins; J. Virol. 74 9680–9690

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li S, Labrecque S, Gauzzi M C, Cuddihy A R, Wong A H and Pellegrini S, Matlashewski G J and Koromilas A E 1999 The human papilloma virus (HPV)-18 E6 oncoprotein physically associates with Tyk2 and impairs Jak-STAT activation by interferon-alpha; Oncogene 18 5727–5737

    CAS  PubMed  Google Scholar 

  • Li T T, Zhao L N, Liu Z G, Han Y and Fan D M 2005 Regulation of apoptosis by the papillomavirus E6 oncogene; World J. Gastroenterol. 11 931–937

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li X and Coffino P 1996 High-risk human papillomavirus E6 protein has two distinct binding sites within p53, of which only one determines degradation; J. Virol. 70 4509–4516

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Clements A, Zhao K and Marmorstein R 2006 Structure of the human papillomavirus E7 oncoprotein and mechanism for inactivation of the retinoblastoma tumour suppressor; J. Biol. Chem. 281 578–586

    CAS  PubMed  Google Scholar 

  • Longworth M S and Laimins L A 2004a Pathogenesis of human papillomaviruses in differentiating epithelia; Microbiol. Mol. Biol. Rev. 68 362–372

    CAS  PubMed  PubMed Central  Google Scholar 

  • Longworth M S and Laimins L A 2004b The binding of histone deacetylases and the integrity of zinc finger-like motifs of the E7 protein are essential for the life cycle of human papillomavirus type 31; J. Virol. 78 3533–3541

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu Z, Hu X, Li Y, Zheng L, Zhou Y, Jiang H, Ning T, Basang Z, Zhang C and Ke Y 2004 Human papillomavirus 16 E6 oncoprotein interferences with insulin signaling pathway by binding to tuberin; J. Biol. Chem. 279 35664–35670

    CAS  PubMed  Google Scholar 

  • Magal S S, Jackman A, Ish-Shalom S, Botzer L E, Gonen P, Schlegel R and Sherman L 2005 Downregulation of Bax mRNA expression and protein stability by the E6 protein of human papillomavirus 16; J. Gen. Virol. 86 611–621

    CAS  PubMed  Google Scholar 

  • Massimi P, Gammoh N, Thomas M and Banks L 2004 HPV E6 specifically targets different cellular pools of its PDZ domaincontaining tumour suppressor substrates for proteasomemediated degradation; Oncogene 23 8033–8039

    CAS  PubMed  Google Scholar 

  • Massimi P, Shai A, Lambert P and Banks L 2008 HPV E6 degradation of p53 and PDZ containing substrates in an E6AP null background; Oncogene 27 1800–1804

    CAS  PubMed  Google Scholar 

  • Matsha T, Erasmus R, Kafuko A B, Mugwanya D, Stepien A and Parker M I 2002 Human papillomavirus associated with oesophageal cancer; J. Clin. Pathol. 55 587–590

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matsha T, Donninger H, Erasmus R T, Hendricks D, Stepien A and Parker M I 2007 Expression of p53 and its homolog, p73, in HPV DNA positive oesophageal squamous cell carcinomas; Virology 369 182–190

    CAS  PubMed  Google Scholar 

  • McIntyre M C, Ruesch M N and Laimins L A 1996 Human papillomavirus E7 oncoproteins bind a single form of cyclin E in a complex with cdk2 and p107; Virology 215 73–82

    CAS  PubMed  Google Scholar 

  • McMurray H R and McCance D J 2003 Human papillomavirus type 16, E6 activates TERT gene transcription through induction of cMyc and release of USF-mediated repression; J. Virol. 77 9852–9861

    CAS  PubMed  PubMed Central  Google Scholar 

  • Motoyama S, Ladines-Llave C A, Luis Villanueva S and Maruo T 2004 The role of human papilloma virus in the molecular biology of cervical carcinogenesis; Kobe J. Med. Sci. 50 9–19

    CAS  PubMed  Google Scholar 

  • Münger K and Howley P M 2002 Human papillomavirus immortalization and transformation functions; Virus Res. 89 213–228

    PubMed  Google Scholar 

  • Munger K, Baldwin A, Edwards K M, Hayakawa H, Nguyen C L, Owens M, Grace M and Huh K 2004 Mechanisms of human papillomavirus-induced oncogenesis; J. Virol. 78 11451–11460

    PubMed  PubMed Central  Google Scholar 

  • Nees M, Geoghegan J M, Hyman T, Frank S, Miller L and Woodworth C D 2001 Papillomavirus type 16 oncogenes downregulate expression of interferon-responsive genes and upregulate proliferation-associated and NF-kappaB-responsive genes in cervical keratinocytes; J. Virol. 75 4283–4296

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen M L, Nguyen M M, Lee D, Griep A E and Lambert P F 2003 The PDZ ligand domain of the human papillomavirus type 16 E6 protein is required for E6’s induction of epithelial hyperplasia in vivo; J. Virol. 77 6957–6964

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oh S T, Kyo S and Laimins L A 2001 Telomerase activation by human papillomavirus type 16 E6 protein: induction of human telomerase reverse transcriptase expression through Myc and GC-rich Sp1 binding sites; J. Virol. 75 5559–5566

    CAS  PubMed  PubMed Central  Google Scholar 

  • Park J S, Kim E J, Lee J Y, Sin H S, Namkoong S E and Um S J 2001 Functional inactivation of p73, a homolog of p53 tumor suppressor protein, by human papillomavirus E6 proteins; Int. J. Cancer 91 822–827

    CAS  PubMed  Google Scholar 

  • Patel D, Huang S M, Baglia L A and McCance D J 1999 The E6 protein of human papillomavirus type 16 binds to and inhibits co-activation by CBP and p300; EMBO J. 18 5061–5072

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pendino F, Tarkanyi I, Dudognon C, Hillion J, Lanotte M, Aradi J and Ségal-Bendirdjian E 2006 Telomeres and telomerase: Pharmacological targets for new anticancer strategies?; Curr. Cancer Drug Targets 6 147–180

    CAS  PubMed  Google Scholar 

  • Pim D, Massimi P and Banks L 1997 Alternatively spliced HPV-18 E6* protein inhibits E6 mediated degradation of p53 and suppresses transformed cell growth; Oncogene 15 257–264

    CAS  PubMed  Google Scholar 

  • Pim D, Thomas M and Banks L 2002 Chimaeric HPV E6 proteins allow dissection of the proteolytic pathways regulating different E6 cellular target proteins; Oncogene 21 8140–8148

    CAS  PubMed  Google Scholar 

  • Pim D, Massimi P, Dilworth S M and Banks L 2005 Activation of the protein kinase B pathway by the HPV16-E7 oncoprotein occurs through a mechanism involving interaction with PP2A; Oncogene 24 7830–7838

    CAS  PubMed  Google Scholar 

  • Reidy P M, Dedo H H, Rabah R, Field J B, Mathog R H, Gregoire L and Lancaster W D 2004 Integration of human papillomavirus type 11 in recurrent respiratory papilloma-associated cancer; Laryngoscope 114 1906–1909

    PubMed  Google Scholar 

  • Ronco L V, Karpova A Y, Vidal M and Howley P M 1998 Human papillomavirus 16 E6 oncoprotein binds to interferon regulatory factor-3 and inhibits its transcriptional activity; Genes Dev. 12 2061–2072

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schaeffer A J, Nguyen M, Liem A, Lee D, Montagna C, Lambert P F, Ried T and Difilippantonio M J 2004 E6 and E7 oncoproteins induce distinct patterns of chromosomal aneuploidy in skin tumors from transgenic mice; Cancer Res. 64 538–546

    CAS  PubMed  Google Scholar 

  • Scheffner M, Huibregtse J M, Vierstra R D and Howley P M 1993 The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53; Cell 75 495–505

    CAS  PubMed  Google Scholar 

  • Scheffner M, Werness B A, Huibregtse J M, Levine A J and Howley P M 1990 The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53; Cell 63 1129–1136

    CAS  PubMed  Google Scholar 

  • Schneider-Gädicke A, Kaul S, Schwarz E, Gausepohl H, Frank R and Bastert G 1988 Identification of the human papillomavirus type 18 E6 and E6 proteins in nuclear protein fractions from human cervical carcinoma cells grown in the nude mouse or in vitro; Cancer Res. 48 2969–2974

    PubMed  Google Scholar 

  • Sedman S A, Barbosa M S, Vass W C, Hubbert N L, Haas J A, Lowy D R and Schiller J T 1991 The full-length E6 protein of human papillomavirus type 16 has transforming and transactivating activities and cooperates with E7 to immortalize keratinocytes in culture; J. Virol. 65 4860–4866

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sedman S A, Hubbert N L, Vass W C, Lowy D R and Schiller J T 1992 Mutant p53 can substitute for human papillomavirus type 16 E6 in immortalization of human keratinocytes but does not have E6-associated trans-activation or transforming activity; J. Virol. 66 4201–4208

    CAS  PubMed  PubMed Central  Google Scholar 

  • Seo E J, Kim H J, Lee C J, Kang H T and Hwang E S 2004 The role of HPV oncoproteins and cellular factors in maintenance of hTERT expression in cervical carcinoma cells; Oncology 94 40–47

    CAS  Google Scholar 

  • Shai A, Brake T, Somoza C and Lambert P F 2007 The human papillomavirus E6 oncogene dysregulates the cell cycle and contributes to cervical carcinogenesis through two independent activities; Cancer Res. 67 1626–1635

    CAS  PubMed  PubMed Central  Google Scholar 

  • Slebos R J, Kessis T D, Chen A W, Han S M, Hedrick L and Cho K R 1995 Functional consequences of directed mutations in human papillomavirus E6 proteins: abrogation of p53-mediated cell cycle arrest correlates with p53 binding and degradation in vitro; Virology 208 111–120

    CAS  PubMed  Google Scholar 

  • Smotkin D and Wettstein F O 1986 Transcription of human papilloma virus type 16 early genes in a cervical cancer and a cancer-derived cell line and identification of E7 protein; Proc. Natl. Acad. Sci. USA 83 4680–4684

    CAS  PubMed  Google Scholar 

  • Snijders P J, Steenbergen R D, Heideman D A and Meijer C J 2006 HPV-mediated cervical carcinogenesis: concepts and clinical implications; J. Pathol. 208 152–164

    CAS  PubMed  Google Scholar 

  • Spanos W C, Hoover A, Harris G F, Wu S, Strand G L, Anderson M E, Klingelhutz A J, Hendriks W, Bossler A D and Lee J H 2008 The PDZ binding motif of human papillomavirus type 16 E6 induces PTPN13 loss, which allows anchorage-independent growth and synergizes with ras for invasive growth; J. Virol. 82 2493–2500

    CAS  PubMed  Google Scholar 

  • Stacey S N, Jordan D, Snijders P J, Mackett M, Walboomers J M and Arrand JR 1995 Translation of the human papillomavirus type 16 E7 oncoprotein from bicistronic mRNA is independent of splicing events within the E6 open reading frame; J. Virol. 69 7023–7031

    CAS  PubMed  PubMed Central  Google Scholar 

  • Storrs C H and Silverstein S J 2007 PATJ, a tight junction-associated PDZ protein is a novel degradation target of high-risk HPV E6 and alternatively spliced isoform 18, E6; J. Virol. 81 4080–4090

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sur M and Cooper K 1998 The role of the human papilloma virus in esophageal cancer; Pathology 30 348–354

    CAS  PubMed  Google Scholar 

  • Talis A L, Huibregtse J M and Howley P M 1998 The role of E6AP in the regulation of p53 protein levels in human papillomavirus (HPV)-positive and HPV-negative cells; J. Biol. Chem. 273 6439–6445

    CAS  PubMed  Google Scholar 

  • Talora C, Sgroi D C, Crum C P and Dotto G P 2002 Specific down-modulation of Notch1 signaling in cervical cancer cells is required for sustained HPV-E6/E7 expression and late steps of malignant transformation; Genes Dev. 16 2252–2263

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas M and Banks L 1999 Human papilloma virus (HPV) E6 interactions with Bak are conserved amongst E6 proteins from high and low-risk HPV types; J. Gen. Virol. 80 1513–1517

    CAS  PubMed  Google Scholar 

  • Thomas M, Glaunsinger B, Pim D, Javier R and Banks L 2001 HPV E6 and MAGUK protein interactions: determination of the molecular basis for specific protein recognition and degradation; Oncogene 20 5431–5439

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas M, Laura R, Hepner K, Guccione E, Sawyers C, Lasky L and Banks L 2002 Oncogenic human papillomavirus E6 proteins target the MAGI-2 and MAGI-3 proteins for degradation; Oncogene 21 5088–5096

    CAS  PubMed  Google Scholar 

  • Thomas J T and Laimins L A 1998 Human papillomavirus oncoproteins E6 and E7 independently abrogate the mitotic spindle checkpoint; J. Virol. 72 1131–1137

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas M, Massimi P, Navarro C, Borg J P and Banks L 2005 The hScrib/Dlg apico-basal control complex is differentially targeted by HPV-16 and HPV-18 E6 proteins; Oncogene 24 6222–6230

    CAS  PubMed  Google Scholar 

  • Thomas M, Dasgupta J, Zhang Y, Chen X and Banks L 2008 Analysis of specificity determinants in the interactions of different HPV E6 proteins with their PDZ domain-containing substrates; Virology 376 371–378

    CAS  PubMed  Google Scholar 

  • Thompson D A, Belinsky G, Chang T H, Jones D L, Schlegel R and Munger K 1997 The human papillomavirus-16 E6 oncoprotein decreases the vigilance of mitotic checkpoints; Oncogene 15 3025–3035

    CAS  PubMed  Google Scholar 

  • Thorland E C, Myers S L, Gostout B S and Smith D I 2003 Common fragile sites are preferential targets for HPV16 integrations in cervical tumours; Oncogene 22 1225–1237

    CAS  PubMed  Google Scholar 

  • Um S J, Rhyu J W, Kim E J, Jeon K C, Hwang E S and Park J S 2002 Abrogation of IRF-1 response by high-risk HPV E7 protein in-vivo; Cancer Lett. 179 205–212

    CAS  PubMed  Google Scholar 

  • Vaeteewoottacharn K, Champutpong S, Pongilikitmongkol M and Angeletti P C 2005 Differential localization of HPV16 E6 splice products with E6-associated protein; Virol. J. 2 50–55

    PubMed  PubMed Central  Google Scholar 

  • Veldman T, Horikawa I, Barrett J C and Schlegel R 2001 Transcriptional activation of the telomerase hTERT gene by human papillomavirus type 16 E6 oncoprotein; J. Virol. 75 4467–4472

    CAS  PubMed  PubMed Central  Google Scholar 

  • Veldman T, Liu X, Yuan H and Schlegel R 2003 Human papillomavirus E6 and Myc proteins associate in vivo and bind to and cooperatively activate the telomerase reverse transcriptase promoter; Proc Natl. Acad. Sci. USA 100 8211–8216

    CAS  PubMed  Google Scholar 

  • Watson R A, Thomas M, Banks L and Roberts S 2003 Activity of the human papilloma virus E6 PDZ-binding motif correlates with an enhanced morphological transformation of immortalized human keratinocytes; J. Cell Sci. 116 4925–4934

    CAS  PubMed  Google Scholar 

  • Werness B A, Levine A J and Howley P M 1990 Association of human papillomavirus types 16 and 18 E6 proteins with p53; Science 248 76–79

    CAS  PubMed  Google Scholar 

  • Yoshida S, Kajitani N, Satsuka A, Nakamura H and Sakai H 2008 Ras modifies proliferation and invasiveness of cells expressing human papillomavirus oncoproteins; J. Virol. 82 8820–8827

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan H, Fu F, Zhuo J, Wang W, Nishitani J, An D S, Chen I S and Liu X 2005 Human papillomavirus type 16 E6 and E7 oncoproteins upregulate c-IAP2 gene expression and confer resistance to apoptosis; Oncogene 24 5069–5078

    CAS  PubMed  Google Scholar 

  • Yugawa T, Handa K, Narisawa-Saito M, Ohno S, Fujita M and Kiyono T 2007 Regulation of Notch1 gene expression by p53 in epithelial cells; Mol. Cell Biol. 27 3732–3742

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zanier K, Charbonnier S, Baltzinger M, Nominé Y, Altschuh D and Travé G 2005 Kinetic analysis of the interactions of human papillomavirus E6 oncoproteins with the ubiquitin ligase E6AP using surface plasmon resonance; J. Mol. Biol. 349 401–412

    CAS  PubMed  Google Scholar 

  • Zerfass-Thome K, Zwerschke W, Manhardt B, Tindle R, Botz J W and Jansen-Durr P 1996 Inactivation of the cdk inhibitor p27KIP1 by the human papillomavirus type 16, E7 oncoprotein; Oncogene 13 2323–2330

    CAS  PubMed  Google Scholar 

  • Zhang Y, Fan S, Meng Q, Ma Y, Katiyar P, Schlegel R and Rosen E M 2005 BRCA1 interaction with human papillomavirus oncoproteins; J. Biol. Chem. 280 33165–33177

    CAS  PubMed  Google Scholar 

  • Zhang Y, Dasgupta J, Ma R Z, Banks L, Thomas M and Chen X S 2007 Structures of a human papillomavirus (HPV) E6 polypeptide bound to MAGUK proteins: mechanisms of targeting tumor suppressors by a high-risk HPV oncoprotein; J. Virol. 81 3618–3626

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng Z M and Baker C C 2006 Papillomavirus genome structure, expression and posttranscriptional regulation; Front. Biosci. 11 2286–2302

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmermann H, Degenkolbe R, Bernard H U and O’Connor M J 1999 The human papillomavirus type 16 E6 oncoprotein can down-regulate p53 activity by targeting the transcriptional coactivator CBP/p300; J. Virol. 73 6209–6219

    CAS  PubMed  PubMed Central  Google Scholar 

  • zur Hausen H 1999 Immortalization of human cells and their malignant conversion by high risk human papillomavirus genotypes; Semin. Cancer Biol. 9 405–411

    PubMed  Google Scholar 

  • zur Hausen H 2002 Papillomaviruses and cancer: from basic studies to clinical application; Nat Rev. Cancer 2 342–350

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niladri Ganguly.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ganguly, N., Parihar, S.P. Human papillomavirus E6 and E7 oncoproteins as risk factors for tumorigenesis. J Biosci 34, 113–123 (2009). https://doi.org/10.1007/s12038-009-0013-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-009-0013-7

Keywords

Navigation