Skip to main content
Log in

A futile cycle, formed between two ATP-dependant γ-glutamyl cycle enzymes, γ-glutamyl cysteine synthetase and 5-oxoprolinase: the cause of cellular ATP depletion in nephrotic cystinosis?

  • Brief Communication
  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Cystinosis, an inherited disease caused by a defect in the lysosomal cystine transporter (CTNS), is characterized by renal proximal tubular dysfunction. Adenosine triphosphate (ATP) depletion appears to be a key event in the pathophysiology of the disease, even though the manner in which ATP depletion occurs is still a puzzle. We present a model that explains how a futile cycle that is generated between two ATP-utilizing enzymes of the γ-glutamyl cycle leads to ATP depletion. The enzyme γ-glutamyl cysteine synthetase (γ-GCS), in the absence of cysteine, forms 5-oxoproline (instead of the normal substrate, γ-glutamyl cysteine) and the 5-oxoproline is converted into glutamate by the ATP-dependant enzyme, 5-oxoprolinase. Thus, in cysteine-limiting conditions, glutamate is cycled back into glutamate via 5-oxoproline at the cost of two ATP molecules without production of glutathione and is the cause of the decreased levels of glutathione synthesis, as well as the ATP depletion observed in these cells. The model is also compatible with the differences seen in the human patients and the mouse model of cystinosis, where renal failure is not observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

ADP:

adenosine diphosphate

ATP:

adenosine triphosphate

CDME:

cystine dimethyl ester

CTNS:

cystine transporter

γ-GCS:

γ-glutamyl cysteine synthetase

γ-GT:

gamma-glutamyl transpeptidase

References

  • Baum M 1998 The Fanconi syndrome of cystinosis: insights into the pathophysiology; Pediatr. Nephrol. 12 492–497

    Article  CAS  PubMed  Google Scholar 

  • Cherqui S, Sevin C, Hamard G, Kalatzis V, Sich M, Pequignot M O, Gogat K, Abitbol M et al. 2002 Intralysosomal cystine accumulation in mice lacking cystinosin, the protein defective in cystinosis; Mol. Cell. Biol. 22 7622–7632

    Article  CAS  PubMed  Google Scholar 

  • Chol M, Nevo N, Cherqui S, Antignac C and Rustin P 2004 Glutathione precursors replenish decreased glutathione pool in cystinotic cell lines; Biochem. Biophys. Res. Commun. 324 231–235

    Article  CAS  PubMed  Google Scholar 

  • Coor C, Salmon R F, Quigley R, Marver D and Baum M 1991 Role of adenosine triphosphate (ATP) and NaK ATPase in the inhibition of proximal tubule transport with intracellular cystine loading; J. Clin. Invest. 87 955–961

    Article  CAS  PubMed  Google Scholar 

  • Gahl W A, Reed G F, Thoene J G, Schulman J D, Rizzo W B, Jonas A J, Denman D W, Schlesselman J J et al. 1987 Cysteamine therapy for children with nephropathic cystinosis; N. Engl. J. Med. 316 971–977

    Article  CAS  PubMed  Google Scholar 

  • Gahl W A, Schneider J A and Aula P 2001 A disorder of lysosomal membrane transport; in The metabolic and molecular basis of inherited disease, 8th edition (eds) C R Scriver, A L Beaudet, W S Sly and D Valle (New York: McGraw-Hill Press) pp 5085–5108

    Google Scholar 

  • Griffith O W and Meister A 1979 Glutathione: interorgan translocation, turnover, and metabolism; Proc. Natl. Acad. Sci. USA 76 5606–5610

    Article  CAS  PubMed  Google Scholar 

  • Hinchman C A and Ballatori N 1990 Glutathione-degrading capacities of liver and kidney in different species; Biochem. Pharmacol. 40 1131–1135

    Article  CAS  PubMed  Google Scholar 

  • Lash L H 2005a Role of glutathione transport processes in kidney function; Toxicol. Appl. Pharmacol. 204 329–342

    Article  CAS  PubMed  Google Scholar 

  • Lash LH 2005b Glutathione transport in the kidneys; in Drug metabolism and transport molecular methods and mechanisms (ed.) L H Lash (Totowa, New Jersey: Humana Press) pp 319–339

    Chapter  Google Scholar 

  • Laube G F, Shah V, Stewart V C, Hargreaves I P, Haq M R, Heales S J and van’t Hoff W G 2006 Glutathione depletion and increased apoptosis rate in human cystinotic proximal tubular cells; Pediatr. Nephrol. 21 503–509

    Article  PubMed  Google Scholar 

  • Levtchenko E N, Wilmer M J, Janssen A J, Koenderink J B, Visch H J, Willems P H, de Graaf-Hess A, Blom H J et al. 2006 Decreased intracellular ATP content and intact mitochondrial energy generating capacity in human cystinotic fibroblasts; Pediatr. Res. 59 287–292

    Article  CAS  PubMed  Google Scholar 

  • Lu S C 1999 Regulation of hepatic glutathione synthesis: current concepts and controversies; FASEB J. 13 1169–1183

    CAS  PubMed  Google Scholar 

  • Mannucci L, Pastore A, Rizzo C, Piemonte F, Rizzoni G and Emma F 2006 Impaired activity of the γ-glutamyl cycle in nephropathic cystinosis fibroblasts; Pediatr. Res. 59 332–335

    Article  CAS  PubMed  Google Scholar 

  • Meister A 1973 On the enzymology of amino acid transport; Science 180 33–39

    Article  CAS  PubMed  Google Scholar 

  • Nesterova G and Gahl W 2008 Nephropathic cystinosis: late complications of a multisystemic disease; Pediatr. Nephrol. 23 863–878

    Article  PubMed  Google Scholar 

  • Orlowski M and Meister A 1971 Partial reactions catalyzed by γ-glutamylcysteine synthetase and evidence for an activated glutamate intermediate; J. Biol. Chem. 246 7095–7105

    CAS  PubMed  Google Scholar 

  • Park M A, Helip Wooley A and Thoene J 2002 Lysosomal cystine storage augments apoptosis in cultured human fibroblasts and renal tubular epithelial cells; J. Am. Soc. Nephrol. 13 2878–2887

    Article  CAS  PubMed  Google Scholar 

  • Park M A, Peiovic V, Kerisit K G, Junius S and Thoene J G 2006 Increased apoptosis in cystinotic fibroblasts and renal proximal tubule epithelial cells results from cysteinylation of protein kinase C δ; Am. Soc. Nephrol. 17 3167–3175

    Article  CAS  Google Scholar 

  • Park M A and Thoene J G 2005 Potential role of apoptosis in development of the cystinotic phenotype; Pediatr. Nephrol. 20 441–446

    Article  PubMed  Google Scholar 

  • Richman P G and Meister A 1975 Regulation of gamma-glutamylcysteine synthetase by nonallosteric feedback inhibition by glutathione; J. Biol. Chem. 250 1422–1426

    CAS  PubMed  Google Scholar 

  • Ristoff E and Larsson A 2007 Inborn errors in the metabolism of glutathione; Orphanet J. Rare Dis. 2 16

    Article  PubMed  Google Scholar 

  • Rizzo C, Ribes A, Pastore A, Dionisi-Vici C, Greco M, Rizzoni G and Federici G 1999 Pyroglutamic aciduria and nephropathic cystinosis; J. Inherit. Metab. Dis. 22 224–226

    Article  CAS  PubMed  Google Scholar 

  • Snoke J E and Bloch K 1954 The biosynthesis of glutathione; in Glutathione — a symposium (eds) S Colowick, A Lazarow, E Racker, D R Schwarz, E Stadtman and H Waelsch (New York: Academic Press) pp 129–141

    Google Scholar 

  • Syres K, Harrison F, Tadlock M, Jester J V, Simpson J, Roy S, Salomon D R and Cherqui S 2009 Successful treatment of the murine model of cystinosis using bone marrow cell transplantation; Blood 114 2542–2552

    Google Scholar 

  • Town M, Jean G, Cherqui S, Attard M, Forestier L, Whitmore S A, Callen D F, Gribouval O et al. 1998 A novel gene encoding an integral membrane protein is mutated in nephropathic cystinosis; Nat. Genet. 18 319–324

    Article  CAS  PubMed  Google Scholar 

  • Van der Werf P, Orlowski M and Meister A 1971 Enzymatic conversion of 5-oxo-L-proline (L-pyrrolidone carboxylate) to L-glutamate coupled with cleavage of adenosine triphosphate to adenosine diphosphate, a reaction in the gamma-glutamyl cycle; Proc. Natl. Acad. Sci. USA 68 2982–2985

    Article  PubMed  Google Scholar 

  • Watanabe T, Abe K, Ishikawa H and Iijima Y l 2004 Bovine 5-oxo-L-prolinase: simple assay method, purification, cDNA cloning, and detection of mRNA in the coronary artery; Biol. Pharm. Bull. 27 288–294

    Article  CAS  PubMed  Google Scholar 

  • Wilmer M J, van den Heuvel L P, Rodenburg R J, Vogel R O, Nijtmans L G, Monnens L A and Levtchenko E N 2008 Mitochondrial complex V expression and activity in cystinotic fibroblasts; Pediatr. Res. 64 495–497

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anand Kumar Bachhawat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, A., Bachhawat, A.K. A futile cycle, formed between two ATP-dependant γ-glutamyl cycle enzymes, γ-glutamyl cysteine synthetase and 5-oxoprolinase: the cause of cellular ATP depletion in nephrotic cystinosis?. J Biosci 35, 21–25 (2010). https://doi.org/10.1007/s12038-010-0004-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-010-0004-8

Keywords

Navigation