Skip to main content
Log in

A microRNA signature associated with chondrogenic lineage commitment

  • Research Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Generating appropriate cartilage for clinical applications to heal skeletal tissue loss is a major health concern. In this regard, cell-based approaches offer a potential therapeutic strategy for cartilage repair, although little is known about the precise mechanism of chondrogenesis. Unrestricted somatic stem cell (USSC) is considered as a suitable candidate because of its potential for differentiating into multiple cell types. Recent studies show that microRNAs (miRNAs) are involved in several biological processes including development and differentiation. To identify the chondro-specific miRNA signature, miRNA patterns of USSCs and differentiated chondrocytes were investigated using microarrays and validation by qPCR. Prior to these analyses, chondrogenic commitment of differentiated USSCs was verified by immunocytochemistry, specific staining and evaluation of some main chondrogenic marker genes. Various in silico explorations (for both putative targets and signalling pathways) and empirical analyses (miRNA transfections followed by qPCR of some chondrogenic indicators) were carried out to support our results. Transient modulation of multiple chondro-miRs (such as mir-630, mir-624 and mir-376) with chondrocyte targets (such as TGFbR, MAP3K, collagens, SMADs and cadherins) as mediators of chondrogenic signalling pathways including cell–cell interactions, TGF-beta, and MAPK signalling suggests a mechanism for genetic induction of chondrogenic differentiation. In conclusion, this research reveals more details about the allocation of USSCs into the chondrocytes through identification of miRNA signature which modulates targets and pathways required for chondrogenic lineage and could provide guidelines for future clinical treatments and anti-miRNA therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Akhtar N., Rasheed Z., Ramamurthy S., Anbazhagan A. N., Voss F. R. and Haqqi T. M. 2010 MicroRNA-27b regulates the expression of matrix metalloproteinase 13 in human osteoarthritis chondrocytes. Arthritis Rheum. 62, 1361–1371.

    Article  PubMed  CAS  Google Scholar 

  • Akiyama H., Lyons J. P., Mori-Akiyama Y., Yang X., Zhang R., Zhang Z. et al. 2004 Interactions between Sox9 and beta-catenin control chondrocyte differentiation. Genes Dev. 18, 1072– 1087.

    Article  PubMed  CAS  Google Scholar 

  • Arnsdorf E. J., Tummala P. and Jacobs C. R. 2009 Non-canonical Wnt signaling and N-cadherin related beta-catenin signaling play a role in mechanically induced osteogenic cell fate. PLoS ONE 4, e5388.

    Article  Google Scholar 

  • Babak T., Zhang W., Morris Q., Blencowe B. J. and Hughes T. R. 2004 Probing microRNAs with microarrays: tissue specificity and functional inference. RNA 10, 1813–1819.

    Article  PubMed  CAS  Google Scholar 

  • Bakhshandeh B., Soleimani M., Ghaemi N. and Shabani I. 2011 Effective combination of aligned nanocomposite nanofibers and human unrestricted somatic stem cells for bone tissue engineering. Acta Pharmacol. Sin. 32, 626–636.

    Article  PubMed  CAS  Google Scholar 

  • Bakhshandeh B., Soleimani M., Hafizi M., Paylakshi S.H. and Ghaemi N. 2012a MicroRNA signatures associated with osteogenic lineage commitment. Mol. Biol. Rep. 39, 7569–7581.

    Article  PubMed  CAS  Google Scholar 

  • Bakhshandeh B., Soleimani M., Hafizi M. and Ghaemi N. 2012b A comparative study on nonviral genetic modifications in cord blood and bone marrow mesenchymal stem cells. Cytotechnology (in press).

  • Bakhshandeh B., Hafizi M., Ghaemi N. and Soleimani M. 2012c Down-regulation of miRNA-221 triggers osteogenic differentiation in human stem cells. Biotechnol. Lett. 34, 1579–1587.

    Article  PubMed  CAS  Google Scholar 

  • Bartel D. P. 2004 MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297.

    Article  PubMed  CAS  Google Scholar 

  • Beier F. and Loeser R. F. 2010 Biology and pathology of Rho GTPase, PI-3 kinase-Akt, and MAP kinase signaling pathways in chondrocytes. J. Cell. Biochem. 110, 573–580.

    Article  PubMed  CAS  Google Scholar 

  • Bentwich I. 2005 Prediction and validation of microRNAs and their targets. FEBS Lett. 579, 5904–5910.

    Article  PubMed  CAS  Google Scholar 

  • Betel D., Wilson M., Gabow A., Marks D. S. and Sander C. 2008 The microRNA.org resource: targets and expression. Nucleic Acids Res. 36, 149–153.

    Article  Google Scholar 

  • Blaney Davidson E. N., Scharstuhl A., Vitters E. L., van der Kraan P. M. and van den Berg W. B. 2005 Reduced transforming growth factor-beta signaling in cartilage of old mice: role in impaired repair capacity. Arthritis Res. Ther. 7, 1338–1347.

    Article  Google Scholar 

  • Briggs M. D., Rasmussen I. M., Weber J. L., Yuen J., Reinker K., Garber A. P. et al. 1993 Genetic linkage of mild pseudoachondroplasia (PSACH) to markers in the pericentromeric region of chromosome 19. Genomics 18, 656–660.

    Article  PubMed  CAS  Google Scholar 

  • Caerteling S. B., van der Kraan P. M., Vitters E. L., Dechering K. J., van Zoelen E. J. and Piek E. 2011 Article withdrawn prior to final publication. Inhibition of JNK enhances chondrogenesis of mesenchymal progenitor cells by increasing autocrine TGFbeta signaling. Arthritis Rheum. 63, 849.

    PubMed  CAS  Google Scholar 

  • Caldas J. and Kaski S. 2011 Hierarchical generative biclustering for microrna expression analysis. J. Comput. Biol. 18, 251–261.

    Article  PubMed  CAS  Google Scholar 

  • Canales R. D., Luo Y., Willey J. C., Austermiller B., Barbacioru C. C., Boysen C. et al. 2006 Evaluation of DNA microarray results with quantitative gene expression platforms. Nat. Biotechnol. 24, 1115–1122.

    Article  PubMed  CAS  Google Scholar 

  • Davison T. S., Johnson C. D. and Andruss B. F. 2006 Analyzing micro-RNA expression using microarrays. Methods Enzymol. 411, 14–34.

    Article  PubMed  CAS  Google Scholar 

  • Dong Y., Jesse A. M., Kohn A., Gunnell L. M., Honjo T., Zuscik M. J. et al. 2010 RBPjkappa-dependent Notch signaling regulates mesenchymal progenitor cell proliferation and differentiation during skeletal development. Development 137, 1461– 1471.

    Article  PubMed  CAS  Google Scholar 

  • Dudek K. A., Lafont J. E., Martinez-Sanchez A. and Murphy C. L. 2010 Type II collagen expression is regulated by tissue-specific miR-675 in human articular chondrocytes. J. Biol. Chem. 285, 24381–24387.

    Article  PubMed  CAS  Google Scholar 

  • Dunn W., DuRaine G. and Reddi A. H. 2009 Profiling microRNA expression in bovine articular cartilage and implications for mechanotransduction. Arthritis Rheum. 60, 2333–2339.

    Article  PubMed  Google Scholar 

  • Fazi F. and Nervi C. 2008 MicroRNA: basic mechanisms and transcriptional regulatory networks for cell fate determination. Cardiovasc. Res. 79, 553–561.

    Article  PubMed  CAS  Google Scholar 

  • Freyria A. M. and Mallein-Gerin F. 2011 Chondrocytes or adult stem cells for cartilage repair: The indisputable role of growth factors. Injury 43, 259–265.

    Article  PubMed  Google Scholar 

  • Gentleman R. C., Carey V. J., Bates D. M., Bolstad B., Dettling M., Dudoit S. et al. 2004 Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 5, 80.

    Article  Google Scholar 

  • Goldring M. B., Tsuchimochi K. and Ijiri K. 2006 The control of chondrogenesis. J. Cell. Biochem. 97, 33–44.

    Article  PubMed  CAS  Google Scholar 

  • Hiyama A., Gogate S. S., Gajghate S., Mochida J., Shapiro I. M. and Risbud M. V. 2010 BMP-2 and TGF-beta stimulate expression of beta1,3-glucuronosyl transferase 1 (GlcAT-1) in nucleus pulposus cells through AP1, TonEBP, and Sp1: role of MAPKs. J. Bone Miner. Res. 25, 1179–1190.

    PubMed  CAS  Google Scholar 

  • Huang J., Zhao L., Xing L. and Chen D. 2010 MicroRNA-204 regulates Runx2 protein expression and mesenchymal progenitor cell differentiation. Stem Cells 28, 357–364.

    PubMed  Google Scholar 

  • Karlsson C. and Lindahl A. 2009 Notch signaling in chondrogenesis. Int. Rev. Cell Mol. Biol. 275, 65–88.

    Article  PubMed  CAS  Google Scholar 

  • Karlsson C., Jonsson M., Asp J., Brantsing C., Kageyama R. and Lindahl A. 2007 Notch and HES5 are regulated during human cartilage differentiation. Cell Tissue Res. 327, 539–551.

    Article  PubMed  CAS  Google Scholar 

  • Keller B., Yang T., Chen Y., Munivez E., Bertin T., Zabel B. and Lee B. 2011 Interaction of TGFbeta and BMP signaling pathways during chondrogenesis. PLoS ONE 6, e16421.

    Article  Google Scholar 

  • Kim D., Song J. and Jin E. J. 2010 MicroRNA-221 regulates chondrogenic differentiation through promoting proteosomal degradation of slug by targeting Mdm2. J. Biol. Chem. 285, 26900–26907.

    Article  PubMed  CAS  Google Scholar 

  • Kogler G., Sensken S., Airey J. A., Trapp T., Muschen M., Feldhahn N. et al. 2004 A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential. J. Exp. Med. 200, 123–135.

    Article  PubMed  Google Scholar 

  • Lai K. W., Koh K. X., Loh M., Tada K., Subramaniam M. M., Lim X. Y. et al. 2010 MicroRNA-130b regulates the tumour suppressor RUNX3 in gastric cancer. Eur. J. Cancer 46, 1456– 1463.

    Article  PubMed  CAS  Google Scholar 

  • Li J., Zhao Z., Liu J., Huang N., Long D., Wang J. et al. 2010 MEK/ERK and p38 MAPK regulate chondrogenesis of rat bone marrow mesenchymal stem cells through delicate interaction with TGF-beta1/Smads pathway. Cell Prolif. 43, 333–343.

    Article  PubMed  CAS  Google Scholar 

  • Lin E. A., Kong L., Bai X. H., Luan Y. and Liu C. J. 2009 miR-199a, a bone morphogenic protein 2-responsive MicroRNA, regulates chondrogenesis via direct targeting to Smad1. J. Biol. Chem. 284, 11326–11335.

    Article  PubMed  CAS  Google Scholar 

  • Lossner C., Meier J., Warnken U., Rogers M. A., Lichter P., Pscherer A. and Schnolzer M. 2011 Quantitative proteomics identify novel miR-155 target proteins. PLoS ONE 6, e22146.

    Article  Google Scholar 

  • Mizuta H., Sanyal A., Fukumoto T., Fitzsimmons J. S., Matsui N., Bolander M. E. et al. 2002 The spatiotemporal expression of TGF-beta1 and its receptors during periosteal chondrogenesis in vitro. J. Orthop. Res. 20, 562–574.

    Article  PubMed  CAS  Google Scholar 

  • Nilsen T. W. 2007 Mechanisms of microRNA-mediated gene regulation in animal cells. Trends Genet. 23, 243–249.

    Article  PubMed  CAS  Google Scholar 

  • Ohgawara T., Kubota S., Kawaki H., Kondo S., Eguchi T., Kurio N. et al. 2009 Regulation of chondrocytic phenotype by micro RNA 18a: involvement of Ccn2/Ctgf as a major target gene. FEBS Lett. 583, 1006–1010.

    Article  PubMed  CAS  Google Scholar 

  • Oldershaw R. A. and Hardingham T. E. 2010 Notch signaling during chondrogenesis of human bone marrow stem cells. Bone 46, 286–293.

    Article  PubMed  CAS  Google Scholar 

  • Oldershaw R. A., Tew S. R., Russell A. M., Meade K., Hawkins R., McKay T. R. et al. 2008 Notch signaling through Jagged-1 is necessary to initiate chondrogenesis in human bone marrow stromal cells but must be switched off to complete chondrogenesis. Stem Cells 26, 666–674.

    Article  PubMed  CAS  Google Scholar 

  • Paassilta P., Lohiniva J., Annunen S., Bonaventure J., Le Merrer M., Pai L. and Ala-Kokko L. 1999 COL9A3: A third locus for multiple epiphyseal dysplasia. Am. J. Hum. Genet. 64, 1036– 1044.

    Article  PubMed  CAS  Google Scholar 

  • Ren J., Jin P., Wang E., Marincola F. M. and Stroncek D. F. 2009 MicroRNA and gene expression patterns in the differentiation of human embryonic stem cells. J. Transl. Med. 7, 20.

    Article  PubMed  Google Scholar 

  • Saini H. K., Griffiths-Jones S. and Enright A. J. 2007 Genomic analysis of human microRNA transcripts. Proc. Natl. Acad. Sci. USA 104, 17719–17724.

    Article  PubMed  CAS  Google Scholar 

  • Schoolmeesters A., Eklund T., Leake D., Vermeulen A., Smith Q., Force Aldred S. and Fedorov Y. 2009 Functional profiling reveals critical role for miRNA in differentiation of human mesenchymal stem cells. PLoS ONE 4, e5605.

    Article  Google Scholar 

  • Smyth G. K. 2004 Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol. 3, Article3.

    Google Scholar 

  • Sorrentino A., Ferracin M., Castelli G., Biffoni M., Tomaselli G., Baiocchi M. et al. 2008 Isolation and characterization of CD146+ multipotent mesenchymal stromal cells. Exp. Hematol. 36, 1035–1046.

    Article  PubMed  CAS  Google Scholar 

  • Sturn A., Quackenbush J. and Trajanoski Z. 2002 Genesis: cluster analysis of microarray data. Bioinformatics 18, 207–208.

    Article  PubMed  CAS  Google Scholar 

  • Suomi S., Taipaleenmaki H., Seppanen A., Ripatti T., Vaananen K., Hentunen T. et al. 2008 MicroRNAs regulate osteogenesis and chondrogenesis of mouse bone marrow stromal cells. Gene Regul. Syst. Biol. 2, 177–191.

    CAS  Google Scholar 

  • Tiller G. E., Hannig V. L., Dozier D., Carrel L., Trevarthen K. C., Wilcox W. R. et al. 2001 A recurrent RNA-splicing mutation in the SEDL gene causes X-linked spondyloepiphyseal dysplasia tarda. Am. J. Hum. Genet. 68, 1398–1407.

    Article  PubMed  CAS  Google Scholar 

  • Tuddenham L., Wheeler G., Ntounia-Fousara S., Waters J., Hajihosseini M. K., Clark I. and Dalmay T. 2006 The cartilage specific microRNA-140 targets histone deacetylase 4 in mouse cells. FEBS Lett. 580, 4214–4217.

    Article  PubMed  CAS  Google Scholar 

  • Wang X. 2006 Systematic identification of microRNA functions by combining target prediction and expression profiling. Nucleic Acids Res. 34, 1646–1652.

    Article  PubMed  CAS  Google Scholar 

  • Wiemer E. A. 2007 The role of microRNAs in cancer: no small matter. Eur. J. Cancer 43, 1529–1544.

    Article  PubMed  CAS  Google Scholar 

  • Wrana J. L., Attisano L., Wieser R., Ventura F. and Massague J. 1994 Mechanism of activation of the TGF-beta receptor. Nature 370, 341–347.

    Article  PubMed  CAS  Google Scholar 

  • Wu X. and Watson M. 2009 CORNA: testing gene lists for regulation by microRNAs. Bioinformatics 25, 832–833.

    Article  PubMed  CAS  Google Scholar 

  • Wu Z. L., Prather B., Ethen C. M., Kalyuzhny A. and Jiang W. 2011 Detection of specific glycosaminoglycans and glycan epitopes by in vitro sulfation using recombinant sulfotransferases. Glycobiology 21, 625–633.

    Article  PubMed  CAS  Google Scholar 

  • Zhou S., Eid K. and Glowacki J. 2004 Cooperation between TGF-beta and Wnt pathways during chondrocyte and adipocyte differentiation of human marrow stromal cells. J. Bone Mineral Res. 19, 463–470.

    Article  CAS  Google Scholar 

  • Zuntini M., Salvatore M., Pedrini E., Parra A., Sgariglia F., Magrelli A. et al. 2010 MicroRNA profiling of multiple osteochondromas: identification of disease-specific and normal cartilage signatures. Clin. Genet. 78, 507–516.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Stem Cell Technology Research Center, Tehran, Iran. We thank Mr Seyed Zarvan Shahrzad for his contribution in English writing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to MASOUD SOLEIMANI.

Additional information

Bakhshandeh B., Soleimani M., Paylakhi S. H. and Ghaemi N. 2012 A microRNA signature associated with chondrogenic lineage commitment. J. Genet. 91, xx–xx

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(PDF 786 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

BAKHSHANDEH, B., SOLEIMANI, M., PAYLAKHI, S.H. et al. A microRNA signature associated with chondrogenic lineage commitment. J Genet 91, 171–182 (2012). https://doi.org/10.1007/s12041-012-0168-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12041-012-0168-0

Keywords

Navigation