Skip to main content
Log in

Olfactory Acuity and Automatic Associations to Odor Words Modulate Adverse Effects of Ammonia

  • Published:
Chemosensory Perception

Abstract

Introduction

Adverse effects of malodorous chemicals in humans are usually described as negative emotional reactions and impaired cognitive performance. Sensory acuity and automatic associations to odor words could influence cognitive processing of chemosensory stimulation and such adverse effects. We hypothesized that adverse effects are amplified in individuals with lower olfactory acuity due to a more automatic and emotional odor evaluation process. In contrast, adverse effects should be attenuated if odor words such as smell automatically activate positive mental associations.

Methods

After the assessment of olfactory acuity and automatically activated associations in standardized tests, 37 women were exposed to ascending concentration steps of ammonia (0–10 ppm) in an exposure laboratory for 75 min. Participants rated hedonic valence, intensity, and pungency of ammonia and performed working memory and response inhibition tasks.

Results

Olfactory acuity modulated ratings of hedonic valence and working memory performance: Participants with lower olfactory acuity reported stronger odor unpleasantness and showed impaired performance compared to participants with higher olfactory acuity during the exposure to 10 ppm ammonia. In the lower olfactory acuity group, participants with strong automatic associations between odor words and positive valence rated ammonia at high concentrations to be less pungent than participants with weaker automatic associations.

Conclusions

We conclude that sensory acuity and automatically activated associations modulate chemosensory-mediated adverse effects of ammonia. Beyond established self-report measures, these individual characteristics could help explain differences in environmental odor annoyance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson AK, Christoff K, Stappen I et al (2003) Dissociated neural representations of intensity and valence in human olfaction. Nat Neurosci 6:196–202. doi:10.1038/nn1001

    Article  CAS  Google Scholar 

  • Andersson L, Claeson AS, Ledin L, Wisting F, Nordin S (2013) The influence of health-risk perception and distress on reactions to low-level chemical exposure. Front Psychol 4:816. doi:10.3389/fpsyg.2013.00816

    Google Scholar 

  • Atanasova B, Graux J, El Hage W, Hommet C, Camus V, Belzung C (2008) Olfaction: a potential cognitive marker of psychiatric disorders. Neurosci Biobehav Rev 32:1315–1325. doi:10.1016/j.neubiorev.2008.05.003

    Article  Google Scholar 

  • Blanes-Vidal V, Nadimi ES, Ellermann T, Andersen HV, Lofstrom P (2012) Perceived annoyance from environmental odors and association with atmospheric ammonia levels in non-urban residential communities: a cross-sectional study. Environ Health 11:27. doi:10.1186/1476-069X-11-27

    Article  CAS  Google Scholar 

  • Bulsing PJ, Smeets MA, van den Hout MA (2007) Positive implicit attitudes toward odor words. Chem Senses 32:525–534. doi:10.1093/chemse/bjm021

    Article  Google Scholar 

  • Bulsing PJ, Smeets MA, van den Hout MA (2009) The implicit association between odors and illness. Chem Senses 34:111–119. doi:10.1093/chemse/bjn062

    Article  Google Scholar 

  • Danuser B, Moser D, Vitale-Sethre T, Hirsig R, Krueger H (2003) Performance in a complex task and breathing under odor exposure. Hum Factors 45:549–562. doi:10.1518/hfes.45.4.549.27093

    Article  Google Scholar 

  • Doty RL, Smith R, McKeown DA, Raj J (1994) Tests of human olfactory function: principal components analysis suggests that most measure a common source of variance. Percept Psychophys 56:701–707. doi:10.3758/BF03208363

    Article  CAS  Google Scholar 

  • Duncko R, Johnson L, Merikangas K, Grillon C (2009) Working memory performance after acute exposure to the cold pressor stress in healthy volunteers. Neurobiol Learn Mem 91:377–381. doi:10.1016/j.nlm.2009.01.006

    Article  Google Scholar 

  • Green BG, Dalton P, Cowart B, Shaffer G, Rankin K, Higgins J (1996) Evaluating the ‘Labeled Magnitude Scale’ for measuring sensations of taste and smell. Chem Senses 21:323–334. doi:10.1093/chemse/21.3.323

    Article  CAS  Google Scholar 

  • Greenwald AG, McGhee DE, Schwartz JL (1998) Measuring individual differences in implicit cognition: the implicit association test. J Pers Soc Psychol 74:1464–1480. doi:10.1037/0022-3514.74.6.1464

    Article  CAS  Google Scholar 

  • Greenwald AG, Nosek BA, Banaji MR (2003) Understanding and using the implicit association test: I. An improved scoring algorithm. J Pers Soc Psychol 85:197–216. doi:10.1037/0022-3514.85.2.197

    Article  Google Scholar 

  • Habel U, Koch K, Pauly K et al (2007) The influence of olfactory-induced negative emotion on verbal working memory: individual differences in neurobehavioral findings. Brain Res 1152:158–170. doi:10.1016/j.brainres.2007.03.048

    Article  CAS  Google Scholar 

  • Habel U, Pauly K, Koch K et al (2010) Emotion-cognition interactions in schizophrenia. World J Biol Psychiatry 11:934–944. doi:10.3109/15622975.2010.501820

    Article  Google Scholar 

  • Hedner M, Larsson M, Arnold N, Zucco GM, Hummel T (2010) Cognitive factors in odor detection, odor discrimination, and odor identification tasks. J Clin Exp Neuropsychol 32:1062–1067. doi:10.1080/13803391003683070

    Article  Google Scholar 

  • Hey K, Juran SA, Schäper M et al (2009) Neurobehavioral effects during exposures to propionic acid—an indicator of chemosensory distraction? Neurotoxicology 30:1223–1232. doi:10.1016/j.neuro.2009.08.009

    Article  CAS  Google Scholar 

  • Hummel T, Livermore A (2002) Intranasal chemosensory function of the trigeminal nerve and aspects of its relation to olfaction. Int Arch Occup Environ Health 75:305–313. doi:10.1007/s00420-002-0315-7

    Article  Google Scholar 

  • Hummel T, Sekinger B, Wolf SR, Pauli E, Kobal G (1997) ‘Sniffin’ sticks’: olfactory performance assessed by the combined testing of odor identification, odor discrimination and olfactory threshold. Chem Senses 22:39–52. doi:10.1093/chemse/22.1.39

  • Hummel T, Kobal G, Gudziol H, Mackay-Sim A (2007) Normative data for the “Sniffin’ Sticks” including tests of odor identification, odor discrimination, and olfactory thresholds: an upgrade based on a group of more than 3,000 subjects. Eur Arch Otorhinolaryngol 264:237–243. doi:10.1007/s00405-006-0173-0

    Article  CAS  Google Scholar 

  • Hüttenbrink KB, Hummel T, Berg D, Gasser T, Hähner A (2013) Olfactory dysfunction: common in later life and early warning of neurodegenerative disease. Dtsch Arztebl Int 110:1–7. doi:10.3238/arztebl.2013.0001

    Google Scholar 

  • Juran SA, van Thriel C, Kleinbeck S, Schäper M, Falkenstein M, Iregren A, Johanson G (2012) Neurobehavioral performance in human volunteers during inhalation exposure to the unpleasant local irritant cyclohexylamine. Neurotoxicology 33:1180–1187. doi:10.1016/j.neuro.2012.06.014

    Article  CAS  Google Scholar 

  • Juran SA, van Thriel C, Kleinbeck S, Schäper M, Falkenstein M, Iregren A, Johanson G (2013) Electrophysiological correlates of impaired response inhibition during inhalation of propionic acid. J Psychophysiol 27:131–141. doi:10.1027/0269-8803/a000098

    Article  Google Scholar 

  • Juran SA, Johanson G, Ernstgard L, Iregren A, van Thriel C (2014) Neurobehavioral performance in volunteers after inhalation of white spirits with high and low aromatic content. Arch Toxicol 88:1127–1140. doi:10.1007/s00204-014-1236-4

    Article  CAS  Google Scholar 

  • Kärnekull SC, Jonsson FU, Larsson M, Olofsson JK (2011) Affected by smells? Environmental chemical responsivity predicts odor perception. Chem Senses 36:641–648. doi:10.1093/chemse/bjr028

    Article  Google Scholar 

  • Knaapila A, Tuorila H, Kyvik KO et al (2008) Self-ratings of olfactory function reflect odor annoyance rather than olfactory acuity. Laryngoscope 118:2212–2217. doi:10.1097/MLG.0b013e3181826e43

    Article  Google Scholar 

  • Koch K, Pauly K, Kellermann T et al (2007) Gender differences in the cognitive control of emotion: an fMRI study. Neuropsychologia 45:2744–2754. doi:10.1016/j.neuropsychologia.2007.04.012

    Article  Google Scholar 

  • Liden E, Nordin S, Hogman L, Ulander A, Deniz F, Gunnarsson AG (1998) Assessment of odor annoyance and its relationship to stimulus concentration and odor intensity. Chem Senses 23:113–117. doi:10.1093/chemse/23.1.113

    Article  CAS  Google Scholar 

  • Lim J, Wood A, Green BG (2009) Derivation and evaluation of a labeled hedonic scale. Chem Senses 34:739–751. doi:10.1093/chemse/bjp054

    Article  Google Scholar 

  • Lundström JN, Seven S, Olsson MJ, Schaal B, Hummel T (2006) Olfactory event-related potentials reflect individual differences in odor valence perception. Chem Senses 31:705–711. doi:10.1093/chemse/bjl012

    Article  Google Scholar 

  • Mainland J, Sobel N (2006) The sniff is part of the olfactory percept. Chem Senses 31:181–196. doi:10.1093/chemse/bjj012

    Article  Google Scholar 

  • Martin GN, Chaudry A (2014) Working memory performance and exposure to pleasant and unpleasant ambient odor: is spatial span special? Int J Neurosci 124:806–11. doi:10.3109/00207454.2014.890619

    Article  CAS  Google Scholar 

  • Maxwell SE, Delaney HD (1993) Bivariate median splits and spurious statistical significance. Psychol Bull 113:181–190. doi:10.1037/0033-2909.113.1.181

    Article  Google Scholar 

  • Millot JL, Brand G, Morand N (2002) Effects of ambient odors on reaction time in humans. Neurosci Lett 322:79–82. doi:10.1016/S0304-3940(02)00092-7

    Article  CAS  Google Scholar 

  • Nordin S, Claeson A-S, Andersson M, Sommar L, Andrée J, Lundqvist K, Andersson L (2013) Impact of health-risk perception on odor perception and cognitive performance. Chemosens Percept 6:190–197. doi:10.1007/s12078-013-9153-0

    Article  Google Scholar 

  • Österberg K, Ørbæk P, Karlson B, Akesson B, Bergendorf U (2003) Annoyance and performance during the experimental chemical challenge of subjects with multiple chemical sensitivity. Scand J Work Environ Health 29:40–50. doi:10.5271/sjweh.703

    Article  Google Scholar 

  • Österberg K, Persson R, Karlson B, Ørbæk P (2004) Annoyance and performance of three environmentally intolerant groups during experimental challenge with chemical odors. Scand J Work Environ Health 30:486–496. doi:10.5271/sjweh.838

    Article  Google Scholar 

  • Reske M, Kellermann T, Shah NJ, Schneider F, Habel U (2010) Impact of valence and age on olfactory induced brain activation in healthy women. Behav Neurosci 124:414–422. doi:10.1037/a0019289

    Article  Google Scholar 

  • Rohlman DS, Lucchini R, Anger WK, Bellinger DC, van Thriel C (2008) Neurobehavioral testing in human risk assessment. Neurotoxicology 29:556–567. doi:10.1016/j.neuro.2008.04.003

    Article  Google Scholar 

  • Schneider F, Koch K, Reske M et al (2006) Interaction of negative olfactory stimulation and working memory in schizophrenia patients: development and evaluation of a behavioral neuroimaging task. Psychiatry Res 144:123–130. doi:10.1016/j.psychres.2004.12.013

    Article  Google Scholar 

  • Seubert J, Freiherr J, Frasnelli J, Hummel T, Lundström JN (2013) Orbitofrontal cortex and olfactory bulb volume predict distinct aspects of olfactory performance in healthy subjects. Cereb Cortex 23:2448–2456. doi:10.1093/cercor/bhs230

    Article  Google Scholar 

  • Smeets MAM, Dijksterhuis GB (2014) Smelly primes—when olfactory primes do or do not work. Front Psychol 5:96. doi:10.3389/fpsyg.2014.00096

    Article  CAS  Google Scholar 

  • Smeets MA, Bulsing PJ, van Rooden S et al (2007) Odor and irritation thresholds for ammonia: a comparison between static and dynamic olfactometry. Chem Senses 32:11–20. doi:10.1093/chemse/bjl031

    Article  CAS  Google Scholar 

  • Sucker K, Both R, Bischoff M, Guski R, Kramer U, Winneke G (2008) Odor frequency and odor annoyance. Part II: dose-response associations and their modification by hedonic tone. Int Arch Occup Environ Health 81:683–694. doi:10.1007/s00420-007-0262-4

    Article  CAS  Google Scholar 

  • Thuerauf N, Reulbach U, Lunkenheimer J et al (2009) Emotional reactivity to odors: olfactory sensitivity and the span of emotional evaluation separate the genders. Neurosci Lett 456:74–79. doi:10.1016/j.neulet.2009.03.096

    Article  CAS  Google Scholar 

  • Tsuchida A, Fellows LK (2008) Lesion evidence that two distinct regions within prefrontal cortex are critical for n-back performance in humans. J Cogn Neurosci 21:2263–2275. doi:10.1162/jocn.2008.21172

    Article  Google Scholar 

  • van Thriel C, Kiesswetter E, Blaszkewicz M, Golka K, Seeber A (2003) Neurobehavioral effects during experimental exposure to 1-octanol and isopropanol. Scand J Work Environ Health 29:143–151. doi:10.5271/sjweh.716

    Article  Google Scholar 

  • van Thriel C, Kiesswetter E, Schäper M et al (2007) From neurotoxic to chemosensory effects: new insights on acute solvent neurotoxicity exemplified by acute effects of 2-ethylhexanol. Neurotoxicology 28:347–355. doi:10.1016/j.neuro.2006.03.008

    Article  Google Scholar 

  • Van Thriel C, Kiesswetter E, Schäper M, Juran SA, Blaszkewicz M, Kleinbeck S (2008) Odor annoyance of environmental chemicals: sensory and cognitive influences. J Toxicol Environ Health A 71:776–785. doi:10.1080/15287390801985596

    Article  Google Scholar 

  • Wehling E, Lundervold AJ, Nordin S (2014) Does it matter how we pose the question “how is your sense of smell?”. Chemosens Percept 7:103–107. doi:10.1007/s12078-014-9171-6

    Article  Google Scholar 

  • Witthöft M, Rist F, Bailer J (2009) Abnormalities in cognitive-emotional information processing in idiopathic environmental intolerance and somatoform disorders. J Behav Ther Exp Psychiatry 40:70–84. doi:10.1016/j.jbtep.2008.04.002

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the DGUV—German Social Accident Insurance, Berlin, Germany (FF-FP0326). The study sponsor had no influence in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the paper for publication.

The authors would like to thank Nicola Schmidt-Peucker, Eva Strzelec, Michael Porta, and Beate Aust for technical assistance and Leah Boccaccio for proofreading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marlene Pacharra.

Ethics declarations

Conflict of Interest

Marlene Pacharra, Michael Schäper, Stefan Kleinbeck, Meinolf Blaszkewicz, and Christoph van Thriel declare that they have no conflict of interest.

Ethical Approval

All procedures performed were in accordance with the ethical standards of the institutional and national research committee and with the 1964 Helsinki declaration and its later amendments.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pacharra, M., Schäper, M., Kleinbeck, S. et al. Olfactory Acuity and Automatic Associations to Odor Words Modulate Adverse Effects of Ammonia. Chem. Percept. 9, 27–36 (2016). https://doi.org/10.1007/s12078-016-9202-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12078-016-9202-6

Keywords

Navigation