Skip to main content
Log in

3D tumour models: novel in vitro approaches to cancer studies

  • Review
  • Published:
Journal of Cell Communication and Signaling Aims and scope

Abstract

3D in vitro models have been used in cancer research as a compromise between 2-dimensional cultures of isolated cancer cells and the manufactured complexity of xenografts of human cancers in immunocompromised animal hosts. 3D models can be tailored to be biomimetic and accurately recapitulate the native in vivo scenario in which they are found. These 3D in vitro models provide an important alternative to both complex in vivo whole organism approaches, and 2D culture with its spatial limitations. Approaches to create more biomimetic 3D models of cancer include, but are not limited to, (i) providing the appropriate matrix components in a 3D configuration found in vivo, (ii) co-culturing cancer cells, endothelial cells and other associated cells in a spatially relevant manner, (iii) monitoring and controlling hypoxia- to mimic levels found in native tumours and (iv) monitoring the release of angiogenic factors by cancer cells in response to hypoxia. This article aims to overview current 3D in vitro models of cancer and review strategies employed by researchers to tackle these aspects with special reference to recent promising developments, as well as the current limitations of 2D cultures and in vivo models. 3D in vitro models provide an important alternative to both complex in vivo whole organism approaches, and 2D culture with its spatial limitations. Here we review current strategies in the field of modelling cancer, with special reference to advances in complex 3D in vitro models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

2D:

Two-dimensional

3D:

Three-dimensional

bFGF:

Basic fibroblast growth factor

BME:

Basement membrane extract

BSA:

Bovine serum albumin

DOX:

Doxorubicin

EC:

Endothelial cell

ECM:

Extracellular matrix

EGF:

Epidermal growth factor

EHS:

Engelbreth-Holm-Swarm

EOC:

Human epithelial ovarian cancer

HA:

Hyaluronan / hyaluronic acid

IL-8:

Interleukin-8

lrECM:

Laminin-rich extracellular matrix

MCS:

Mesenchymal stem cells

MCTS:

Multicellular tumour spheroid

MMP:

Metalloproteinase

NOD:

Non-obese diabetic

PBS:

Phosphate buffered saline

PC:

Plastic compression

PGA:

Polyglycolide

PEG:

Polyethylene glycol

PLA:

Polylactide

PLG/PLGA:

Poly(lactide-co-glycolide)

PVA:

Poly(vinyl alcohol)

RGD:

Arginine-glycine-aspartic acid

SCID:

Severely compromised immunodeficient

VEGF:

Vascular endothelial growth factor

References

  • Abou Neel EA, Cheema U, Knowles JC, Brown RA, Nazhat SN (2006) Use of multiple unconfined compression for control of collagen gel scaffold density and mechanical properties. Soft Matter 2:986–992

    Article  CAS  Google Scholar 

  • Agrawal CM, Ray RB (2001) Biodegradable polymeric scaffolds for musculoskeletal tissue engineering. J Biomed Mater Res 55:141–150

    Article  PubMed  CAS  Google Scholar 

  • Albihn A, Johnsen JI, Henriksson MA (2010) MYC in oncogenesis and as a target for cancer therapies. Adv Cancer Res 107:163–224

    Article  PubMed  CAS  Google Scholar 

  • Amatangelo MD, Bassi DE, Klein-Szanto AJ, Cukierman E (2005) Stroma-derived three-dimensional matrices are necessary and sufficient to promote desmoplastic differentiation of normal fibroblasts. Am J Pathol 167:475–488

    Article  PubMed  CAS  Google Scholar 

  • Boehm T, Folkman J, Browder T, O’Reilly MS (1997) Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature 390:404–407

    Article  PubMed  CAS  Google Scholar 

  • Brown RA, Wiseman M, Chuo C-B, Cheema U, Nazhat SN (2005) Ultrarapid engineering of biomimetic biomaterials and tissues: fabrication of nano- and microstructures by plastic compression. Adv Funct Mater 15:1762–1770

    Article  CAS  Google Scholar 

  • Calmels TP, Mattot V, Wernert N, Vandenbunder B, Stehelin D (1995) Invasive tumors induce c-ets1 transcription factor expression in adjacent stroma. Biol Cell 84:53–61

    Article  PubMed  CAS  Google Scholar 

  • Castello-Cros R, Khan DR, Simons J, Valianou M, Cukierman E (2009) Staged stromal extracellular 3D matrices differentially regulate breast cancer cell responses through PI3K and beta1-integrins. BMC Cancer 9:94

    Article  PubMed  Google Scholar 

  • Cheema U, Yang SY, Mudera V, Goldspink GG, Brown RA (2003) 3-D in vitro model of early skeletal muscle development. Cell Motil Cytoskeleton 54:226–236

    Article  PubMed  CAS  Google Scholar 

  • Cheema U, Brown RA, Alp B, Macrobert AJ (2008) Spatially defined oxygen gradients and vascular endothelial growth factor expression in an engineered 3D cell model. Cell Mol Life Sci 65:177–186

    Article  PubMed  CAS  Google Scholar 

  • Cheema U, Alekseeva T, Abou-Neel EA, Brown RA (2010) Switching off angiogenic signalling: creating channelled constructs for adequate oxygen delivery in tissue engineered constructs. Eur Cell Mater 20:274–280

    PubMed  CAS  Google Scholar 

  • Chen G, Sato T, Ushida T, Hirochika R, Shirasaki Y, Ochiai N, Tateishi T (2003) The use of a novel PLGA fiber/collagen composite web as a scaffold for engineering of articular cartilage tissue with adjustable thickness. J Biomed Mater Res A 67:1170–1180

    Article  PubMed  Google Scholar 

  • Chen R, Khormaee S, Eccleston ME, Slater NK (2009) The role of hydrophobic amino acid grafts in the enhancement of membrane-disruptive activity of pH-responsive pseudo-peptides. Biomaterials 30:1954–1961

    Article  PubMed  CAS  Google Scholar 

  • Cukierman E, Pankov R, Stevens DR, Yamada KM (2001) Taking cell-matrix adhesions to the third dimension. Science 294:1708–1712

    Article  PubMed  CAS  Google Scholar 

  • Cunliffe D, Pennadam S, Alexander C (2004) Synthetic and biological polymers—merging the interface. Eur Polym J 40:5–25

    Article  CAS  Google Scholar 

  • David L, Dulong V, Le CD, Chauzy C, Norris V, Delpech B, Lamacz M, Vannier JP (2004) Reticulated hyaluronan hydrogels: a model for examining cancer cell invasion in 3D. Matrix Biol 23:183–193

    Article  PubMed  CAS  Google Scholar 

  • Dedhar S, Hannigan GE (1996) Integrin cytoplasmic interactions and bidirectional transmembrane signalling. Curr Opin Cell Biol 8:657–669

    Article  PubMed  CAS  Google Scholar 

  • Eder JP Jr, Supko JG, Clark JW, Puchalski TA, Garcia-Carbonero R, Ryan DP, Shulman LN, Proper J, Kirvan M, Rattner B, Connors S, Keogan MT, Janicek MJ, Fogler WE, Schnipper L, Kinchla N, Sidor C, Phillips E, Folkman J, Kufe DW (2002) Phase I clinical trial of recombinant human endostatin administered as a short intravenous infusion repeated daily. J Clin Oncol 20:3772–3784

    Article  PubMed  CAS  Google Scholar 

  • Elkas JC, Baldwin RL, Pegram M, Tseng Y, Slamon D, Karlan BY (2002) A human ovarian carcinoma murine xenograft model useful for preclinical trials. Gynecol Oncol 87:200–206

    Article  PubMed  Google Scholar 

  • Fan BT, Lapluye G, Gavach C (1987) Potential study of basement membrane. Biochim Biophys Acta 900:183–190

    Article  PubMed  CAS  Google Scholar 

  • Fischbach C, Chen R, Matsumoto T, Schmelzle T, Brugge JS, Polverini PJ, Mooney DJ (2007) Engineering tumors with 3D scaffolds. Nat Meth 4:855–860

    Article  CAS  Google Scholar 

  • Freyer JP, Sutherland RM (1980) Selective dissociation and characterization of cells from different regions of multicell tumor spheroids. Cancer Res 40:3956–3965

    PubMed  CAS  Google Scholar 

  • Gurski LA, Jha AK, Zhang C, Jia X, Farach-Carson MC (2009) Hyaluronic acid-based hydrogels as 3D matrices for in vitro evaluation of chemotherapeutic drugs using poorly adherent prostate cancer cells. Biomaterials 30:6076–6085

    Article  PubMed  CAS  Google Scholar 

  • Harris AL (2002) Hypoxia—a key regulatory factor in tumour growth. Nat Rev Cancer 2:38–47

    Article  PubMed  CAS  Google Scholar 

  • Hemler ME, Mannion BA, Berditchevski F (1996) Association of TM4SF proteins with integrins: relevance to cancer. Biochim Biophys Acta 1287:67–71

    PubMed  Google Scholar 

  • Ho VH, Slater NK, Chen R (2011) pH-responsive endosomolytic pseudo-peptides for drug delivery to multicellular spheroids tumour models. Biomaterials 32:2953–2958

    Article  PubMed  CAS  Google Scholar 

  • Holliday DL, Brouilette KT, Markert A, Gordon LA, Jones JL (2009) Novel multicellular organotypic models of normal and malignant breast: tools for dissecting the role of the microenvironment in breast cancer progression. Breast Cancer Res 11:R3

    Article  PubMed  Google Scholar 

  • Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21:2529–2543

    Article  PubMed  CAS  Google Scholar 

  • Kenny PA, Lee GY, Myers CA, Neve RM, Semeiks JR, Spellman PT, Lorenz K, Lee EH, Barcellos-Hoff MH, Petersen OW, Gray JW, Bissell MJ (2007) The morphologies of breast cancer cell lines in three-dimensional assays correlate with their profiles of gene expression. Mol Oncol 1:84–96

    Article  PubMed  CAS  Google Scholar 

  • Kim TH, Mount CW, Gombotz WR, Pun SH (2010) The delivery of doxorubicin to 3-D multicellular spheroids and tumors in a murine xenograft model using tumor-penetrating triblock polymeric micelles. Biomaterials 31:7386–7397

    Article  PubMed  CAS  Google Scholar 

  • Kleinman HK, Martin GR (2005) Matrigel: basement membrane matrix with biological activity. Semin Cancer Biol 15:378–386

    Article  PubMed  CAS  Google Scholar 

  • Kramer RH, Bensch KG, Wong J (1986) Invasion of reconstituted basement membrane matrix by metastatic human tumor cells. Cancer Res 46:1980–1989

    PubMed  CAS  Google Scholar 

  • Kunz-Schughart LA, Kreutz M, Knuechel R (1998) Multicellular spheroids: a three-dimensional in vitro culture system to study tumour biology. Int J Exp Pathol 79:1–23

    Article  PubMed  CAS  Google Scholar 

  • Lee GY, Kenny PA, Lee EH, Bissell MJ (2007) Three-dimensional culture models of normal and malignant breast epithelial cells. Nat Meth 4:359–365

    Article  CAS  Google Scholar 

  • Loessner D, Stok KS, Lutolf MP, Hutmacher DW, Clements JA, Rizzi SC (2010) Bioengineered 3D platform to explore cell-ECM interactions and drug resistance of epithelial ovarian cancer cells. Biomaterials 31:8494–8506

    Article  PubMed  CAS  Google Scholar 

  • Loudos G, Kagadis GC, Psimadas D (2010) Current status and future perspectives of in vivo small animal imaging using radiolabeled nanoparticles. Eur J Radiol

  • Mandal BB, Kundu SC (2007) A novel method for dissolution and stabilization of non-mulberry silk gland protein fibroin using anionic surfactant sodium dodecyl sulfate. Biotechnol Bioeng 99:1482–1489

    Article  Google Scholar 

  • Monazzam A, Razifar P, Simonsson M, Qvarnstrom F, Josephsson R, Blomqvist C, Langstrom B, Bergstrom M (2006) Multicellular tumour spheroid as a model for evaluation of [18F]FDG as biomarker for breast cancer treatment monitoring. Cancer Cell Int 6:6

    Article  PubMed  Google Scholar 

  • Monazzam A, Razifar P, Ide S, Rugaard JM, Josephsson R, Blomqvist C, Langstrom B, Bergstrom M (2009) Evaluation of the Hsp90 inhibitor NVP-AUY922 in multicellular tumour spheroids with respect to effects on growth and PET tracer uptake. Nucl Med Biol 36:335–342

    Article  PubMed  CAS  Google Scholar 

  • Mueller-Klieser W (1997) Three-dimensional cell cultures: from molecular mechanisms to clinical applications. Am J Physiol 273:C1109–C1123

    PubMed  CAS  Google Scholar 

  • Nilsson EE, Westfall SD, McDonald C, Lison T, Sadler-Riggleman I, Skinner MK (2002) An in vivo mouse reporter gene (human secreted alkaline phosphatase) model to monitor ovarian tumor growth and response to therapeutics. Cancer Chemother Pharmacol 49:93–100

    Article  PubMed  CAS  Google Scholar 

  • Noskova V, Ahmadi S, Asander E, Casslen B (2009) Ovarian cancer cells stimulate uPA gene expression in fibroblastic stromal cells via multiple paracrine and autocrine mechanisms. Gynecol Oncol 115:121–126

    Article  PubMed  CAS  Google Scholar 

  • Ong SM, Zhao Z, Arooz T, Zhao D, Zhang S, Du T, Wasser M, van ND, Yu H (2010) Engineering a scaffold-free 3D tumor model for in vitro drug penetration studies. Biomaterials 31:1180–1190

    Article  PubMed  CAS  Google Scholar 

  • Paszek MJ, Zahir N, Johnson KR, Lakins JN, Rozenberg GI, Gefen A, Reinhart-King CA, Margulies SS, Dembo M, Boettiger D, Hammer DA, Weaver VM (2005) Tensional homeostasis and the malignant phenotype. Cancer Cell 8:241–254

    Article  PubMed  CAS  Google Scholar 

  • Pinilla S, Alt E, Abdul Khalek FJ, Jotzu C, Muehlberg F, Beckmann C, Song YH (2009) Tissue resident stem cells produce CCL5 under the influence of cancer cells and thereby promote breast cancer cell invasion. Cancer Lett 284:80–85

    Article  PubMed  CAS  Google Scholar 

  • Pollard JW (2004) Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 4:71–78

    Article  PubMed  CAS  Google Scholar 

  • Ponzielli R, Katz S, Barsyte-Lovejoy D, Penn LZ (2005) Cancer therapeutics: targeting the dark side of Myc. Eur J Cancer 41:2485–2501

    Article  PubMed  CAS  Google Scholar 

  • Raeber GP, Lutolf MP, Hubbell JA (2005) Molecularly engineered PEG hydrogels: a novel model system for proteolytically mediated cell migration. Biophys J 89:1374–1388

    Article  PubMed  CAS  Google Scholar 

  • Richmond A, Su Y (2008) Mouse xenograft models vs GEM models for human cancer therapeutics. Dis Model Mech 1:78–82

    Article  PubMed  Google Scholar 

  • Rizvanov AA, Yalvac ME, Shafigullina AK, Salafutdinov II, Blatt NL, Sahin F, Kiyasov AP, Palotas A (2010) Interaction and self-organization of human mesenchymal stem cells and neuro-blastoma SH-SY5Y cells under co-culture conditions: a novel system for modeling cancer cell micro-environment. Eur J Pharm Biopharm 76:253–259

    Article  PubMed  CAS  Google Scholar 

  • Sahoo SK, Panda AK, Labhasetwar V (2005) Characterization of porous PLGA/PLA microparticles as a scaffold for three dimensional growth of breast cancer cells. Biomacromolecules 6:1132–1139

    Article  PubMed  CAS  Google Scholar 

  • Serebriiskii I, Castello-Cros R, Lamb A, Golemis EA, Cukierman E (2008) Fibroblast-derived 3D matrix differentially regulates the growth and drug-responsiveness of human cancer cells. Matrix Biol 27:573–585

    Article  PubMed  CAS  Google Scholar 

  • Shekhar MP, Werdell J, Santner SJ, Pauley RJ, Tait L (2001) Breast stroma plays a dominant regulatory role in breast epithelial growth and differentiation: implications for tumor development and progression. Cancer Res 61:1320–1326

    PubMed  CAS  Google Scholar 

  • Sutherland RM (1988) Cell and environment interactions in tumor microregions: the multicell spheroid model. Science 240:177–184

    Article  PubMed  CAS  Google Scholar 

  • Talukdar S, Mandal M, Hutmacher DW, Russell PJ, Soekmadji C, Kundu SC (2011) Engineered silk fibroin protein 3D matrices for in vitro tumor model. Biomaterials 32:2149–2159

    Article  PubMed  CAS  Google Scholar 

  • Tian B, Li Y, Ji XN, Chen J, Xue Q, Ye SL, Liu YK, Tang ZY (2005) Basement membrane proteins play an active role in the invasive process of human hepatocellular carcinoma cells with high metastasis potential. J Cancer Res Clin Oncol 131:80–86

    Article  PubMed  CAS  Google Scholar 

  • Verbridge SS, Choi NW, Zheng Y, Brooks DJ, Stroock AD, Fischbach C (2010) Oxygen-controlled three-dimensional cultures to analyze tumor angiogenesis. Tissue Eng A 16:2133–2141

    Article  CAS  Google Scholar 

  • Villanueva I, Weigel CA, Bryant SJ (2009) Cell-matrix interactions and dynamic mechanical loading influence chondrocyte gene expression and bioactivity in PEG-RGD hydrogels. Acta Biomater 5:2832–2846

    Article  PubMed  CAS  Google Scholar 

  • Webber MM, Bello D, Kleinman HK, Hoffman MP (1997) Acinar differentiation by non-malignant immortalized human prostatic epithelial cells and its loss by malignant cells. Carcinogenesis 18:1225–1231

    Article  PubMed  CAS  Google Scholar 

  • World Health Organization. Cancer. http://www.who.int/cancer/en. Accessed 08 March 2011

Download references

Acknowledgements

Umber Cheema is a BBSRC David Phillips Fellow and is funded through this route.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marilena Loizidou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nyga, A., Cheema, U. & Loizidou, M. 3D tumour models: novel in vitro approaches to cancer studies. J. Cell Commun. Signal. 5, 239–248 (2011). https://doi.org/10.1007/s12079-011-0132-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12079-011-0132-4

Keywords

Navigation