Skip to main content
Log in

Involvement of the insulin-like growth factor binding proteins in the cancer cell response to DNA damage

  • REVIEW
  • Published:
Journal of Cell Communication and Signaling Aims and scope

Abstract

The complex mechanisms that cells have evolved to meet the challenge of constant exposure to DNA-damaging stimuli, also serve to protect cancer cells from the cytotoxic effects of chemo- and radiotherapy. IGFBPs appear to be involved, directly or indirectly, in some of these protective mechanisms. Activation of p53 is an early response to genotoxic stress, and all six human IGFBP genes have predicted p53 response elements in their promoter and/or intronic regions, at least some of which are functional. IGFBP3 has been extensively characterized as a p53-inducible gene, but in some cases it is suppressed by mutant p53 forms. DNA double-strand breaks (DSBs), induced by radiotherapy and some chemotherapies, potentially lead to apoptotic cell death, senescence, or repair and recovery. DSB damage can be repaired by homologous recombination or non-homologous end-joining (NHEJ), depending on the cell cycle stage, availability of key repair proteins, and other factors. The epidermal growth factor receptor (EGFR) has been implicated in the NHEJ pathway, and EGFR inhibition may inhibit repair, promoting apoptosis and thus improving sensitivity to chemotherapy or radiotherapy. Both IGFBP-3 and IGFBP-6 interact with components of the NHEJ pathway, and IGFBP-3 can facilitate this process through direct interaction with both EGFR and the catalytic subunit of DNA-PK. Cell fate after DNA damage may in part be regulated by the balance between the sphingolipids ceramide and sphingosine-1-phosphate, and IGFBPs can influence the production of both lipids. A better understanding of the involvement of IGFBPs in the DNA damage response in cancer cells may lead to improved methods of sensitizing cancers to DNA-damaging therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

IGFBP:

Insulin-like growth factor binding protein

DSB:

Double-strand break

NHEJ:

Non-homologous end-joining

EGFR:

Epidermal growth factor receptor

DNA-PK:

DNA-dependent protein kinase

IGF1R:

Type 1 IGF receptor

ATM:

Ataxia-telangiectasia mutated

ATR:

Ataxia-telangiectasia and Rad3-related

PIKK:

PI3 kinase-related kinases

HR:

Homologous recombination

MRN:

Mre11 Rad50 and Nbs1

ERK:

Extracellular signal-regulated kinase

S1P:

Sphingosine-1-phosphate

References

  • Abraham RT (2001) Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev 15:2177–2196

    Article  CAS  PubMed  Google Scholar 

  • Abraham RT (2004) PI 3-kinase related kinases: ‘Big’ players in stress-induced signaling pathways. DNA Repair 3:883–887

    Article  CAS  PubMed  Google Scholar 

  • Achary MP, Jaggernauth W, Gross E, Alfieri A, Klinger HP, Vikram B (2000) Cell lines from the same cervical carcinoma but with different radiosensitivities exhibit different cDNA microarray patterns of gene expression. Cytogenet Cell Genet 91:39–43

    Article  CAS  PubMed  Google Scholar 

  • Aureli M, Murdica V, Loberto N, Samarani M, Prinetti A, Bassi R, Sonnino S (2014) Exploring the link between ceramide and ionizing radiation. Glycoconj J 31:449–459

    Article  CAS  PubMed  Google Scholar 

  • Barbieri CE, Perez CA, Johnson KN, Ely KA, Billheimer D, Pietenpol JA (2005) IGFBP-3 is a direct target of transcriptional regulation by DeltaNp63alpha in squamous epithelium. Cancer Res 65:2314–2320

    Article  CAS  PubMed  Google Scholar 

  • Baxter RC (2000) Insulin-like growth factor (IGF)-binding proteins: interactions with IGFs and intrinsic bioactivities. Am J Physiol Endocrinol Metab 278:E967–E976

    CAS  PubMed  Google Scholar 

  • Baxter RC (2014) IGF binding proteins in cancer: mechanistic and clinical insights. Nat Rev Cancer 14:329–341

    Article  CAS  PubMed  Google Scholar 

  • Beattie J, McIntosh L, van der Walle CF (2010) Cross-talk between the insulin-like growth factor (IGF) axis and membrane integrins to regulate cell physiology. J Cell Physiol 224:605–611

    Article  CAS  PubMed  Google Scholar 

  • Bernstein NK, Hammel M, Mani RS, Weinfeld M, Pelikan M, Tainer JA, Glover JNM (2009) Mechanism of DNA substrate recognition by the mammalian DNA repair enzyme, Polynucleotide Kinase. Nucleic Acids Res 37:6161–6173

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Botchkarev VA, Komarova EA, Siebenhaar F, Botchkareva NV, Komarov PG, Maurer M, Gilchrest BA, Gudkov AV (2000) p53 is essential for chemotherapy-induced hair loss. Cancer Res 60:5002–5006

    CAS  PubMed  Google Scholar 

  • Bozulic L, Surucu B, Hynx D, Hemmings BA (2008) PKBα/Akt1 Acts Downstream of DNA-PK in the DNA Double-Strand Break Response and Promotes Survival. Mol Cell 30:203–213

    Article  CAS  PubMed  Google Scholar 

  • Buckbinder L, Talbott R, Velasco-Miguel S, Takenaka I, Faha B, Seizinger BR, Kley N (1995) Induction of the growth inhibitor IGF-binding protein 3 by p53. Nature 377:646–649

    Article  CAS  PubMed  Google Scholar 

  • Butt AJ, Firth SM, King MA, Baxter RC (2000) Insulin-like growth factor-binding protein-3 modulates expression of Bax and Bcl-2 and potentiates p53-independent radiation-induced apoptosis in human breast cancer cells. J Biol Chem 275:39174–39181

    Article  CAS  PubMed  Google Scholar 

  • Butt AJ, Dickson KA, McDougall F, Baxter RC (2003) Insulin-like growth factor-binding protein-5 inhibits the growth of human breast cancer cells in vitro and in vivo. J Biol Chem 278:29676–29685

    Article  CAS  PubMed  Google Scholar 

  • Chen DJ, Nirodi CS (2007) The epidermal growth factor receptor: a role in repair of radiation-induced DNA damage. Clin Cancer Res 13:6555–6560

    Article  CAS  PubMed  Google Scholar 

  • Chen BP, Chan DW, Kobayashi J, Burma S, Asaithamby A, Morotomi-Yano K, Botvinick E, Qin J, Chen DJ (2005) Cell cycle dependence of DNA-dependent protein kinase phosphorylation in response to DNA double strand breaks. J Biol Chem 280:14709–14715

    Article  CAS  PubMed  Google Scholar 

  • Chen BP, Uematsu N, Kobayashi J, Lerenthal Y, Krempler A, Yajima H, Lobrich M, Shiloh Y, Chen DJ (2007) Ataxia telangiectasia mutated (ATM) is essential for DNA-PKcs phosphorylations at the Thr-2609 cluster upon DNA double strand break. J Biol Chem 282:6582–6587

    Article  CAS  PubMed  Google Scholar 

  • Chuang ST, Patton KT, Schafernak KT, Papavero V, Lin F, Baxter RC, Teh BT, Yang XJ (2008) Over expression of insulin-like growth factor binding protein 3 in clear cell renal cell carcinoma. J Urol 179:445–449

    Article  CAS  PubMed  Google Scholar 

  • Cobb LJ, Liu B, Lee KW, Cohen P (2006) Phosphorylation by DNA-dependent protein kinase is critical for apoptosis induction by insulin-like growth factor binding protein-3. Cancer Res 66:10878–10884

    Article  CAS  PubMed  Google Scholar 

  • Cobb LJ, Mehta H, Cohen P (2009) Enhancing the apoptotic potential of insulin-like growth factor-binding protein-3 in prostate cancer by modulation of CK2 phosphorylation. Mol Endocrinol 23:1624–1633

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cottarel J, Frit P, Bombarde O, Salles B, Négrel A, Bernard S, Jeggo PA, Lieber MR, Modesti M, Calsou P (2013) A noncatalytic function of the ligation complex during nonhomologous end joining. J Cell Biol 200:173–186

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • d’Adda di Fagagna F (2008) Living on a break: cellular senescence as a DNA-damage response. Nat Rev Cancer 8:512–522

    Article  PubMed  Google Scholar 

  • Davis AJ, Chen BP, Chen DJ (2014) DNA-PK: a dynamic enzyme in a versatile DSB repair pathway. DNA Repair (Amst) 17:21–29

    Article  CAS  Google Scholar 

  • Dittmann K, Mayer C, Fehrenbacher B, Schaller M, Raju U, Milas L, Chen DJ, Kehlbach R, Rodemann HP (2005) Radiation-induced Epidermal Growth Factor Receptor Nuclear Import Is Linked to Activation of DNA-dependent Protein Kinase. J Biol Chem 280:31182–31189

    Article  CAS  PubMed  Google Scholar 

  • Dittmann K, Mayer C, Kehlbach R, Rodemann HP (2008) Radiation-induced caveolin-1 associated EGFR internalization is linked with nuclear EGFR transport and activation of DNA-PK. Mol Cancer 7:69. doi:10.1186/1476-4598-1187-1169

    Article  PubMed Central  PubMed  Google Scholar 

  • Dobbs TA, Tainer JA, Lees-Miller SP (2010) A structural model for regulation of NHEJ by DNA-PKcs autophosphorylation. DNA Repair (Amst) 9:1307–1314

    Article  CAS  PubMed Central  Google Scholar 

  • Drivdahl RH, Sprenger C, Trimm K, Plymate SR (2001) Inhibition of Growth and Increased Expression of Insulin-Like Growth Factor-Binding Protein-3 (IGFBP-3) and -6 in Prostate Cancer Cells Stably Transfected with Antisense IGFBP-4 Complementary Deoxyribonucleic Acid. Endocrinology 142:1990–1998

    CAS  PubMed  Google Scholar 

  • Falck J, Coates J, Jackson SP (2005) Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage. Nature 434:605–611

    Article  CAS  PubMed  Google Scholar 

  • Forbes BE, McCarthy P, Norton RS (2012) Insulin-like growth factor binding proteins: a structural perspective. Front Endocrinol (Lausanne) 3:38

    Google Scholar 

  • Fowler CA, Perks CM, Newcomb PV, Savage PB, Farndon JR, Holly JMP (2000) Insulin-like growth factor binding protein-3 (IGFBP-3) potentiates paclitaxel-induced apoptosis in human breast cancer cells. Int J Cancer 88:448–453

    Article  CAS  PubMed  Google Scholar 

  • Gill ZP, Perks CM, Newcomb PV, Holly JMP (1997) Insulin-like Growth Factor-binding Protein (IGFBP-3) Predisposes Breast Cancer Cells to Programmed Cell Death in a Non-IGF-dependent Manner. J Biol Chem 272:25602–25607

    Article  CAS  PubMed  Google Scholar 

  • Golding SE, Rosenberg E, Neill S, Dent P, Povirk LF, Valerie K (2007) Extracellular signal-related kinase positively regulates ataxia telangiectasia mutated, homologous recombination repair, and the DNA damage response. Cancer Res 67:1046–1053

    Article  CAS  PubMed  Google Scholar 

  • Golding SE, Morgan RN, Adams BR, Hawkins AJ, Povirk LF, Valerie K (2009) Pro-survival AKT and ERK signaling from EGFR and mutant EGFRvIII enhances DNA double-strand break repair in human glioma cells. Cancer Biol Ther 8:730–738

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Granata R, De Petrini M, Trovato L, Ponti R, Pons N, Ghe C, Graziani A, Ferry RJ Jr, Muccioli G, Ghigo E (2003) Insulin-like growth factor binding protein-3 mediates serum starvation- and doxorubicin-induced apoptosis in H9c2 cardiac cells. J Endocrinol Invest 26:1231–1241

    Article  CAS  PubMed  Google Scholar 

  • Granata R, Trovato L, Garbarino G, Taliano M, Ponti R, Sala G, Ghidoni R, Ghigo E (2004) Dual effects of IGFBP-3 on endothelial cell apoptosis and survival: involvement of the sphingolipid signaling pathways. FASEB J 18:1456–1458

    CAS  PubMed  Google Scholar 

  • Grimberg A, Coleman CM, Burns TF, Himelstein BP, Koch CJ, Cohen P, El-Deiry WS (2005) p53-Dependent and p53-independent induction of insulin-like growth factor binding protein-3 by deoxyribonucleic acid damage and hypoxia. J Clin Endocrinol Metab 90:3568–3574

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grimberg A, Coleman CM, Shi Z, Burns TF, MacLachlan TK, Wang W, El-Deiry WS (2006) Insulin-like growth factor factor binding protein-2 is a novel mediator of p53 inhibition of insulin-like growth factor signaling. Cancer Biol Ther 5:1408–1414

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grundy GJ, Moulding HA, Caldecott KW, Rulten SL (2014) One ring to bring them all–the role of Ku in mammalian non-homologous end joining. DNA Repair (Amst) 17:30–38

    Article  CAS  Google Scholar 

  • Han S, Li Z, Master LM, Master ZW, Wu A (2014) Exogenous IGFBP-2 promotes proliferation, invasion, and chemoresistance to temozolomide in glioma cells via the integrin beta1-ERK pathway. Br J Cancer 111:1400–1409

    Article  CAS  PubMed  Google Scholar 

  • Hanafusa T, Shinji T, Shiraha H, Nouso K, Iwasaki Y, Yumoto E, Ono T, Koide N (2005) Functional promoter upstream p53 regulatory sequence of IGFBP3 that is silenced by tumor specific methylation. BMC Cancer 5:9

    Article  PubMed Central  PubMed  Google Scholar 

  • Harms KL, Chen X (2005) The C terminus of p53 family proteins is a cell fate determinant. Mol Cell Biol 25:2014–2030

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hollowood AD, Lai T, Perks CM, Newcomb PV, Alderson D, Holly JMP (2000) IGFBP-3 prolongs the p53 response and enhances apoptosis following UV irradiation. Int J Cancer 88:336–341

    Article  CAS  PubMed  Google Scholar 

  • Huertas P (2010) DNA resection in eukaryotes: deciding how to fix the break. Nat Struct Mol Biol 17:11–16

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Iosef C, Vilk G, Gkourasas T, Lee KJ, Chen BP, Fu P, Bach LA, Lajoie G, Gupta MB, Li SS et al (2010) Insulin-like growth factor binding protein-6 (IGFBP-6) interacts with DNA-end binding protein Ku80 to regulate cell fate. Cell Signal 22:1033–1043

    Article  CAS  PubMed  Google Scholar 

  • Jackson SP, Bartek J (2009) The DNA-damage response in human biology and human disease. Nature 461:1071–1078

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Javvadi P, Makino H, Das AK, Lin YF, Chen DJ, Chen BP, Nirodi CS (2012) Threonine 2609 phosphorylation of the DNA-dependent protein kinase is a critical prerequisite for epidermal growth factor receptor-mediated radiation resistance. Mol Cancer Res 10:1359–1368

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kakarougkas A, Jeggo PA (2014) DNA DSB repair pathway choice: an orchestrated handover mechanism. Br J Radiol 87:20130685

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Khan E, Heidinger J, Levy M, Lisanti M, Ravid T, Goldkorn T (2006) Epidermal growth factor receptor exposed to oxidative stress undergoes Src- and caveolin-1-dependent perinuclear trafficking. J Biol Chem 281:14486–14493

    Article  CAS  PubMed  Google Scholar 

  • Kim KS, Seu YB, Baek SH, Kim MJ, Kim KJ, Kim JH, Kim JR (2007) Induction of cellular senescence by insulin-like growth factor binding protein-5 through a p53-dependent mechanism. Mol Biol Cell 18:4543–4552

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kriegs M, Kasten-Pisula U, Rieckmann T, Holst K, Saker J, Dahm-Daphi J, Dikomey E (2010) The epidermal growth factor receptor modulates DNA double-strand break repair by regulating non-homologous end-joining. DNA Repair (Amst) 9:889–897

    Article  CAS  Google Scholar 

  • Krietsch J, Caron MC, Gagne JP, Ethier C, Vignard J, Vincent M, Rouleau M, Hendzel MJ, Poirier GG, Masson JY (2012) PARP activation regulates the RNA-binding protein NONO in the DNA damage response to DNA double-strand breaks. Nucleic Acids Res 40:10287–10301

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Leu JI, George DL (2007) Hepatic IGFBP1 is a prosurvival factor that binds to BAK, protects the liver from apoptosis, and antagonizes the proapoptotic actions of p53 at mitochondria. Genes Dev 21:3095–3109

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lieber MR (2010) The Mechanism of Double-Strand DNA Break Repair by the Nonhomologous DNA End-Joining Pathway. Annu Rev Biochem 79:181–211

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lin MZ, Marzec KA, Martin JL, Baxter RC (2014) The role of insulin-like growth factor binding protein-3 in the breast cancer cell response to DNA-damaging agents. Oncogene 33:85–96

    Article  CAS  PubMed  Google Scholar 

  • Loughery J, Cox M, Smith LM, Meek DW (2014) Critical role for p53-serine 15 phosphorylation in stimulating transactivation at p53-responsive promoters. Nucleic Acids Res 42:7666–7680

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Martin JL, Lin MZ, McGowan EM, Baxter RC (2009) Potentiation of growth factor signaling by insulin-like growth factor-binding protein-3 in breast epithelial cells requires sphingosine kinase activity. J Biol Chem 284:25542–25552

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Martin JL, de Silva HC, Lin MZ, Scott CD, Baxter RC (2014) Inhibition of insulin-like growth factor-binding protein-3 signaling through sphingosine kinase-1 sensitizes triple-negative breast cancer cells to EGF receptor blockade. Mol Cancer Ther 13:316–328

    Article  CAS  PubMed  Google Scholar 

  • Meek K, Gupta S, Ramsden DA, Lees-Miller SP (2004) The DNA-dependent protein kinase: the director at the end. Immunol Rev 200:132–141

    Article  CAS  PubMed  Google Scholar 

  • Moynahan ME, Jasin M (2010) Mitotic homologous recombination maintains genomic stability and suppresses tumorigenesis. Nat Rev Mol Cell Biol 11:196–207

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nick McElhinny SA, Snowden CM, McCarville J, Ramsden DA (2000) Ku Recruits the XRCC4-Ligase IV Complex to DNA Ends. Mol Cell Biol 20:2996–3003

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Olsen BB, Issinger OG, Guerra B (2010) Regulation of DNA-dependent protein kinase by protein kinase CK2 in human glioblastoma cells. Oncogene 29:6016–6026

    Article  CAS  PubMed  Google Scholar 

  • Pawelczak KS, Bennett SM, Turchi JJ (2011) Coordination of DNA-PK activation and nuclease processing of DNA termini in NHEJ. Antioxid Redox Signal 14:2531–2543

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pchejetski D, Doumerc N, Golzio M, Naymark M, Teissie J, Kohama T, Waxman J, Malavaud B, Cuvillier O (2008) Chemosensitizing effects of sphingosine kinase-1 inhibition in prostate cancer cell and animal models. Mol Cancer Ther 7:1836–1845

    Article  CAS  PubMed  Google Scholar 

  • Perks CM, Bowen S, Gill ZP, Newcomb PV, Holly JM (1999) Differential IGF-independent effects of insulin-like growth factor binding proteins (1-6) on apoptosis of breast epithelial cells. J Cell Biochem 75:652–664

    Article  CAS  PubMed  Google Scholar 

  • Perks CM, McCaig C, Clarke JB, Clemmons DR, Holly JM (2002) A non-IGF binding mutant of IGFBP-3 modulates cell function in breast epithelial cells. Biochem Biophys Res Commun 294:988–994

    Article  CAS  PubMed  Google Scholar 

  • Pintens S, Neven P, Drijkoningen M, Van Belle V, Moerman P, Christiaens M-R, Smeets A, Wildiers H, Bempt IV (2009) Triple negative breast cancer: a study from the point of view of basal CK5/6 and HER-1. J Clin Pathol 62:624–628

    Article  CAS  PubMed  Google Scholar 

  • Reynolds R, Witherspoon S, Fox T (2004) The infant mouse as a in vivo model for the detection and study of DNA damage-induced changes in the liver. Mol Carcinog 40:62–72

    Article  CAS  PubMed  Google Scholar 

  • Riballo E, Kühne M, Rief N, Doherty A, Smith GCM, Recio M-J, Reis C, Dahm K, Fricke A, Krempler A et al (2004) A Pathway of Double-Strand Break Rejoining Dependent upon ATM, Artemis, and Proteins Locating to γ-H2AX Foci. Mol Cell 16:715–724

    Article  CAS  PubMed  Google Scholar 

  • Salton M, Lerenthal Y, Wang SY, Chen DJ, Shiloh Y (2010) Involvement of Matrin 3 and SFPQ/NONO in the DNA damage response. Cell Cycle 9:1568–1576

    Article  CAS  PubMed  Google Scholar 

  • San Filippo J, Sung P, Klein H (2008) Mechanism of Eukaryotic Homologous Recombination. Annu Rev Biochem 77:229–257

    Article  CAS  PubMed  Google Scholar 

  • Santana P, Pena LA, Haimovitz-Friedman A, Martin S, Green D, McLoughlin M, Cordon-Cardo C, Schuchman EH, Fuks Z, Kolesnick R (1996) Acid sphingomyelinase-deficient human lymphoblasts and mice are defective in radiation-induced apoptosis. Cell 86:189–199

    Article  CAS  PubMed  Google Scholar 

  • Sbisa E, Catalano D, Grillo G, Licciulli F, Turi A, Liuni S, Pesole G, De Grassi A, Caratozzolo MF, D’Erchia AM et al (2007) p53FamTaG: a database resource of human p53, p63 and p73 direct target genes combining in silico prediction and microarray data. BMC Bioinforma 8(Suppl 1):S20

    Article  Google Scholar 

  • Schedlich LJ, Nilsen T, John AP, Jans DA, Baxter RC (2003) Phosphorylation of insulin-like growth factor binding protein-3 by deoxyribonucleic acid-dependent protein kinase reduces ligand binding and enhances nuclear accumulation. Endocrinology 144:1984–1993

    Article  CAS  PubMed  Google Scholar 

  • Shao ZM, Sheikh MS, Ordonez JV, Feng P, Kute T, Chen JC, Aisner S, Schnaper L, LeRoith D, Roberts CT Jr et al (1992) IGFBP-3 gene expression and estrogen receptor status in human breast carcinoma. Cancer Res 52:5100–5103

    CAS  PubMed  Google Scholar 

  • Shibata A, Conrad S, Birraux J, Geuting V, Barton O, Ismail A, Kakarougkas A, Meek K, Taucher‐Scholz G, Löbrich M et al (2011) Factors determining DNA double-strand break repair pathway choice in G2 phase. EMBO J 30:1079–1092

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shikazono N, Noguchi M, Fujii K, Urushibara A, Yokoya A (2009) The Yield, Processing, and Biological Consequences of Clustered DNA Damage Induced by Ionizing Radiation. J Radiat Res 50:27–36

    Article  CAS  PubMed  Google Scholar 

  • Sirbu BM, Cortez D (2013) DNA damage response: three levels of DNA repair regulation. Cold Spring Harb Perspect Biol 5:a012724

    Article  PubMed  Google Scholar 

  • Sitar T, Popowicz GM, Siwanowicz I, Huber R, Holak TA (2006) Structural basis for the inhibition of insulin-like growth factors by insulin-like growth factor-binding proteins. Proc Natl Acad Sci U S A 103:13028–13033

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Smith J, Tho LM, Xu N, Gillespie DA (2010) The ATM-Chk2 and ATR-Chk1 pathways in DNA damage signaling and cancer. Adv Cancer Res 108:73–112

    CAS  PubMed  Google Scholar 

  • Sperka T, Wang J, Rudolph KL (2012) DNA damage checkpoints in stem cells, ageing and cancer. Nat Rev Mol Cell Biol 13:579–590

    Article  CAS  PubMed  Google Scholar 

  • Thompson LH (2012) Recognition, signaling, and repair of DNA double-strand breaks produced by ionizing radiation in mammalian cells: the molecular choreography. Mutat Res 751:158–246

    Article  CAS  PubMed  Google Scholar 

  • Toulany M, Kehlbach R, Florczak U, Sak A, Wang S, Chen J, Lobrich M, Rodemann HP (2008) Targeting of AKT1 enhances radiation toxicity of human tumor cells by inhibiting DNA-PKcs-dependent DNA double-strand break repair. Mol Cancer Ther 7:1772–1781

    Article  CAS  PubMed  Google Scholar 

  • Truman JP, Garcia-Barros M, Obeid LM, Hannun YA (2014) Evolving concepts in cancer therapy through targeting sphingolipid metabolism. Biochim Biophys Acta 1841:1174–1188

    Article  CAS  PubMed  Google Scholar 

  • Uematsu N, Weterings E, Yano K, Morotomi-Yano K, Jakob B, Taucher-Scholz G, Mari PO, Van Gent DC, Chen BP, Chen DJ (2007) Autophosphorylation of DNA-PKCS regulates its dynamics at DNA double-strand breaks. J Cell Biol 177:219–229

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Viale G, Rotmensz N, Maisonneuve P, Bottiglieri L, Montagna E, Luini A, Veronesi P, Intra M, Torrisi R, Cardillo A et al (2009) Invasive ductal carcinoma of the breast with the “triple-negative” phenotype: prognostic implications of EGFR immunoreactivity. Breast Cancer Res Treat 116:317–328

    Article  CAS  PubMed  Google Scholar 

  • Vikhanskaya F, Lee MK, Mazzoletti M, Broggini M, Sabapathy K (2007) Cancer-derived p53 mutants suppress p53-target gene expression–potential mechanism for gain of function of mutant p53. Nucleic Acids Res 35:2093–2104

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Weterings E, Chen DJ (2008) The endless tale of non-homologous end-joining. Cell Res 18:114–124

    Article  CAS  PubMed  Google Scholar 

  • Williams AC, Collard TJ, Perks CM, Newcomb P, Moorghen M, Holly JM, Paraskeva C (2000) Increased p53-dependent apoptosis by the insulin-like growth factor binding protein IGFBP-3 in human colonic adenoma-derived cells. Cancer Res 60:22–27

    CAS  PubMed  Google Scholar 

  • Woods D, Turchi JJ (2013) Chemotherapy induced DNA damage response: convergence of drugs and pathways. Cancer Biol Ther 14:379–389

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xiao CY, Hubner S, Jans DA (1997) SV40 large tumor antigen nuclear import is regulated by the double-stranded DNA-dependent protein kinase site (serine 120) flanking the nuclear localization sequence. J Biol Chem 272:22191–22198

    Article  CAS  PubMed  Google Scholar 

  • Xie L, Tsaprailis G, Chen QM (2005) Proteomic identification of insulin-like growth factor-binding protein-6 induced by sublethal H2O2 stress from human diploid fibroblasts. Mol Cell Proteomics 4:1273–1283

    Article  CAS  PubMed  Google Scholar 

  • Xue A, Scarlett CJ, Jackson CJ, Allen BJ, Smith RC (2008) Prognostic significance of growth factors and the urokinase-type plasminogen activator system in pancreatic ductal adenocarcinoma. Pancreas 36:160–167

    Article  CAS  PubMed  Google Scholar 

  • Yamada PM, Lee KW (2009) Perspectives in mammalian IGFBP-3 biology: local vs. systemic action. Am J Physiol Cell Physiol 296:C954–C976

    Article  CAS  PubMed  Google Scholar 

  • Yoshino K, Motoyama S, Koyota S, Shibuya K, Usami S, Maruyama K, Saito H, Minamiya Y, Sugiyama T, Ogawa J (2011) IGFBP3 and BAG1 enhance radiation-induced apoptosis in squamous esophageal cancer cells. Biochem Biophys Res Commun 404:1070–1075

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Li QQ, Zhang R, Xi M, Liao YJ, Qian D, He LR, Zeng YX, Xie D, Liu MZ (2012) The overexpression of IGFBP-3 is involved in the chemosensitivity of esophageal squamous cell carcinoma cells to nimotuzumab combined with cisplatin. Tumour Biol 33:1115–1123

    Article  CAS  PubMed  Google Scholar 

  • Zhou BB, Elledge SJ (2000) The DNA damage response: putting checkpoints in perspective. Nature 408:433–439

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from the Australian Research Council (DP140100137) and the Cancer Council NSW (RG 11-09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert C. Baxter.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chua, M.W.Y., Lin, M.Z., Martin, J.L. et al. Involvement of the insulin-like growth factor binding proteins in the cancer cell response to DNA damage. J. Cell Commun. Signal. 9, 167–176 (2015). https://doi.org/10.1007/s12079-015-0262-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12079-015-0262-1

Keywords

Navigation