Skip to main content
Erschienen in: Clinical and Translational Oncology 1/2020

24.05.2019 | Review Article

Immunomodulation in leukemia: cellular aspects of anti-leukemic properties

verfasst von: M. Maleknia, A. Valizadeh, S. M. S. Pezeshki, N. Saki

Erschienen in: Clinical and Translational Oncology | Ausgabe 1/2020

Einloggen, um Zugang zu erhalten

Abstract

Immunomodulation is a mechanism that stimulates or inhibits immune responses under the influence of secretory mediators. This study will review the role of cytokines and chemotherapy in the modulation of immune responses in leukemia. We searched the PubMed database and Google scholar search engine of English-language papers (1995–2018) using the “Immunomodulation”, “Leukemia”, “Tregs”, “Natural killer cells”, “Mesenchymal stem cells”, “Macrophages” and “chemotherapy” as keywords. In leukemias, T regulatory cells (Tregs), natural killer cells (NK), macrophages (MQs) and mesenchymal stem cells (MSCs) alter their functional and secretion patterns. Some of the changes in NK cells and classic MQ (M1) potentiate the immune responses against leukemia, but some Tregs changes will compromise the immune system. The effect of a cell on immunomodulation is in contrast to another cell, in which the cells are engaged in a competition so that a cell that having a higher effect on immunomodulation will be the contest winner. The outcome of immunomodulation in response to leukemia is determined by the ratio of stimulatory activity of NK cells and M1 to the inhibitory effect of Tregs, while the dual role of MSCs through immunomodulators and cytokines can be effective in weakening/enhancing the immune response.
Literatur
1.
Zurück zum Zitat Shahrabi S, Behzad MM, Jaseb K, Saki N. Thrombocytopenia in leukemia: pathogenesis and prognosis. Histol Histopathol. 2018;33:11976. Shahrabi S, Behzad MM, Jaseb K, Saki N. Thrombocytopenia in leukemia: pathogenesis and prognosis. Histol Histopathol. 2018;33:11976.
2.
Zurück zum Zitat Riches JC, Gribben JG, editors. Immunomodulation and immune reconstitution in chronic lymphocytic leukemia: seminars in hematology. Amsterdam: Elsevier; 2014. Riches JC, Gribben JG, editors. Immunomodulation and immune reconstitution in chronic lymphocytic leukemia: seminars in hematology. Amsterdam: Elsevier; 2014.
3.
Zurück zum Zitat Krause DS, Fulzele K, Catic A, Sun CC, Dombkowski D, Hurley MP, et al. Differential regulation of myeloid leukemias by the bone marrow microenvironment. Nat Med. 2013;19(11):1513.PubMedPubMedCentral Krause DS, Fulzele K, Catic A, Sun CC, Dombkowski D, Hurley MP, et al. Differential regulation of myeloid leukemias by the bone marrow microenvironment. Nat Med. 2013;19(11):1513.PubMedPubMedCentral
4.
Zurück zum Zitat Riether C, Schürch C, Ochsenbein A. Regulation of hematopoietic and leukemic stem cells by the immune system. Cell Death Differ. 2015;22(2):187.PubMed Riether C, Schürch C, Ochsenbein A. Regulation of hematopoietic and leukemic stem cells by the immune system. Cell Death Differ. 2015;22(2):187.PubMed
5.
Zurück zum Zitat Bakker E, Qattan M, Mutti L, Demonacos C, Krstic-Demonacos M. The role of microenvironment and immunity in drug response in leukemia. Biochim et Biophys Acta (BBA) Mol Cell Res. 2016;1863(3):414–26. Bakker E, Qattan M, Mutti L, Demonacos C, Krstic-Demonacos M. The role of microenvironment and immunity in drug response in leukemia. Biochim et Biophys Acta (BBA) Mol Cell Res. 2016;1863(3):414–26.
6.
Zurück zum Zitat Yu X, Miao J, Xia W, Gu Z-J. Immunogenicity moderation effect of interleukin-24 on myelogenous leukemia cells. Anti Cancer Drugs. 2018;29(4):353–63.PubMed Yu X, Miao J, Xia W, Gu Z-J. Immunogenicity moderation effect of interleukin-24 on myelogenous leukemia cells. Anti Cancer Drugs. 2018;29(4):353–63.PubMed
7.
Zurück zum Zitat Sainz-Perez A, Gary-Gouy H, Gaudin F, Maarof G, Marfaing-Koka A, de Revel T, et al. IL-24 induces apoptosis of chronic lymphocytic leukemia B cells engaged into the cell cycle through dephosphorylation of STAT3 and stabilization of p53 expression. J Immunol. 2008;181(9):6051–60.PubMed Sainz-Perez A, Gary-Gouy H, Gaudin F, Maarof G, Marfaing-Koka A, de Revel T, et al. IL-24 induces apoptosis of chronic lymphocytic leukemia B cells engaged into the cell cycle through dephosphorylation of STAT3 and stabilization of p53 expression. J Immunol. 2008;181(9):6051–60.PubMed
8.
Zurück zum Zitat Cheng H, Wu B, Chen L, Zhang Z, Li B. Expression and effect of serum interleukin-24 level on bone marrow mononuclear cells in children with acute leukemia. Genet Mol Res. 2015;14:17281–8.PubMed Cheng H, Wu B, Chen L, Zhang Z, Li B. Expression and effect of serum interleukin-24 level on bone marrow mononuclear cells in children with acute leukemia. Genet Mol Res. 2015;14:17281–8.PubMed
9.
Zurück zum Zitat Fisher PB, Gopalkrishnan RV, Chada S, Ramesh R, Grimm EA, Rosenfeld MR, et al. mda-7/IL-24, a novel cancer selective apoptosis inducing cytokine gene: from the laboratory into the clinic. Cancer Biol Ther. 2003;2(sup1):22–36. Fisher PB, Gopalkrishnan RV, Chada S, Ramesh R, Grimm EA, Rosenfeld MR, et al. mda-7/IL-24, a novel cancer selective apoptosis inducing cytokine gene: from the laboratory into the clinic. Cancer Biol Ther. 2003;2(sup1):22–36.
10.
Zurück zum Zitat Sauane M, Gopalkrishnan RV, Sarkar D, Su Z-Z, Lebedeva IV, Dent P, et al. MDA-7/IL-24: novel cancer growth suppressing and apoptosis inducing cytokine. Cytokine Growth Factor Rev. 2003;14(1):35–51.PubMed Sauane M, Gopalkrishnan RV, Sarkar D, Su Z-Z, Lebedeva IV, Dent P, et al. MDA-7/IL-24: novel cancer growth suppressing and apoptosis inducing cytokine. Cytokine Growth Factor Rev. 2003;14(1):35–51.PubMed
11.
Zurück zum Zitat Assi R, Kantarjian H, Ravandi F, Daver N. Immune therapies in acute myeloid leukemia: a focus on monoclonal antibodies and immune checkpoint inhibitors. Curr Opin Hematol. 2018;25(2):136–45.PubMed Assi R, Kantarjian H, Ravandi F, Daver N. Immune therapies in acute myeloid leukemia: a focus on monoclonal antibodies and immune checkpoint inhibitors. Curr Opin Hematol. 2018;25(2):136–45.PubMed
12.
Zurück zum Zitat Wang HY, Wang R-F. Regulatory T cells and cancer. Curr Opin Immunol. 2007;19(2):217–23.PubMed Wang HY, Wang R-F. Regulatory T cells and cancer. Curr Opin Immunol. 2007;19(2):217–23.PubMed
13.
Zurück zum Zitat Bettelli E, Dastrange M, Oukka M. Foxp3 interacts with nuclear factor of activated T cells and NF-κB to repress cytokine gene expression and effector functions of T helper cells. Proc Natl Acad Sci. 2005;102(14):5138–43.PubMed Bettelli E, Dastrange M, Oukka M. Foxp3 interacts with nuclear factor of activated T cells and NF-κB to repress cytokine gene expression and effector functions of T helper cells. Proc Natl Acad Sci. 2005;102(14):5138–43.PubMed
14.
Zurück zum Zitat Gao F, Chiu S, Motan D, Zhang Z, Chen L, Ji H, et al. Mesenchymal stem cells and immunomodulation: current status and future prospects. Cell death & disease. 2016;7(1):e2062. Gao F, Chiu S, Motan D, Zhang Z, Chen L, Ji H, et al. Mesenchymal stem cells and immunomodulation: current status and future prospects. Cell death & disease. 2016;7(1):e2062.
15.
Zurück zum Zitat Geyh S, Rodriguez-Paredes M, Jäger P, Khandanpour C, Cadeddu R, Gutekunst J, et al. Functional inhibition of mesenchymal stromal cells in acute myeloid leukemia. Leukemia. 2016;30(3):683.PubMed Geyh S, Rodriguez-Paredes M, Jäger P, Khandanpour C, Cadeddu R, Gutekunst J, et al. Functional inhibition of mesenchymal stromal cells in acute myeloid leukemia. Leukemia. 2016;30(3):683.PubMed
16.
Zurück zum Zitat Komohara Y, Jinushi M, Takeya M. Clinical significance of macrophage heterogeneity in human malignant tumors. Cancer Sci. 2014;105(1):1–8.PubMed Komohara Y, Jinushi M, Takeya M. Clinical significance of macrophage heterogeneity in human malignant tumors. Cancer Sci. 2014;105(1):1–8.PubMed
17.
Zurück zum Zitat Mantovani A, Sica A, Allavena P, Garlanda C, Locati M. Tumor-associated macrophages and the related myeloid-derived suppressor cells as a paradigm of the diversity of macrophage activation. Hum Immunol. 2009;70(5):325–30.PubMed Mantovani A, Sica A, Allavena P, Garlanda C, Locati M. Tumor-associated macrophages and the related myeloid-derived suppressor cells as a paradigm of the diversity of macrophage activation. Hum Immunol. 2009;70(5):325–30.PubMed
18.
Zurück zum Zitat Cichocki F, Cooley S, Davis Z, DeFor TE, Schlums H, Zhang B, et al. CD56 dim CD57 + NKG2C + NK cell expansion is associated with reduced leukemia relapse after reduced intensity HCT. Leukemia. 2016;30(2):456.PubMed Cichocki F, Cooley S, Davis Z, DeFor TE, Schlums H, Zhang B, et al. CD56 dim CD57 + NKG2C + NK cell expansion is associated with reduced leukemia relapse after reduced intensity HCT. Leukemia. 2016;30(2):456.PubMed
19.
Zurück zum Zitat Baessler T, Charton JE, Schmiedel BJ, Grünebach F, Krusch M, Wacker A, et al. CD137 ligand mediates opposite effects in human and mouse NK cells and impairs NK-cell reactivity against human acute myeloid leukemia cells. Blood. 2010;115(15):3058–69.PubMed Baessler T, Charton JE, Schmiedel BJ, Grünebach F, Krusch M, Wacker A, et al. CD137 ligand mediates opposite effects in human and mouse NK cells and impairs NK-cell reactivity against human acute myeloid leukemia cells. Blood. 2010;115(15):3058–69.PubMed
20.
Zurück zum Zitat Rafiq S, Raza MH, Younas M, Naeem F, Adeeb R, Iqbal J, et al. Molecular targets of curcumin and future therapeutic role in leukemia. Journal of Biosciences and Medicines. 2018;6(04):33. Rafiq S, Raza MH, Younas M, Naeem F, Adeeb R, Iqbal J, et al. Molecular targets of curcumin and future therapeutic role in leukemia. Journal of Biosciences and Medicines. 2018;6(04):33.
21.
Zurück zum Zitat Shanbhag VKL. Curcumin in chronic lymphocytic leukemia–A review. Asian Pacific journal of tropical biomedicine. 2017;7(6):505–12. Shanbhag VKL. Curcumin in chronic lymphocytic leukemia–A review. Asian Pacific journal of tropical biomedicine. 2017;7(6):505–12.
22.
Zurück zum Zitat Wang X, Zheng J, Liu J, Yao J, He Y, Li X, et al. Increased population of CD4 + CD25high regulatory T cells with their higher apoptotic and proliferating status in peripheral blood of acute myeloid leukemia patients. Eur J Haematol. 2005;75(6):468–76.PubMed Wang X, Zheng J, Liu J, Yao J, He Y, Li X, et al. Increased population of CD4 + CD25high regulatory T cells with their higher apoptotic and proliferating status in peripheral blood of acute myeloid leukemia patients. Eur J Haematol. 2005;75(6):468–76.PubMed
23.
Zurück zum Zitat Knaus HA, Kanakry CG, Luznik L, Gojo I. Immunomodulatory Drugs: immune Checkpoint Agents in Acute Leukemia. Curr Drug Targets. 2017;18(3):315–31.PubMedPubMedCentral Knaus HA, Kanakry CG, Luznik L, Gojo I. Immunomodulatory Drugs: immune Checkpoint Agents in Acute Leukemia. Curr Drug Targets. 2017;18(3):315–31.PubMedPubMedCentral
24.
Zurück zum Zitat Thein MS, Ershler WB, Jemal A, Yates JW, Baer MR. Outcome of older patients with acute myeloid leukemia: an analysis of SEER data over 3 decades. Cancer. 2013;119(15):2720–7.PubMed Thein MS, Ershler WB, Jemal A, Yates JW, Baer MR. Outcome of older patients with acute myeloid leukemia: an analysis of SEER data over 3 decades. Cancer. 2013;119(15):2720–7.PubMed
25.
Zurück zum Zitat Schmohl JU, Nuebling T, Wild J, Kroell T, Kanz L, Salih HR, et al. Expression of RANK-L and in part of PD-1 on blasts in patients with acute myeloid leukemia correlates with prognosis. Eur J Haematol. 2016;97(6):517–27.PubMed Schmohl JU, Nuebling T, Wild J, Kroell T, Kanz L, Salih HR, et al. Expression of RANK-L and in part of PD-1 on blasts in patients with acute myeloid leukemia correlates with prognosis. Eur J Haematol. 2016;97(6):517–27.PubMed
26.
Zurück zum Zitat Zhou Q, Munger ME, Highfill SL, Tolar J, Weigel BJ, Riddle M, et al. Program death-1 signaling and regulatory T cells collaborate to resist the function of adoptively transferred cytotoxic T lymphocytes in advanced acute myeloid leukemia. Blood. 2010;116(14):2484–93.PubMedPubMedCentral Zhou Q, Munger ME, Highfill SL, Tolar J, Weigel BJ, Riddle M, et al. Program death-1 signaling and regulatory T cells collaborate to resist the function of adoptively transferred cytotoxic T lymphocytes in advanced acute myeloid leukemia. Blood. 2010;116(14):2484–93.PubMedPubMedCentral
27.
Zurück zum Zitat Yuan Zha Y, Blank C, Gajewski TF. Negative regulation of T-cell function by PD-1. Criti Rev Immunol. 2004;24(4):10. Yuan Zha Y, Blank C, Gajewski TF. Negative regulation of T-cell function by PD-1. Criti Rev Immunol. 2004;24(4):10.
28.
Zurück zum Zitat Shapiro M, Herishanu Y, Katz B-Z, Dezorella N, Sun C, Kay S, et al. Lymphocyte activation gene 3: a novel therapeutic target in chronic lymphocytic leukemia. Haematologica. 2017;102(5):874–82.PubMedPubMedCentral Shapiro M, Herishanu Y, Katz B-Z, Dezorella N, Sun C, Kay S, et al. Lymphocyte activation gene 3: a novel therapeutic target in chronic lymphocytic leukemia. Haematologica. 2017;102(5):874–82.PubMedPubMedCentral
29.
Zurück zum Zitat Wierz M, Pierson S, Guyonnet L, Viry E, Lequeux A, Oudin A, et al. Dual PD1/LAG3 immune checkpoint blockade limits tumor development in a murine model of chronic lymphocytic leukemia. Blood. 2018;131(14):1617.PubMedPubMedCentral Wierz M, Pierson S, Guyonnet L, Viry E, Lequeux A, Oudin A, et al. Dual PD1/LAG3 immune checkpoint blockade limits tumor development in a murine model of chronic lymphocytic leukemia. Blood. 2018;131(14):1617.PubMedPubMedCentral
30.
Zurück zum Zitat Wang J, Tao Q, Wang H, Wang Z, Wu F, Pan Y, et al. Elevated IL-35 in bone marrow of the patients with acute myeloid leukemia. Hum Immunol. 2015;76(9):681–6.PubMed Wang J, Tao Q, Wang H, Wang Z, Wu F, Pan Y, et al. Elevated IL-35 in bone marrow of the patients with acute myeloid leukemia. Hum Immunol. 2015;76(9):681–6.PubMed
31.
Zurück zum Zitat Tao Q, Pan Y, Wang Y, Wang H, Xiong S, Li Q, et al. Regulatory T cells-derived IL-35 promotes the growth of adult acute myeloid leukemia blasts. Int J Cancer. 2015;137(10):2384–93.PubMed Tao Q, Pan Y, Wang Y, Wang H, Xiong S, Li Q, et al. Regulatory T cells-derived IL-35 promotes the growth of adult acute myeloid leukemia blasts. Int J Cancer. 2015;137(10):2384–93.PubMed
32.
Zurück zum Zitat Wu H, Li P, Shao N, Ma J, Ji M, Sun X, et al. Aberrant expression of Treg-associated cytokine IL-35 along with IL-10 and TGF-β in acute myeloid leukemia. Oncol Lett. 2012;3(5):1119–23.PubMedPubMedCentral Wu H, Li P, Shao N, Ma J, Ji M, Sun X, et al. Aberrant expression of Treg-associated cytokine IL-35 along with IL-10 and TGF-β in acute myeloid leukemia. Oncol Lett. 2012;3(5):1119–23.PubMedPubMedCentral
33.
Zurück zum Zitat Tokura Y, Sawada Y, Shimauchi T. Skin manifestations of adult T-cell leukemia/lymphoma: clinical, cytological and immunological features. J Dermatol. 2014;41(1):19–25.PubMed Tokura Y, Sawada Y, Shimauchi T. Skin manifestations of adult T-cell leukemia/lymphoma: clinical, cytological and immunological features. J Dermatol. 2014;41(1):19–25.PubMed
34.
Zurück zum Zitat Maeda M, Chen Y, Hayashi H, Kumagai-Takei N, Matsuzaki H, Lee S, et al. Chronic exposure to asbestos enhances TGF-β1 production in the human adult T cell leukemia virus-immortalized T cell line MT-2. Int J Oncol. 2014;45(6):2522–32.PubMed Maeda M, Chen Y, Hayashi H, Kumagai-Takei N, Matsuzaki H, Lee S, et al. Chronic exposure to asbestos enhances TGF-β1 production in the human adult T cell leukemia virus-immortalized T cell line MT-2. Int J Oncol. 2014;45(6):2522–32.PubMed
35.
Zurück zum Zitat Wiegertjes R, van de Loo F, Davidson EB, van der Kraan P. Suppressor of cytokine signaling 3 modulates transforming growth factor-β signaling in human chondrocytes through the inhibition of the JAK/STAT3 pathway. Osteoarthr Cartil. 2018;26:S95. Wiegertjes R, van de Loo F, Davidson EB, van der Kraan P. Suppressor of cytokine signaling 3 modulates transforming growth factor-β signaling in human chondrocytes through the inhibition of the JAK/STAT3 pathway. Osteoarthr Cartil. 2018;26:S95.
36.
Zurück zum Zitat Kitisin K, Saha T, Blake T, Golestaneh N, Deng M, Kim C, et al. TGF-β signaling in development. Sci Signal. 2007;2007(399):cm1-cm. Kitisin K, Saha T, Blake T, Golestaneh N, Deng M, Kim C, et al. TGF-β signaling in development. Sci Signal. 2007;2007(399):cm1-cm.
37.
Zurück zum Zitat Kuchenbauer F, Schnittger S, Look T, Gilliland G, Tenen D, Haferlach T, et al. Identification of additional cytogenetic and molecular genetic abnormalities in acute myeloid leukaemia with t (8, 21)/AML1-ETO. Br J Haematol. 2006;134(6):616–9.PubMed Kuchenbauer F, Schnittger S, Look T, Gilliland G, Tenen D, Haferlach T, et al. Identification of additional cytogenetic and molecular genetic abnormalities in acute myeloid leukaemia with t (8, 21)/AML1-ETO. Br J Haematol. 2006;134(6):616–9.PubMed
38.
Zurück zum Zitat Neault M, Lebert-Ghali C-É, Fournier M, Sawchyn C, Boulay K, Samavarchi-Tehrani P, et al. Identification of novel therapeutic targets in acute megakaryoblastic leukemia. Exp Hematol. 2018;64:S89–90. Neault M, Lebert-Ghali C-É, Fournier M, Sawchyn C, Boulay K, Samavarchi-Tehrani P, et al. Identification of novel therapeutic targets in acute megakaryoblastic leukemia. Exp Hematol. 2018;64:S89–90.
39.
Zurück zum Zitat Brahmer JR, Tykodi SS, Chow LQ, Hwu W-J, Topalian SL, Hwu P, et al. Safety and activity of anti–PD-L1 antibody in patients with advanced cancer. N Engl J Med. 2012;366(26):2455–65.PubMedPubMedCentral Brahmer JR, Tykodi SS, Chow LQ, Hwu W-J, Topalian SL, Hwu P, et al. Safety and activity of anti–PD-L1 antibody in patients with advanced cancer. N Engl J Med. 2012;366(26):2455–65.PubMedPubMedCentral
40.
Zurück zum Zitat Sanchez-Correa B, Bergua JM, Campos C, Gayoso I, Arcos MJ, Bañas H, et al. Cytokine profiles in acute myeloid leukemia patients at diagnosis: survival is inversely correlated with IL-6 and directly correlated with IL-10 levels. Cytokine. 2013;61(3):885–91.PubMed Sanchez-Correa B, Bergua JM, Campos C, Gayoso I, Arcos MJ, Bañas H, et al. Cytokine profiles in acute myeloid leukemia patients at diagnosis: survival is inversely correlated with IL-6 and directly correlated with IL-10 levels. Cytokine. 2013;61(3):885–91.PubMed
41.
Zurück zum Zitat Madondo MT, Quinn M, Plebanski M. Low dose cyclophosphamide: mechanisms of T cell modulation. Cancer Treatm Rev. 2016;42:3–9. Madondo MT, Quinn M, Plebanski M. Low dose cyclophosphamide: mechanisms of T cell modulation. Cancer Treatm Rev. 2016;42:3–9.
42.
Zurück zum Zitat Ghiringhelli F, Larmonier N, Schmitt E, Parcellier A, Cathelin D, Garrido C, et al. CD4 + CD25 + regulatory T cells suppress tumor immunity but are sensitive to cyclophosphamide which allows immunotherapy of established tumors to be curative. Eur J Immunol. 2004;34(2):336–44.PubMed Ghiringhelli F, Larmonier N, Schmitt E, Parcellier A, Cathelin D, Garrido C, et al. CD4 + CD25 + regulatory T cells suppress tumor immunity but are sensitive to cyclophosphamide which allows immunotherapy of established tumors to be curative. Eur J Immunol. 2004;34(2):336–44.PubMed
43.
Zurück zum Zitat Skarbnik AP, Faderl S. The role of combined fludarabine, cyclophosphamide and rituximab chemoimmunotherapy in chronic lymphocytic leukemia: current evidence and controversies. Thera Adv Hematol. 2017;8(3):99–105. Skarbnik AP, Faderl S. The role of combined fludarabine, cyclophosphamide and rituximab chemoimmunotherapy in chronic lymphocytic leukemia: current evidence and controversies. Thera Adv Hematol. 2017;8(3):99–105.
44.
Zurück zum Zitat Lutsiak MC, Semnani RT, De Pascalis R, Kashmiri SV, Schlom J, Sabzevari H. Inhibition of CD4 + 25 + T regulatory cell function implicated in enhanced immune response by low-dose cyclophosphamide. Blood. 2005;105(7):2862–8.PubMed Lutsiak MC, Semnani RT, De Pascalis R, Kashmiri SV, Schlom J, Sabzevari H. Inhibition of CD4 + 25 + T regulatory cell function implicated in enhanced immune response by low-dose cyclophosphamide. Blood. 2005;105(7):2862–8.PubMed
45.
Zurück zum Zitat Moignet A, Hasanali Z, Zambello R, Pavan L, Bareau B, Tournilhac O, et al. Cyclophosphamide as a first-line therapy in LGL leukemia. Leukemia. 2014;28(5):1134.PubMed Moignet A, Hasanali Z, Zambello R, Pavan L, Bareau B, Tournilhac O, et al. Cyclophosphamide as a first-line therapy in LGL leukemia. Leukemia. 2014;28(5):1134.PubMed
46.
Zurück zum Zitat Alsaab HO, Sau S, Alzhrani R, Tatiparti K, Bhise K, Kashaw SK, et al. PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: mechanism, combinations, and clinical outcome. Front Pharmacol. 2017;8:561.PubMedPubMedCentral Alsaab HO, Sau S, Alzhrani R, Tatiparti K, Bhise K, Kashaw SK, et al. PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: mechanism, combinations, and clinical outcome. Front Pharmacol. 2017;8:561.PubMedPubMedCentral
47.
Zurück zum Zitat Gitendra Wickremasinghe R, Prentice AG, Steele AJ. Aberrantly activated anti-apoptotic signalling mechanisms in chronic lymphocytic leukaemia cells: clues to the identification of novel therapeutic targets. Br J Haematol. 2011;153(5):545–56.PubMed Gitendra Wickremasinghe R, Prentice AG, Steele AJ. Aberrantly activated anti-apoptotic signalling mechanisms in chronic lymphocytic leukaemia cells: clues to the identification of novel therapeutic targets. Br J Haematol. 2011;153(5):545–56.PubMed
48.
Zurück zum Zitat Romee R, Rosario M, Berrien-Elliott MM, Wagner JA, Jewell BA, Schappe T, et al. Cytokine-induced memory-like natural killer cells exhibit enhanced responses against myeloid leukemia. Sci Transl Med. 2016;8(357):357. Romee R, Rosario M, Berrien-Elliott MM, Wagner JA, Jewell BA, Schappe T, et al. Cytokine-induced memory-like natural killer cells exhibit enhanced responses against myeloid leukemia. Sci Transl Med. 2016;8(357):357.
49.
Zurück zum Zitat Bachanova V, Cooley S, Defor TE, Verneris MR, Zhang B, McKenna DH, et al. Clearance of acute myeloid leukemia by haploidentical natural killer cells is improved using IL-2 diphtheria toxin fusion protein. Blood. 2014;123(25):3855–63.PubMedPubMedCentral Bachanova V, Cooley S, Defor TE, Verneris MR, Zhang B, McKenna DH, et al. Clearance of acute myeloid leukemia by haploidentical natural killer cells is improved using IL-2 diphtheria toxin fusion protein. Blood. 2014;123(25):3855–63.PubMedPubMedCentral
50.
Zurück zum Zitat de Groen RA, Boltjes A, Hou J, Liu BS, McPhee F, Friborg J, et al. IFN-λ-mediated IL-12 production in macrophages induces IFN-γ production in human NK cells. Eur J Immunol. 2015;45(1):250–9.PubMed de Groen RA, Boltjes A, Hou J, Liu BS, McPhee F, Friborg J, et al. IFN-λ-mediated IL-12 production in macrophages induces IFN-γ production in human NK cells. Eur J Immunol. 2015;45(1):250–9.PubMed
51.
Zurück zum Zitat Marvel J, Walzer T. CD137 in NK cells. Blood. 2010;115(15):2987–8.PubMed Marvel J, Walzer T. CD137 in NK cells. Blood. 2010;115(15):2987–8.PubMed
52.
Zurück zum Zitat Makkouk A, Chester C, Kohrt HE. Rationale for anti-CD137 cancer immunotherapy. Eur J Cancer. 2016;54:112–9.PubMed Makkouk A, Chester C, Kohrt HE. Rationale for anti-CD137 cancer immunotherapy. Eur J Cancer. 2016;54:112–9.PubMed
53.
Zurück zum Zitat Furtner M, Straub R, Krüger S, Schwarz H. Levels of soluble CD137 are enhanced in sera of leukemia and lymphoma patients and are strongly associated with chronic lymphocytic leukemia. Leukemia. 2005;19(5):883.PubMed Furtner M, Straub R, Krüger S, Schwarz H. Levels of soluble CD137 are enhanced in sera of leukemia and lymphoma patients and are strongly associated with chronic lymphocytic leukemia. Leukemia. 2005;19(5):883.PubMed
54.
Zurück zum Zitat Wang Q, Zhang P, Zhang Q, Wang X, Li J, Ma C, et al. Analysis of CD137 and CD137L expression in human primary tumor tissues. Croat Med J. 2008;49(2):192.PubMedPubMedCentral Wang Q, Zhang P, Zhang Q, Wang X, Li J, Ma C, et al. Analysis of CD137 and CD137L expression in human primary tumor tissues. Croat Med J. 2008;49(2):192.PubMedPubMedCentral
55.
Zurück zum Zitat Zou W. Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer. 2005;5(4):263.PubMed Zou W. Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer. 2005;5(4):263.PubMed
56.
Zurück zum Zitat James AM, Cohen AD, Campbell KS. Combination immune therapies to enhance anti-tumor responses by NK cells. Front Immunol. 2013;4:481. James AM, Cohen AD, Campbell KS. Combination immune therapies to enhance anti-tumor responses by NK cells. Front Immunol. 2013;4:481.
57.
Zurück zum Zitat Wilcox RA, Tamada K, Strome SE, Chen L. Signaling through NK cell-associated CD137 promotes both helper function for CD8 + cytolytic T cells and responsiveness to IL-2 but not cytolytic activity. J Immunol. 2002;169(8):4230–6.PubMed Wilcox RA, Tamada K, Strome SE, Chen L. Signaling through NK cell-associated CD137 promotes both helper function for CD8 + cytolytic T cells and responsiveness to IL-2 but not cytolytic activity. J Immunol. 2002;169(8):4230–6.PubMed
58.
Zurück zum Zitat Lin W, Voskens CJ, Zhang X, Schindler DG, Wood A, Burch E, et al. Fc-dependent expression of CD137 on human NK cells: insights into “agonistic” effects of anti-CD137 monoclonal antibodies. Blood. 2008;112(3):699–707.PubMedPubMedCentral Lin W, Voskens CJ, Zhang X, Schindler DG, Wood A, Burch E, et al. Fc-dependent expression of CD137 on human NK cells: insights into “agonistic” effects of anti-CD137 monoclonal antibodies. Blood. 2008;112(3):699–707.PubMedPubMedCentral
59.
Zurück zum Zitat Carter LL, Fouser LA, Jussif J, Fitz L, Deng B, Wood CR, et al. PD-1: PD-L inhibitory pathway affects both CD4 + and CD8 + T cells and is overcome by IL-2. Eur J Immunol. 2002;32(3):634–43.PubMed Carter LL, Fouser LA, Jussif J, Fitz L, Deng B, Wood CR, et al. PD-1: PD-L inhibitory pathway affects both CD4 + and CD8 + T cells and is overcome by IL-2. Eur J Immunol. 2002;32(3):634–43.PubMed
60.
Zurück zum Zitat Kharfan-Dabaja M, Wierda W, Cooper L. Immunotherapy for chronic lymphocytic leukemia in the era of BTK inhibitors. Leukemia. 2014;28(3):507.PubMed Kharfan-Dabaja M, Wierda W, Cooper L. Immunotherapy for chronic lymphocytic leukemia in the era of BTK inhibitors. Leukemia. 2014;28(3):507.PubMed
61.
Zurück zum Zitat Bartlett JB, Dredge K, Dalgleish AG. The evolution of thalidomide and its IMiD derivatives as anticancer agents. Nat Rev Cancer. 2004;4(4):314.PubMed Bartlett JB, Dredge K, Dalgleish AG. The evolution of thalidomide and its IMiD derivatives as anticancer agents. Nat Rev Cancer. 2004;4(4):314.PubMed
63.
Zurück zum Zitat Ramsay AD, Rodriguez-Justo M. Chronic lymphocytic leukaemia–the role of the microenvironment pathogenesis and therapy. Br J Haematol. 2013;162(1):15–24.PubMed Ramsay AD, Rodriguez-Justo M. Chronic lymphocytic leukaemia–the role of the microenvironment pathogenesis and therapy. Br J Haematol. 2013;162(1):15–24.PubMed
64.
Zurück zum Zitat Shannon E, Sandoval F. Thalidomide increases the synthesis of IL-2 in cultures of human mononuclear cells stimulated with concanavalin-A, staphylococcal enterotoxin A, and purified protein derivative. Immunopharmacology. 1995;31(1):109–16.PubMed Shannon E, Sandoval F. Thalidomide increases the synthesis of IL-2 in cultures of human mononuclear cells stimulated with concanavalin-A, staphylococcal enterotoxin A, and purified protein derivative. Immunopharmacology. 1995;31(1):109–16.PubMed
65.
Zurück zum Zitat Hayashi T, Hideshima T, Akiyama M, Podar K, Yasui H, Raje N, et al. Molecular mechanisms whereby immunomodulatory drugs activate natural killer cells: clinical application. Br J Haematol. 2005;128(2):192–203.PubMed Hayashi T, Hideshima T, Akiyama M, Podar K, Yasui H, Raje N, et al. Molecular mechanisms whereby immunomodulatory drugs activate natural killer cells: clinical application. Br J Haematol. 2005;128(2):192–203.PubMed
66.
Zurück zum Zitat Klimp A, De Vries E, Scherphof G, Daemen T. A potential role of macrophage activation in the treatment of cancer. Criti Rev Oncol Hematol. 2002;44(2):143–61. Klimp A, De Vries E, Scherphof G, Daemen T. A potential role of macrophage activation in the treatment of cancer. Criti Rev Oncol Hematol. 2002;44(2):143–61.
67.
Zurück zum Zitat Martinez FO, Gordon S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep. 2014;6:13.PubMedPubMedCentral Martinez FO, Gordon S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep. 2014;6:13.PubMedPubMedCentral
68.
Zurück zum Zitat Duluc D, Delneste Y, Tan F, Moles M-P, Grimaud L, Lenoir J, et al. Tumor-associated leukemia inhibitory factor and IL-6 skew monocyte differentiation into tumor-associated macrophage-like cells. Blood. 2007;110(13):4319–30.PubMed Duluc D, Delneste Y, Tan F, Moles M-P, Grimaud L, Lenoir J, et al. Tumor-associated leukemia inhibitory factor and IL-6 skew monocyte differentiation into tumor-associated macrophage-like cells. Blood. 2007;110(13):4319–30.PubMed
69.
Zurück zum Zitat Ricote M, Li AC, Willson TM, Kelly CJ, Glass CK. The peroxisome proliferator-activated receptor-γ is a negative regulator of macrophage activation. Nature. 1998;391(6662):79.PubMed Ricote M, Li AC, Willson TM, Kelly CJ, Glass CK. The peroxisome proliferator-activated receptor-γ is a negative regulator of macrophage activation. Nature. 1998;391(6662):79.PubMed
70.
Zurück zum Zitat Rigamonti E, Chinetti-Gbaguidi G, Staels B. Regulation of macrophage functions by PPAR-α, PPAR-γ, and LXRs in mice and men. Arterioscl Thromb Vascu Biol. 2008;28(6):1050–9. Rigamonti E, Chinetti-Gbaguidi G, Staels B. Regulation of macrophage functions by PPAR-α, PPAR-γ, and LXRs in mice and men. Arterioscl Thromb Vascu Biol. 2008;28(6):1050–9.
71.
Zurück zum Zitat Rowe JM, Andersen JW, Mazza JJ, Bennett JM, Paietta E, Hayes FA, et al. A randomized placebo-controlled phase III study of granulocyte-macrophage colony-stimulating factor in adult patients (> 55–70 years of age) with acute myelogenous leukemia: a study of the eastern cooperative oncology group (E1490). Blood. 1995;86(2):457–62.PubMed Rowe JM, Andersen JW, Mazza JJ, Bennett JM, Paietta E, Hayes FA, et al. A randomized placebo-controlled phase III study of granulocyte-macrophage colony-stimulating factor in adult patients (> 55–70 years of age) with acute myelogenous leukemia: a study of the eastern cooperative oncology group (E1490). Blood. 1995;86(2):457–62.PubMed
72.
Zurück zum Zitat Francisco-Cruz A, Aguilar-Santelises M, Ramos-Espinosa O, Mata-Espinosa D, Marquina-Castillo B, Barrios-Payan J, et al. Granulocyte–macrophage colony-stimulating factor: not just another haematopoietic growth factor. Med Oncol. 2014;31(1):774.PubMed Francisco-Cruz A, Aguilar-Santelises M, Ramos-Espinosa O, Mata-Espinosa D, Marquina-Castillo B, Barrios-Payan J, et al. Granulocyte–macrophage colony-stimulating factor: not just another haematopoietic growth factor. Med Oncol. 2014;31(1):774.PubMed
73.
Zurück zum Zitat Heo S-K, Noh E-K, Yoon D-J, Jo J-C, Koh S, Baek JH, et al. Rosmarinic acid potentiates ATRA-induced macrophage differentiation in acute promyelocytic leukemia NB4 cells. Eur J Pharmacol. 2015;747:36–44.PubMed Heo S-K, Noh E-K, Yoon D-J, Jo J-C, Koh S, Baek JH, et al. Rosmarinic acid potentiates ATRA-induced macrophage differentiation in acute promyelocytic leukemia NB4 cells. Eur J Pharmacol. 2015;747:36–44.PubMed
74.
Zurück zum Zitat Ketley NJ, Allen PD, Kelsey SM, Newland AC. Modulation of idarubicin-induced apoptosis in human acute myeloid leukemia blasts by all-trans retinoic acid, 1,25(OH)2 vitamin D3, and granulocyte-macrophage colony-stimulating factor. Blood. 1997;90(11):4578–87.PubMed Ketley NJ, Allen PD, Kelsey SM, Newland AC. Modulation of idarubicin-induced apoptosis in human acute myeloid leukemia blasts by all-trans retinoic acid, 1,25(OH)2 vitamin D3, and granulocyte-macrophage colony-stimulating factor. Blood. 1997;90(11):4578–87.PubMed
75.
Zurück zum Zitat Norozi F, Ahmadzadeh A, Shahrabi S, Vosoughi T, Saki N. Mesenchymal stem cells as a double-edged sword in suppression or progression of solid tumor cells. Tumor Biol. 2016;37(9):11679–89. Norozi F, Ahmadzadeh A, Shahrabi S, Vosoughi T, Saki N. Mesenchymal stem cells as a double-edged sword in suppression or progression of solid tumor cells. Tumor Biol. 2016;37(9):11679–89.
76.
Zurück zum Zitat Maitra B, Szekely E, Gjini K, Laughlin M, Dennis J, Haynesworth S, et al. Human mesenchymal stem cells support unrelated donor hematopoietic stem cells and suppress T-cell activation. Bone Marrow Transpl. 2004;33(6):597. Maitra B, Szekely E, Gjini K, Laughlin M, Dennis J, Haynesworth S, et al. Human mesenchymal stem cells support unrelated donor hematopoietic stem cells and suppress T-cell activation. Bone Marrow Transpl. 2004;33(6):597.
77.
Zurück zum Zitat Yang S-H, Park M-J, Yoon I-H, Kim S-Y, Hong S-H, Shin J-Y, et al. Soluble mediators from mesenchymal stem cells suppress T cell proliferation by inducing IL-10. Exp Mol Med. 2009;41(5):315.PubMedPubMedCentral Yang S-H, Park M-J, Yoon I-H, Kim S-Y, Hong S-H, Shin J-Y, et al. Soluble mediators from mesenchymal stem cells suppress T cell proliferation by inducing IL-10. Exp Mol Med. 2009;41(5):315.PubMedPubMedCentral
78.
Zurück zum Zitat Beyth S, Borovsky Z, Mevorach D, Liebergall M, Gazit Z, Aslan H, et al. Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unresponsiveness. Blood. 2005;105(5):2214–9.PubMed Beyth S, Borovsky Z, Mevorach D, Liebergall M, Gazit Z, Aslan H, et al. Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unresponsiveness. Blood. 2005;105(5):2214–9.PubMed
79.
Zurück zum Zitat Su J, Chen X, Huang Y, Li W, Li J, Cao K, et al. Phylogenetic distinction of iNOS and IDO function in mesenchymal stem cell-mediated immunosuppression in mammalian species. Cell Death Differ. 2014;21(3):388.PubMed Su J, Chen X, Huang Y, Li W, Li J, Cao K, et al. Phylogenetic distinction of iNOS and IDO function in mesenchymal stem cell-mediated immunosuppression in mammalian species. Cell Death Differ. 2014;21(3):388.PubMed
80.
Zurück zum Zitat Nasef A, Mathieu N, Chapel A, Frick J, François S, Mazurier C, et al. Immunosuppressive effects of mesenchymal stem cells: involvement of HLA-G. Transpl. 2007;84(2):231–7. Nasef A, Mathieu N, Chapel A, Frick J, François S, Mazurier C, et al. Immunosuppressive effects of mesenchymal stem cells: involvement of HLA-G. Transpl. 2007;84(2):231–7.
82.
Zurück zum Zitat Tu B, Du L, Fan Q-M, Tang Z, Tang T-T. STAT3 activation by IL-6 from mesenchymal stem cells promotes the proliferation and metastasis of osteosarcoma. Cancer Lett. 2012;325(1):80–8.PubMed Tu B, Du L, Fan Q-M, Tang Z, Tang T-T. STAT3 activation by IL-6 from mesenchymal stem cells promotes the proliferation and metastasis of osteosarcoma. Cancer Lett. 2012;325(1):80–8.PubMed
83.
Zurück zum Zitat Sato K, Ozaki K, Oh I, Meguro A, Hatanaka K, Nagai T, et al. Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells. Blood. 2007;109(1):228–34.PubMed Sato K, Ozaki K, Oh I, Meguro A, Hatanaka K, Nagai T, et al. Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells. Blood. 2007;109(1):228–34.PubMed
84.
Zurück zum Zitat Ramasamy R, Lam EW, Soeiro I, Tisato V, Bonnet D, Dazzi F. Mesenchymal stem cells inhibit proliferation and apoptosis of tumor cells: impact on in vivo tumor growth. Leukemia. 2007;21(2):304.PubMed Ramasamy R, Lam EW, Soeiro I, Tisato V, Bonnet D, Dazzi F. Mesenchymal stem cells inhibit proliferation and apoptosis of tumor cells: impact on in vivo tumor growth. Leukemia. 2007;21(2):304.PubMed
85.
Zurück zum Zitat Liu F-Z, He L, Wang J-S, Zhang S, Zhu H-Q. Effect of decitabine on DKK1 gene demethylation in leukemia cells. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2016;24(1):56–60.PubMed Liu F-Z, He L, Wang J-S, Zhang S, Zhu H-Q. Effect of decitabine on DKK1 gene demethylation in leukemia cells. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2016;24(1):56–60.PubMed
86.
Zurück zum Zitat Zhu Y, Sun Z, Han Q, Liao L, Wang J, Bian C, et al. Human mesenchymal stem cells inhibit cancer cell proliferation by secreting DKK-1. Leukemia. 2009;23(5):925.PubMed Zhu Y, Sun Z, Han Q, Liao L, Wang J, Bian C, et al. Human mesenchymal stem cells inhibit cancer cell proliferation by secreting DKK-1. Leukemia. 2009;23(5):925.PubMed
87.
Zurück zum Zitat Ling W, Zhang J, Yuan Z, Ren G, Zhang L, Chen X, et al. Mesenchymal stem cells use IDO to regulate immunity in tumor microenvironment. Cancer Res. 2014;74(5):1576–87.PubMedPubMedCentral Ling W, Zhang J, Yuan Z, Ren G, Zhang L, Chen X, et al. Mesenchymal stem cells use IDO to regulate immunity in tumor microenvironment. Cancer Res. 2014;74(5):1576–87.PubMedPubMedCentral
88.
Zurück zum Zitat Plumas J, Chaperot L, Richard M-J, Molens J-P, Bensa J-C, Favrot M-C. Mesenchymal stem cells induce apoptosis of activated T cells. Leukemia. 2005;19(9):1597.PubMed Plumas J, Chaperot L, Richard M-J, Molens J-P, Bensa J-C, Favrot M-C. Mesenchymal stem cells induce apoptosis of activated T cells. Leukemia. 2005;19(9):1597.PubMed
89.
Zurück zum Zitat Vacchelli E, Aranda F, Eggermont A, Sautes-Fridman C, Tartour E, Kennedy EP, et al. Trial watch: IDO inhibitors in cancer therapy. Oncoimmunology. 2014;3(10):e957994.PubMedPubMedCentral Vacchelli E, Aranda F, Eggermont A, Sautes-Fridman C, Tartour E, Kennedy EP, et al. Trial watch: IDO inhibitors in cancer therapy. Oncoimmunology. 2014;3(10):e957994.PubMedPubMedCentral
90.
Zurück zum Zitat Hou D-Y, Muller AJ, Sharma MD, DuHadaway J, Banerjee T, Johnson M, et al. Inhibition of indoleamine 2, 3-dioxygenase in dendritic cells by stereoisomers of 1-methyl-tryptophan correlates with antitumor responses. Cancer Res. 2007;67(2):792–801.PubMed Hou D-Y, Muller AJ, Sharma MD, DuHadaway J, Banerjee T, Johnson M, et al. Inhibition of indoleamine 2, 3-dioxygenase in dendritic cells by stereoisomers of 1-methyl-tryptophan correlates with antitumor responses. Cancer Res. 2007;67(2):792–801.PubMed
91.
Zurück zum Zitat Buhrmann C, Mobasheri A, Matis U, Shakibaei M. Curcumin mediated suppression of nuclear factor-κB promotes chondrogenic differentiation of mesenchymal stem cells in a high-density co-culture microenvironment. Arthr Res Ther. 2010;12(4):R127. Buhrmann C, Mobasheri A, Matis U, Shakibaei M. Curcumin mediated suppression of nuclear factor-κB promotes chondrogenic differentiation of mesenchymal stem cells in a high-density co-culture microenvironment. Arthr Res Ther. 2010;12(4):R127.
92.
Zurück zum Zitat Jitschin R, Braun M, Büttner M, Dettmer-Wilde K, Bricks J, Berger J, et al. CLL-cells induce IDOhi CD14 + HLA-DRlo myeloid-derived suppressor cells that inhibit T-cell responses and promote TRegs. Blood. 2014;124(5):750–60.PubMed Jitschin R, Braun M, Büttner M, Dettmer-Wilde K, Bricks J, Berger J, et al. CLL-cells induce IDOhi CD14 + HLA-DRlo myeloid-derived suppressor cells that inhibit T-cell responses and promote TRegs. Blood. 2014;124(5):750–60.PubMed
93.
Zurück zum Zitat Masuda K, Hiraki A, Fujii N, Watanabe T, Tanaka M, Matsue K, et al. Loss or down-regulation of HLA class I expression at the allelic level in freshly isolated leukemic blasts. Cancer Sci. 2007;98(1):102–8.PubMed Masuda K, Hiraki A, Fujii N, Watanabe T, Tanaka M, Matsue K, et al. Loss or down-regulation of HLA class I expression at the allelic level in freshly isolated leukemic blasts. Cancer Sci. 2007;98(1):102–8.PubMed
94.
Zurück zum Zitat Daver N, Boddu P, Garcia-Manero G, Yadav SS, Sharma P, Allison J, et al. Hypomethylating agents in combination with immune checkpoint inhibitors in acute myeloid leukemia and myelodysplastic syndromes. Leukemia. 2018;32:1094–105.PubMedPubMedCentral Daver N, Boddu P, Garcia-Manero G, Yadav SS, Sharma P, Allison J, et al. Hypomethylating agents in combination with immune checkpoint inhibitors in acute myeloid leukemia and myelodysplastic syndromes. Leukemia. 2018;32:1094–105.PubMedPubMedCentral
95.
Zurück zum Zitat Chen X, Liu S, Wang L, Zhang W-G, Ji Y, Ma X. Clinical significance of B7–H1(PD-L1) expression in human acute leukemia. Cancer Biol Ther. 2008;7(5):622–7.PubMed Chen X, Liu S, Wang L, Zhang W-G, Ji Y, Ma X. Clinical significance of B7–H1(PD-L1) expression in human acute leukemia. Cancer Biol Ther. 2008;7(5):622–7.PubMed
96.
Zurück zum Zitat Kotaskova J, Tichy B, Trbusek M, Francova HS, Kabathova J, Malcikova J, et al. High expression of lymphocyte-activation gene 3 (LAG3) in chronic lymphocytic leukemia cells is associated with unmutated immunoglobulin variable heavy chain region (IGHV) gene and reduced treatment-free survival. J Mol Diagn. 2010;12(3):328–34.PubMedPubMedCentral Kotaskova J, Tichy B, Trbusek M, Francova HS, Kabathova J, Malcikova J, et al. High expression of lymphocyte-activation gene 3 (LAG3) in chronic lymphocytic leukemia cells is associated with unmutated immunoglobulin variable heavy chain region (IGHV) gene and reduced treatment-free survival. J Mol Diagn. 2010;12(3):328–34.PubMedPubMedCentral
97.
Zurück zum Zitat Huang J, Basu S, Zhao X, Chien S, Fang M, Oehler V, et al. Mesenchymal stromal cells derived from acute myeloid leukemia bone marrow exhibit aberrant cytogenetics and cytokine elaboration. Blood Cancer J. 2015;5(4):e302.PubMedPubMedCentral Huang J, Basu S, Zhao X, Chien S, Fang M, Oehler V, et al. Mesenchymal stromal cells derived from acute myeloid leukemia bone marrow exhibit aberrant cytogenetics and cytokine elaboration. Blood Cancer J. 2015;5(4):e302.PubMedPubMedCentral
98.
Zurück zum Zitat Mazur G, Wrobel T, Butrym A, Kapelko-Słowik K, Poreba R, Kuliczkowski K. Increased monocyte chemoattractant protein 1 (MCP-1/CCL-2) serum level in acute myeloid leukemia. Neoplasma. 2007;54(4):285–9.PubMed Mazur G, Wrobel T, Butrym A, Kapelko-Słowik K, Poreba R, Kuliczkowski K. Increased monocyte chemoattractant protein 1 (MCP-1/CCL-2) serum level in acute myeloid leukemia. Neoplasma. 2007;54(4):285–9.PubMed
Metadaten
Titel
Immunomodulation in leukemia: cellular aspects of anti-leukemic properties
verfasst von
M. Maleknia
A. Valizadeh
S. M. S. Pezeshki
N. Saki
Publikationsdatum
24.05.2019
Verlag
Springer International Publishing
Erschienen in
Clinical and Translational Oncology / Ausgabe 1/2020
Print ISSN: 1699-048X
Elektronische ISSN: 1699-3055
DOI
https://doi.org/10.1007/s12094-019-02132-9

Weitere Artikel der Ausgabe 1/2020

Clinical and Translational Oncology 1/2020 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.