Skip to main content
Erschienen in: Annals of Nuclear Medicine 7/2019

08.04.2019 | Original Article

Development of anatomically and lesion contrast-guided partial volume correction: new 3D formalisms and validation in phantom and clinical studies

verfasst von: Hesham Abdel Gawad, Magdy M. Khalil, Medhat W. Shafaa, Shaban Al Ramlawy

Erschienen in: Annals of Nuclear Medicine | Ausgabe 7/2019

Einloggen, um Zugang zu erhalten

Abstract

Purpose

The aim of the study was to correct for partial volume effect in positron emission imaging studies which is the most influential factors using three-dimensional (3D) representation of the recovery coefficients (RCs) to improve standardized uptake value (SUV) calculations.

Methods

Several phantom studies were conducted at significantly wide range of lesion contrast, range 2:1 up to 15:1. It was then classified into two groups: one for generating 3D function taking into consideration the sphere size as well lesion contrast whereas the other group was used for functions validation. A segmentation threshold algorithm for lesion delineation and volume determination was generated based on lesion contrast and lesion size. In addition, five 3D functions of the RC of the SUV were formulated considering lesion size and lesion contrast. Validation of the new algorithms has considered both phantom and clinical studies.

Results

The error in threshold 3D function was well below 10%. For lesions ≤ 2 cm in diameter, there was no statistical difference of the functions developed for SUVmax as well as those functions generated for SUVmean. However, the median SUVmax has increased significantly when compared with data before correction. For SUVmean, the increase in median value was also significantly high.

Conclusion

It has been successful to generate 3D mathematical formulations of the SUV RC taking into consideration the most influential factors including lesion size and lesion contrast. Validation studies were suggestive of the good performance of the new mathematical algorithms generated to correct for PVE. However, further studies are underway to ensure the performance of the proposed algorithms in clinical PET studies.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Khalil MM. Basics and advances of quantitative PET imaging. In: Khalil MM, editor. Basic science of PET imaging. Cham: Springer Publishing; 2017.CrossRef Khalil MM. Basics and advances of quantitative PET imaging. In: Khalil MM, editor. Basic science of PET imaging. Cham: Springer Publishing; 2017.CrossRef
2.
3.
Zurück zum Zitat Keyes JW Jr. SUV: standard uptake or silly useless value? J Nucl Med. 1995;36:1836–9.PubMed Keyes JW Jr. SUV: standard uptake or silly useless value? J Nucl Med. 1995;36:1836–9.PubMed
4.
Zurück zum Zitat Boellaard R. Standards for PET image acquisition and quantitative data analysis. J Nucl Med. 2009;50(Suppl 1):11S–20S.CrossRefPubMed Boellaard R. Standards for PET image acquisition and quantitative data analysis. J Nucl Med. 2009;50(Suppl 1):11S–20S.CrossRefPubMed
5.
Zurück zum Zitat Soret M, Bacharach SL, Buvat I. Partial-volume effect in PET tumor imaging. J Nucl Med. 2007;48:932–45.CrossRefPubMed Soret M, Bacharach SL, Buvat I. Partial-volume effect in PET tumor imaging. J Nucl Med. 2007;48:932–45.CrossRefPubMed
6.
Zurück zum Zitat Anouan KJ, Lelandais B, Edet-Sanson A, et al. 18F-FDG-PET partial volume effect correction using a modified recovery coefficient approach based on functional volume and local contrast: physical validation and clinical feasibility in oncology. Q J Nucl Med Mol Imaging. 2017;61:301–13.PubMed Anouan KJ, Lelandais B, Edet-Sanson A, et al. 18F-FDG-PET partial volume effect correction using a modified recovery coefficient approach based on functional volume and local contrast: physical validation and clinical feasibility in oncology. Q J Nucl Med Mol Imaging. 2017;61:301–13.PubMed
7.
Zurück zum Zitat Kirov AS, Piao JZ, Schmidtlein CR. Partial volume effect correction in PET using regularized iterative deconvolution with variance control based on local topology. Phys Med Biol. 2008;53:2577–91.CrossRefPubMed Kirov AS, Piao JZ, Schmidtlein CR. Partial volume effect correction in PET using regularized iterative deconvolution with variance control based on local topology. Phys Med Biol. 2008;53:2577–91.CrossRefPubMed
8.
Zurück zum Zitat Srinivas SM, Dhurairaj T, Basu S, et al. A recovery coefficient method for partial volume correction of PET images. Ann Nucl Med. 2009;23:341–8.CrossRefPubMed Srinivas SM, Dhurairaj T, Basu S, et al. A recovery coefficient method for partial volume correction of PET images. Ann Nucl Med. 2009;23:341–8.CrossRefPubMed
9.
Zurück zum Zitat Tohka J, Reilhac A. Deconvolution-based partial volume correction in Raclopride-PET and Monte Carlo comparison to MR-based method. Neuroimage. 2008;39:1570–84.CrossRefPubMed Tohka J, Reilhac A. Deconvolution-based partial volume correction in Raclopride-PET and Monte Carlo comparison to MR-based method. Neuroimage. 2008;39:1570–84.CrossRefPubMed
10.
Zurück zum Zitat Boussion N, Le Rest CC, Hatt M, Visvikis D. Incorporation of wavelet-based denoising in iterative deconvolution for partial volume correction in whole-body PET imaging. Eur J Nucl Med Mol Imaging. 2009;36:1064–75.CrossRefPubMed Boussion N, Le Rest CC, Hatt M, Visvikis D. Incorporation of wavelet-based denoising in iterative deconvolution for partial volume correction in whole-body PET imaging. Eur J Nucl Med Mol Imaging. 2009;36:1064–75.CrossRefPubMed
11.
Zurück zum Zitat Erlandsson K, Buvat I, Pretorius PH, Thomas BA, Hutton BF. A review of partial volume correction techniques for emission tomography and their applications in neurology, cardiology and oncology. Phys Med Biol. 2012;57:R119–59.CrossRefPubMed Erlandsson K, Buvat I, Pretorius PH, Thomas BA, Hutton BF. A review of partial volume correction techniques for emission tomography and their applications in neurology, cardiology and oncology. Phys Med Biol. 2012;57:R119–59.CrossRefPubMed
12.
Zurück zum Zitat Erlandsson K, Dickson J, Arridge S, et al. MR imaging-guided partial volume correction of PET data in PET/MR imaging. PET Clin. 2016;11:161–77.CrossRefPubMed Erlandsson K, Dickson J, Arridge S, et al. MR imaging-guided partial volume correction of PET data in PET/MR imaging. PET Clin. 2016;11:161–77.CrossRefPubMed
13.
Zurück zum Zitat Wang W, Hu Z, Gagnon D. A new component approach to efficiency normalization for 3D PET. IEEE Trans Nucl Sci. 2007;54(1):92–9.CrossRef Wang W, Hu Z, Gagnon D. A new component approach to efficiency normalization for 3D PET. IEEE Trans Nucl Sci. 2007;54(1):92–9.CrossRef
14.
Zurück zum Zitat Popescu LM, Matej S, Lewitt RM. Iterative image reconstruction using geometrically ordered subsets with list-mode data. Nucl Sci Symp Conf Rec IEEE. 2004;6:3536–40. Popescu LM, Matej S, Lewitt RM. Iterative image reconstruction using geometrically ordered subsets with list-mode data. Nucl Sci Symp Conf Rec IEEE. 2004;6:3536–40.
15.
Zurück zum Zitat Casey ME, Hoffman EJ. A technique to reduce noise in accidental coincidence measurements and coincidence efficiency calibration. J Comput Assist Tomogr. 1986;10(6):845–85.CrossRefPubMed Casey ME, Hoffman EJ. A technique to reduce noise in accidental coincidence measurements and coincidence efficiency calibration. J Comput Assist Tomogr. 1986;10(6):845–85.CrossRefPubMed
16.
Zurück zum Zitat Kolthammer JA, Su KH, Grover A, et al. Performance evaluation of the ingenuity TF PET/CT scanner with a focus on high count-rate conditions. Phys Med Biol. 2014;59:3843–59.CrossRefPubMedPubMedCentral Kolthammer JA, Su KH, Grover A, et al. Performance evaluation of the ingenuity TF PET/CT scanner with a focus on high count-rate conditions. Phys Med Biol. 2014;59:3843–59.CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Hoetjes NJ, van Velden FH, Hoekstra OS, et al. Partial volume correction strategies for quantitative FDG PET in oncology. Eur J Nucl Med Mol Imaging. 2010;37:1679–87.CrossRefPubMedPubMedCentral Hoetjes NJ, van Velden FH, Hoekstra OS, et al. Partial volume correction strategies for quantitative FDG PET in oncology. Eur J Nucl Med Mol Imaging. 2010;37:1679–87.CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Cysouw MCF, Kramer GM, Schoonmade LJ, et al. Impact of partial-volume correction in oncological PET studies: a systematic review and meta-analysis. Eur J Nucl Med Mol Imaging. 2017;44:2105–16.CrossRefPubMedPubMedCentral Cysouw MCF, Kramer GM, Schoonmade LJ, et al. Impact of partial-volume correction in oncological PET studies: a systematic review and meta-analysis. Eur J Nucl Med Mol Imaging. 2017;44:2105–16.CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Tsujikawa T, Otsuka H, Morita N, et al. Does partial volume corrected maximum SUV based on count recovery coefficient in 3D-PET/CT correlate with clinical aggressiveness of non-Hodgkin’s lymphoma? Ann Nucl Med. 2008;22:23–30.CrossRefPubMed Tsujikawa T, Otsuka H, Morita N, et al. Does partial volume corrected maximum SUV based on count recovery coefficient in 3D-PET/CT correlate with clinical aggressiveness of non-Hodgkin’s lymphoma? Ann Nucl Med. 2008;22:23–30.CrossRefPubMed
21.
Zurück zum Zitat Cheebsumon P, Boellaard R, de Ruysscher D, et al. Assessment of tumour size in PET/CT lung cancer studies: PET- and CT-based methods compared to pathology. EJNMMI Res. 2012;2:56.CrossRefPubMedPubMedCentral Cheebsumon P, Boellaard R, de Ruysscher D, et al. Assessment of tumour size in PET/CT lung cancer studies: PET- and CT-based methods compared to pathology. EJNMMI Res. 2012;2:56.CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Erdi YE, Mawlawi O, Larson SM, et al. Segmentation of lung lesion volume by adaptive positron emission tomography image thresholding. Cancer. 1997;80:2505–9.CrossRefPubMed Erdi YE, Mawlawi O, Larson SM, et al. Segmentation of lung lesion volume by adaptive positron emission tomography image thresholding. Cancer. 1997;80:2505–9.CrossRefPubMed
23.
Zurück zum Zitat Zaidi H, El Naqa I. PET-guided delineation of radiation therapy treatment volumes: a survey of image segmentation techniques. Eur J Nucl Med Mol Imaging. 2010;37:2165–87.CrossRefPubMed Zaidi H, El Naqa I. PET-guided delineation of radiation therapy treatment volumes: a survey of image segmentation techniques. Eur J Nucl Med Mol Imaging. 2010;37:2165–87.CrossRefPubMed
24.
Zurück zum Zitat Schaefer A, Kremp S, Hellwig D, et al. A contrast-oriented algorithm for FDG-PET-based delineation of tumour volumes for the radiotherapy of lung cancer: derivation from phantom measurements and validation in patient data. Eur J Nucl Med Mol Imaging. 2008;35:1989–99.CrossRefPubMed Schaefer A, Kremp S, Hellwig D, et al. A contrast-oriented algorithm for FDG-PET-based delineation of tumour volumes for the radiotherapy of lung cancer: derivation from phantom measurements and validation in patient data. Eur J Nucl Med Mol Imaging. 2008;35:1989–99.CrossRefPubMed
25.
Zurück zum Zitat Boellaard R, Krak NC, Hoekstra OS, Lammertsma AA. Effects of noise, image resolution, and ROI definition on the accuracy of standard uptake values: a simulation study. J Nucl Med. 2004;45:1519–27.PubMed Boellaard R, Krak NC, Hoekstra OS, Lammertsma AA. Effects of noise, image resolution, and ROI definition on the accuracy of standard uptake values: a simulation study. J Nucl Med. 2004;45:1519–27.PubMed
26.
Zurück zum Zitat Cottereau AS, Hapdey S, Chartier L, et al. Baseline total metabolic tumor volume measured with fixed or different adaptive thresholding methods equally predicts outcome in peripheral T cell lymphoma. J Nucl Med. 2017;58:276–81.CrossRefPubMed Cottereau AS, Hapdey S, Chartier L, et al. Baseline total metabolic tumor volume measured with fixed or different adaptive thresholding methods equally predicts outcome in peripheral T cell lymphoma. J Nucl Med. 2017;58:276–81.CrossRefPubMed
Metadaten
Titel
Development of anatomically and lesion contrast-guided partial volume correction: new 3D formalisms and validation in phantom and clinical studies
verfasst von
Hesham Abdel Gawad
Magdy M. Khalil
Medhat W. Shafaa
Shaban Al Ramlawy
Publikationsdatum
08.04.2019
Verlag
Springer Singapore
Erschienen in
Annals of Nuclear Medicine / Ausgabe 7/2019
Print ISSN: 0914-7187
Elektronische ISSN: 1864-6433
DOI
https://doi.org/10.1007/s12149-019-01356-7

Weitere Artikel der Ausgabe 7/2019

Annals of Nuclear Medicine 7/2019 Zur Ausgabe