Skip to main content
Erschienen in: Current Cardiovascular Risk Reports 3/2014

01.03.2014 | Lipids (J Ordovas, L Parnell, Section Editors)

Review Article: An Adipocentric View of the Metabolic Syndrome and Cardiovascular Disease

verfasst von: Michael Conall Dennedy, Antonio Vidal-Puig

Erschienen in: Current Cardiovascular Risk Reports | Ausgabe 3/2014

Einloggen, um Zugang zu erhalten

Abstract

Dysfunctional adipose tissue impairs whole body lipid buffering, influencing the storage of lipids as well as their use as an energy source. Ectopic deposition of lipids within metabolic tissues arises as a result of adipose tissue dysfunction and the ensuing systemic lipotoxicity explains much of the pathogenesis underlying insulin resistance and cardiometabolic disease. Adipose tissue dysfunction appears to be a multifactorial, maladaptive response to a lipid-rich, high calorie diet which involves the interplay between adipocyte precursors, adipocytes, immune cells, lipoprotein carriers and metabolically active tissues. Understanding these interactions and unravelling the adipocentric nature of cardiometabolic complications relating to obesity is a major priority towards addressing the worldwide obesity pandemic and its costly complications.
Literatur
1.
Zurück zum Zitat Flegal KM, Carroll MD, Ogden CL, Curtin LR. Prevalence and trends in obesity among US adults, 1999–2008. JAMA J Am Med Assoc. 2010;303(3):235–41.CrossRef Flegal KM, Carroll MD, Ogden CL, Curtin LR. Prevalence and trends in obesity among US adults, 1999–2008. JAMA J Am Med Assoc. 2010;303(3):235–41.CrossRef
2.
Zurück zum Zitat Ogden CL, Carroll MD, Curtin LR, Lamb MM, Flegal KM. Prevalence of high body mass index in US children and adolescents, 2007–2008. JAMA J Am Med Assoc. 2010;303(3):242–9.CrossRef Ogden CL, Carroll MD, Curtin LR, Lamb MM, Flegal KM. Prevalence of high body mass index in US children and adolescents, 2007–2008. JAMA J Am Med Assoc. 2010;303(3):242–9.CrossRef
4.
Zurück zum Zitat Virtue S, Vidal-Puig A. Adipose tissue expandability, lipotoxicity and the Metabolic Syndrome–an allostatic perspective. Biochim Biophys Acta. 2010;1801(3):338–49.PubMedCrossRef Virtue S, Vidal-Puig A. Adipose tissue expandability, lipotoxicity and the Metabolic Syndrome–an allostatic perspective. Biochim Biophys Acta. 2010;1801(3):338–49.PubMedCrossRef
5.
Zurück zum Zitat Nishimura S, Manabe I, Nagasaki M, et al. Adipogenesis in obesity requires close interplay between differentiating adipocytes, stromal cells, and blood vessels. Diabetes. 2007;56(6):1517–26.PubMedCrossRef Nishimura S, Manabe I, Nagasaki M, et al. Adipogenesis in obesity requires close interplay between differentiating adipocytes, stromal cells, and blood vessels. Diabetes. 2007;56(6):1517–26.PubMedCrossRef
6.
Zurück zum Zitat Greenberg AS, Coleman RA, Kraemer FB, et al. The role of lipid droplets in metabolic disease in rodents and humans. J Clin Invest. 2011;121(6):2102–10.PubMedCentralPubMedCrossRef Greenberg AS, Coleman RA, Kraemer FB, et al. The role of lipid droplets in metabolic disease in rodents and humans. J Clin Invest. 2011;121(6):2102–10.PubMedCentralPubMedCrossRef
7.
9.••
Zurück zum Zitat McQuaid SE, Hodson L, Neville MJ, et al. Downregulation of adipose tissue fatty acid trafficking in obesity: a driver for ectopic fat deposition? Diabetes. 2011;60(1):47–55. This study highlights an elaborate set of whole body physiological experiments in lean and obese men. The authors identify the maladaptive response and impaired storage of dietary fatty acids induced by enlargement of adipose tissue mass. PubMedCentralPubMedCrossRef McQuaid SE, Hodson L, Neville MJ, et al. Downregulation of adipose tissue fatty acid trafficking in obesity: a driver for ectopic fat deposition? Diabetes. 2011;60(1):47–55. This study highlights an elaborate set of whole body physiological experiments in lean and obese men. The authors identify the maladaptive response and impaired storage of dietary fatty acids induced by enlargement of adipose tissue mass. PubMedCentralPubMedCrossRef
10.
11.
Zurück zum Zitat Spalding KL, Arner E, Westermark PO, et al. Dynamics of fat cell turnover in humans. Nature. 2008;453(7196):783–7.PubMedCrossRef Spalding KL, Arner E, Westermark PO, et al. Dynamics of fat cell turnover in humans. Nature. 2008;453(7196):783–7.PubMedCrossRef
12.
Zurück zum Zitat McQuaid SE, Humphreys SM, Hodson L, Fielding BA, Karpe F, Frayn KN. Femoral adipose tissue may accumulate the fat that has been recycled as VLDL and nonesterified fatty acids. Diabetes. 2010;59(10):2465–73.PubMedCentralPubMedCrossRef McQuaid SE, Humphreys SM, Hodson L, Fielding BA, Karpe F, Frayn KN. Femoral adipose tissue may accumulate the fat that has been recycled as VLDL and nonesterified fatty acids. Diabetes. 2010;59(10):2465–73.PubMedCentralPubMedCrossRef
13.
Zurück zum Zitat Langin D. In and out: adipose tissue lipid turnover in obesity and dyslipidemia. Cell Metab. 2011;14(5):569–70.PubMedCrossRef Langin D. In and out: adipose tissue lipid turnover in obesity and dyslipidemia. Cell Metab. 2011;14(5):569–70.PubMedCrossRef
14.
Zurück zum Zitat Arner P, Bernard S, Salehpour M, et al. Dynamics of human adipose lipid turnover in health and metabolic disease. Nature. 2011;478(7367):110–3.PubMedCentralPubMedCrossRef Arner P, Bernard S, Salehpour M, et al. Dynamics of human adipose lipid turnover in health and metabolic disease. Nature. 2011;478(7367):110–3.PubMedCentralPubMedCrossRef
15.
Zurück zum Zitat Parker VE, Savage DB, O’Rahilly S, Semple RK. Mechanistic insights into insulin resistance in the genetic era. Diabet Med J Br Diabet Assoc. 2011;28(12):1476–86.CrossRef Parker VE, Savage DB, O’Rahilly S, Semple RK. Mechanistic insights into insulin resistance in the genetic era. Diabet Med J Br Diabet Assoc. 2011;28(12):1476–86.CrossRef
16.••
Zurück zum Zitat Gandotra S, Le Dour C, Bottomley W, et al. Perilipin deficiency and autosomal dominant partial lipodystrophy. N Engl J Med. 2011;364(8):740–8. Gandotra et al. present an interesting human study which identifies two different heterozygous PLIN1 mutatiions manifesting as a deficiency of the lipid droplet assoicated protein, perilipin which caused partial lipodystrophy. This manifested as dyslipidaemia, hepatic steatosis and insulin resistance. Hence the imprtance of appropriate lipid storage in the pathogenesis of the metabolis syndrome is again highlighted. PubMedCentralPubMedCrossRef Gandotra S, Le Dour C, Bottomley W, et al. Perilipin deficiency and autosomal dominant partial lipodystrophy. N Engl J Med. 2011;364(8):740–8. Gandotra et al. present an interesting human study which identifies two different heterozygous PLIN1 mutatiions manifesting as a deficiency of the lipid droplet assoicated protein, perilipin which caused partial lipodystrophy. This manifested as dyslipidaemia, hepatic steatosis and insulin resistance. Hence the imprtance of appropriate lipid storage in the pathogenesis of the metabolis syndrome is again highlighted. PubMedCentralPubMedCrossRef
17.
Zurück zum Zitat Rubio-Cabezas O, Puri V, Murano I, et al. Partial lipodystrophy and insulin resistant diabetes in a patient with a homozygous nonsense mutation in CIDEC. EMBO Mol Med. 2009;1(5):280–7.PubMedCentralPubMedCrossRef Rubio-Cabezas O, Puri V, Murano I, et al. Partial lipodystrophy and insulin resistant diabetes in a patient with a homozygous nonsense mutation in CIDEC. EMBO Mol Med. 2009;1(5):280–7.PubMedCentralPubMedCrossRef
18.
Zurück zum Zitat Savage DB, Tan GD, Acerini CL, et al. Human metabolic syndrome resulting from dominant-negative mutations in the nuclear receptor peroxisome proliferator-activated receptor-gamma. Diabetes. 2003;52(4):910–7.PubMedCrossRef Savage DB, Tan GD, Acerini CL, et al. Human metabolic syndrome resulting from dominant-negative mutations in the nuclear receptor peroxisome proliferator-activated receptor-gamma. Diabetes. 2003;52(4):910–7.PubMedCrossRef
19.
Zurück zum Zitat Veilleux A, Caron-Jobin M, Noel S, Laberge PY, Tchernof A. Visceral adipocyte hypertrophy is associated with dyslipidemia independent of body composition and fat distribution in women. Diabetes. 2011;60(5):1504–11.PubMedCentralPubMedCrossRef Veilleux A, Caron-Jobin M, Noel S, Laberge PY, Tchernof A. Visceral adipocyte hypertrophy is associated with dyslipidemia independent of body composition and fat distribution in women. Diabetes. 2011;60(5):1504–11.PubMedCentralPubMedCrossRef
20.
Zurück zum Zitat Leonhardt W, Haller H, Hanefeld M. The adipocyte volume in human adipose tissue: II. Observations in diabetes mellitus, primary hyperlipoproteinemia and weight reduction. Int J Obes. 1978;2(4):429–39.PubMed Leonhardt W, Haller H, Hanefeld M. The adipocyte volume in human adipose tissue: II. Observations in diabetes mellitus, primary hyperlipoproteinemia and weight reduction. Int J Obes. 1978;2(4):429–39.PubMed
21.
Zurück zum Zitat Imbeault P, Lemieux S, Prud’homme D, et al. Relationship of visceral adipose tissue to metabolic risk factors for coronary heart disease: is there a contribution of subcutaneous fat cell hypertrophy? Metabolism. 1999;48(3):355–62.PubMedCrossRef Imbeault P, Lemieux S, Prud’homme D, et al. Relationship of visceral adipose tissue to metabolic risk factors for coronary heart disease: is there a contribution of subcutaneous fat cell hypertrophy? Metabolism. 1999;48(3):355–62.PubMedCrossRef
22.
Zurück zum Zitat Tang QQ, Lane MD. Adipogenesis: from stem cell to adipocyte. Annu Rev Biochem. 2012;81(1):715–36.PubMedCrossRef Tang QQ, Lane MD. Adipogenesis: from stem cell to adipocyte. Annu Rev Biochem. 2012;81(1):715–36.PubMedCrossRef
24.
Zurück zum Zitat Savage DB. PPAR gamma as a metabolic regulator: insights from genomics and pharmacology. Expert Rev Mol Med. 2005;7(1):1–16.PubMedCrossRef Savage DB. PPAR gamma as a metabolic regulator: insights from genomics and pharmacology. Expert Rev Mol Med. 2005;7(1):1–16.PubMedCrossRef
25.
Zurück zum Zitat Oñate B, Vilahur G, Camino Lopez S, et al. Stem cells isolated from adipose tissue of obese patients show changes in their transcriptomic profile that indicate loss in stemcellness and increased commitment to an adipocyte-like phenotype. BMC Genomics. 2013;14(1):625–637. Oñate B, Vilahur G, Camino Lopez S, et al. Stem cells isolated from adipose tissue of obese patients show changes in their transcriptomic profile that indicate loss in stemcellness and increased commitment to an adipocyte-like phenotype. BMC Genomics. 2013;14(1):625–637.
26.
Zurück zum Zitat Jung C, Fischer N, Fritzenwanger M, Pernow J, Brehm BR, Figulla HR. Association of waist circumference, traditional cardiovascular risk factors, and stromal-derived factor-1 in adolescents. Pediatr Diabetes. 2009;10(5):329–35.PubMedCrossRef Jung C, Fischer N, Fritzenwanger M, Pernow J, Brehm BR, Figulla HR. Association of waist circumference, traditional cardiovascular risk factors, and stromal-derived factor-1 in adolescents. Pediatr Diabetes. 2009;10(5):329–35.PubMedCrossRef
28.
Zurück zum Zitat Schunkert H, Konig IR, Kathiresan S, et al. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat Genet. 2011;43(4):333–8.PubMedCentralPubMedCrossRef Schunkert H, Konig IR, Kathiresan S, et al. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat Genet. 2011;43(4):333–8.PubMedCentralPubMedCrossRef
29.
Zurück zum Zitat Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante Jr AW. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest. 2003;112(12):1796–808.PubMedCentralPubMedCrossRef Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante Jr AW. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest. 2003;112(12):1796–808.PubMedCentralPubMedCrossRef
30.
Zurück zum Zitat Romeo GR, Lee J, Shoelson SE. Metabolic syndrome, insulin resistance, and roles of inflammation–mechanisms and therapeutic targets. Arterioscler Thromb Vasc Biol. 2012;32(8):1771–6.PubMedCrossRef Romeo GR, Lee J, Shoelson SE. Metabolic syndrome, insulin resistance, and roles of inflammation–mechanisms and therapeutic targets. Arterioscler Thromb Vasc Biol. 2012;32(8):1771–6.PubMedCrossRef
31.
Zurück zum Zitat Lee YH, Petkova AP, Granneman JG. Identification of an adipogenic niche for adipose tissue remodeling and restoration. Cell Metab. 2013;18(3):355–67.PubMedCrossRef Lee YH, Petkova AP, Granneman JG. Identification of an adipogenic niche for adipose tissue remodeling and restoration. Cell Metab. 2013;18(3):355–67.PubMedCrossRef
32.
Zurück zum Zitat Arner P, Arner E, Hammarstedt A, Smith U. Genetic predisposition for type 2 diabetes, but not for overweight/obesity, is associated with a restricted adipogenesis. PLoS ONE. 2011;6(4):e18284.PubMedCentralPubMedCrossRef Arner P, Arner E, Hammarstedt A, Smith U. Genetic predisposition for type 2 diabetes, but not for overweight/obesity, is associated with a restricted adipogenesis. PLoS ONE. 2011;6(4):e18284.PubMedCentralPubMedCrossRef
33.
Zurück zum Zitat Desai M, Beall M, Ross MG. Developmental origins of obesity: programmed adipogenesis. Curr Diabetes Rep. 2012;13(1):27–33.CrossRef Desai M, Beall M, Ross MG. Developmental origins of obesity: programmed adipogenesis. Curr Diabetes Rep. 2012;13(1):27–33.CrossRef
34.
Zurück zum Zitat Lagathu C, Christodoulides C, Virtue S, et al. Dact1, a nutritionally regulated preadipocyte gene, controls adipogenesis by coordinating the Wnt/beta-catenin signaling network. Diabetes. 2009;58(3):609–19.PubMedCentralPubMedCrossRef Lagathu C, Christodoulides C, Virtue S, et al. Dact1, a nutritionally regulated preadipocyte gene, controls adipogenesis by coordinating the Wnt/beta-catenin signaling network. Diabetes. 2009;58(3):609–19.PubMedCentralPubMedCrossRef
35.
Zurück zum Zitat Puri V, Ranjit S, Konda S, et al. Cidea is associated with lipid droplets and insulin sensitivity in humans. Proc Natl Acad Sci U S A. 2008;105(22):7833–8.PubMedCentralPubMedCrossRef Puri V, Ranjit S, Konda S, et al. Cidea is associated with lipid droplets and insulin sensitivity in humans. Proc Natl Acad Sci U S A. 2008;105(22):7833–8.PubMedCentralPubMedCrossRef
36.
Zurück zum Zitat Liu M, Guo L, Liu Y, et al. Adipose stromal-vascular fraction-derived paracrine factors regulate adipogenesis. Mol Cell Biochem. 2013;385(1–2):115–23.CrossRef Liu M, Guo L, Liu Y, et al. Adipose stromal-vascular fraction-derived paracrine factors regulate adipogenesis. Mol Cell Biochem. 2013;385(1–2):115–23.CrossRef
37.
Zurück zum Zitat Harman-Boehm I, Bluher M, Redel H, et al. Macrophage infiltration into omental versus subcutaneous fat across different populations: effect of regional adiposity and the comorbidities of obesity. J Clin Endocrinol Metab. 2007;92(6):2240–7.PubMedCrossRef Harman-Boehm I, Bluher M, Redel H, et al. Macrophage infiltration into omental versus subcutaneous fat across different populations: effect of regional adiposity and the comorbidities of obesity. J Clin Endocrinol Metab. 2007;92(6):2240–7.PubMedCrossRef
38.
Zurück zum Zitat Herold C, Rennekampff HO, Engeli S. Apoptotic pathways in adipose tissue. Apoptosis. 2013;18(8):911–6.PubMedCrossRef Herold C, Rennekampff HO, Engeli S. Apoptotic pathways in adipose tissue. Apoptosis. 2013;18(8):911–6.PubMedCrossRef
40.
Zurück zum Zitat Kallen CJH, Greevenbroek MMJ, Stehouwer CDA, Schalkwijk CG. Endoplasmic reticulum stress-induced apoptosis in the development of diabetes: is there a role for adipose tissue and liver? Apoptosis. 2009;14(12):1424–34.PubMedCentralPubMedCrossRef Kallen CJH, Greevenbroek MMJ, Stehouwer CDA, Schalkwijk CG. Endoplasmic reticulum stress-induced apoptosis in the development of diabetes: is there a role for adipose tissue and liver? Apoptosis. 2009;14(12):1424–34.PubMedCentralPubMedCrossRef
41.
Zurück zum Zitat Bekhite MM, Finkensieper A, Rebhan J, et al. Hypoxia, leptin and VEGF stimulate vascular endothelial cell differentiation of human adipose tissue-derived stem cells. Stem Cells Dev 2013. Bekhite MM, Finkensieper A, Rebhan J, et al. Hypoxia, leptin and VEGF stimulate vascular endothelial cell differentiation of human adipose tissue-derived stem cells. Stem Cells Dev 2013.
42.
Zurück zum Zitat Wood IS, de Heredia FP, Wang B, Trayhurn P. Cellular hypoxia and adipose tissue dysfunction in obesity. Proc Nutr Soc. 2009;68(4):370–7.PubMedCrossRef Wood IS, de Heredia FP, Wang B, Trayhurn P. Cellular hypoxia and adipose tissue dysfunction in obesity. Proc Nutr Soc. 2009;68(4):370–7.PubMedCrossRef
43.
Zurück zum Zitat Khan T, Muise ES, Iyengar P, et al. Metabolic dysregulation and adipose tissue fibrosis: role of collagen VI. Mol Cell Biol. 2009;29(6):1575–91.PubMedCentralPubMedCrossRef Khan T, Muise ES, Iyengar P, et al. Metabolic dysregulation and adipose tissue fibrosis: role of collagen VI. Mol Cell Biol. 2009;29(6):1575–91.PubMedCentralPubMedCrossRef
45.
Zurück zum Zitat Spencer M, Yao-Borengasser A, Unal R, et al. Adipose tissue macrophages in insulin-resistant subjects are associated with collagen VI and fibrosis and demonstrate alternative activation. Am J Physiol Endocrinol Metab. 2010;299(6):E1016–27.PubMedCentralPubMedCrossRef Spencer M, Yao-Borengasser A, Unal R, et al. Adipose tissue macrophages in insulin-resistant subjects are associated with collagen VI and fibrosis and demonstrate alternative activation. Am J Physiol Endocrinol Metab. 2010;299(6):E1016–27.PubMedCentralPubMedCrossRef
46.
Zurück zum Zitat Naour N, Rouault C, Fellahi S, et al. Cathepsins in human obesity: changes in energy balance predominantly affect cathepsin s in adipose tissue and in circulation. J Clin Endocrinol Metab. 2010;95(4):1861–8.PubMedCrossRef Naour N, Rouault C, Fellahi S, et al. Cathepsins in human obesity: changes in energy balance predominantly affect cathepsin s in adipose tissue and in circulation. J Clin Endocrinol Metab. 2010;95(4):1861–8.PubMedCrossRef
47.
Zurück zum Zitat Goossens GH, Bizzarri A, Venteclef N, et al. Increased adipose tissue oxygen tension in obese compared with lean men is accompanied by insulin resistance, impaired adipose tissue capillarization, and inflammation. Circulation. 2011;124(1):67–76.PubMedCrossRef Goossens GH, Bizzarri A, Venteclef N, et al. Increased adipose tissue oxygen tension in obese compared with lean men is accompanied by insulin resistance, impaired adipose tissue capillarization, and inflammation. Circulation. 2011;124(1):67–76.PubMedCrossRef
48.
Zurück zum Zitat Qian H, Hausman DB, Compton MM, et al. TNFalpha induces and insulin inhibits caspase 3-dependent adipocyte apoptosis. Biochem Biophys Res Commun. 2001;284(5):1176–83.PubMedCrossRef Qian H, Hausman DB, Compton MM, et al. TNFalpha induces and insulin inhibits caspase 3-dependent adipocyte apoptosis. Biochem Biophys Res Commun. 2001;284(5):1176–83.PubMedCrossRef
49.
Zurück zum Zitat Votruba SB, Mattison RS, Dumesic DA, Koutsari C, Jensen MD. Meal fatty acid uptake in visceral fat in women. Diabetes. 2007;56(10):2589–97.PubMedCrossRef Votruba SB, Mattison RS, Dumesic DA, Koutsari C, Jensen MD. Meal fatty acid uptake in visceral fat in women. Diabetes. 2007;56(10):2589–97.PubMedCrossRef
50.
Zurück zum Zitat Donath MY, Shoelson SE. Type 2 diabetes as an inflammatory disease. Nat Rev Immunol. 2011;11(2):98–107.PubMedCrossRef Donath MY, Shoelson SE. Type 2 diabetes as an inflammatory disease. Nat Rev Immunol. 2011;11(2):98–107.PubMedCrossRef
52.
Zurück zum Zitat Prieur X, Mok CY, Velagapudi VR, et al. Differential lipid partitioning between adipocytes and tissue macrophages modulates macrophage lipotoxicity and M2/M1 polarization in obese mice. Diabetes. 2011;60(3):797–809.PubMedCentralPubMedCrossRef Prieur X, Mok CY, Velagapudi VR, et al. Differential lipid partitioning between adipocytes and tissue macrophages modulates macrophage lipotoxicity and M2/M1 polarization in obese mice. Diabetes. 2011;60(3):797–809.PubMedCentralPubMedCrossRef
53.
Zurück zum Zitat Weisberg SP, Hunter D, Huber R, et al. CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J Clin Invest. 2006;116(1):115–24.PubMedCentralPubMedCrossRef Weisberg SP, Hunter D, Huber R, et al. CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J Clin Invest. 2006;116(1):115–24.PubMedCentralPubMedCrossRef
54.
Zurück zum Zitat Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest. 2007;117(1):175–84.PubMedCentralPubMedCrossRef Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest. 2007;117(1):175–84.PubMedCentralPubMedCrossRef
55.
Zurück zum Zitat Shapiro H, Pecht T, Shaco-Levy R, et al. Adipose tissue foam cells are present in human obesity. J Clin Endocrinol Metab. 2013;98(3):1173–81.PubMedCrossRef Shapiro H, Pecht T, Shaco-Levy R, et al. Adipose tissue foam cells are present in human obesity. J Clin Endocrinol Metab. 2013;98(3):1173–81.PubMedCrossRef
56.
Zurück zum Zitat Swirski FK, Libby P, Aikawa E, et al. Ly-6Chi monocytes dominate hypercholesterolemia-associated monocytosis and give rise to macrophages in atheromata. J Clin Invest. 2007;117(1):195–205.PubMedCentralPubMedCrossRef Swirski FK, Libby P, Aikawa E, et al. Ly-6Chi monocytes dominate hypercholesterolemia-associated monocytosis and give rise to macrophages in atheromata. J Clin Invest. 2007;117(1):195–205.PubMedCentralPubMedCrossRef
58.
Zurück zum Zitat Tsou CL, Peters W, Si Y, et al. Critical roles for CCR2 and MCP-3 in monocyte mobilization from bone marrow and recruitment to inflammatory sites. J Clin Invest. 2007;117(4):902–9.PubMedCentralPubMedCrossRef Tsou CL, Peters W, Si Y, et al. Critical roles for CCR2 and MCP-3 in monocyte mobilization from bone marrow and recruitment to inflammatory sites. J Clin Invest. 2007;117(4):902–9.PubMedCentralPubMedCrossRef
59.
Zurück zum Zitat Triantafilou M, Triantafilou K. Lipopolysaccharide recognition: CD14, TLRs and the LPS-activation cluster. Trends Immunol. 2002;23(6):301–4.PubMedCrossRef Triantafilou M, Triantafilou K. Lipopolysaccharide recognition: CD14, TLRs and the LPS-activation cluster. Trends Immunol. 2002;23(6):301–4.PubMedCrossRef
60.
Zurück zum Zitat Maloney E, Sweet IR, Hockenbery DM, et al. Activation of NF-kappaB by palmitate in endothelial cells: a key role for NADPH oxidase-derived superoxide in response to TLR4 activation. Arterioscler Thromb Vasc Biol. 2009;29(9):1370–5.PubMedCentralPubMedCrossRef Maloney E, Sweet IR, Hockenbery DM, et al. Activation of NF-kappaB by palmitate in endothelial cells: a key role for NADPH oxidase-derived superoxide in response to TLR4 activation. Arterioscler Thromb Vasc Biol. 2009;29(9):1370–5.PubMedCentralPubMedCrossRef
61.
Zurück zum Zitat Prieur X, Roszer T, Ricote M. Lipotoxicity in macrophages: evidence from diseases associated with the metabolic syndrome. Biochim Biophys Acta. 2010;1801(3):327–37.PubMedCrossRef Prieur X, Roszer T, Ricote M. Lipotoxicity in macrophages: evidence from diseases associated with the metabolic syndrome. Biochim Biophys Acta. 2010;1801(3):327–37.PubMedCrossRef
62.
Zurück zum Zitat Shaikh SR, Mitchell D, Carroll E, Li M, Schneck J, Edidin M. Differential effects of a saturated and a monounsaturated fatty acid on MHC class I antigen presentation. Scand J Immunol. 2008;68(1):30–42.PubMedCentralPubMedCrossRef Shaikh SR, Mitchell D, Carroll E, Li M, Schneck J, Edidin M. Differential effects of a saturated and a monounsaturated fatty acid on MHC class I antigen presentation. Scand J Immunol. 2008;68(1):30–42.PubMedCentralPubMedCrossRef
63.
Zurück zum Zitat Kusminski CM, Shetty S, Orci L, Unger RH, Scherer PE. Diabetes and apoptosis: lipotoxicity. Apoptosis. 2009;14(12):1484–95.PubMedCrossRef Kusminski CM, Shetty S, Orci L, Unger RH, Scherer PE. Diabetes and apoptosis: lipotoxicity. Apoptosis. 2009;14(12):1484–95.PubMedCrossRef
64.
Zurück zum Zitat Goodpaster BH, He J, Watkins S, Kelley DE. Skeletal muscle lipid content and insulin resistance: evidence for a paradox in endurance-trained athletes. J Clin Endocrinol Metab. 2001;86(12):5755–61.PubMedCrossRef Goodpaster BH, He J, Watkins S, Kelley DE. Skeletal muscle lipid content and insulin resistance: evidence for a paradox in endurance-trained athletes. J Clin Endocrinol Metab. 2001;86(12):5755–61.PubMedCrossRef
65.
Zurück zum Zitat Kelley DE, Williams KV, Price JC, McKolanis TM, Goodpaster BH, Thaete FL. Plasma fatty acids, adiposity, and variance of skeletal muscle insulin resistance in type 2 diabetes mellitus. J Clin Endocrinol Metab. 2001;86(11):5412–9.PubMedCrossRef Kelley DE, Williams KV, Price JC, McKolanis TM, Goodpaster BH, Thaete FL. Plasma fatty acids, adiposity, and variance of skeletal muscle insulin resistance in type 2 diabetes mellitus. J Clin Endocrinol Metab. 2001;86(11):5412–9.PubMedCrossRef
66.
Zurück zum Zitat Fischer J, Lefevre C, Morava E, et al. The gene encoding adipose triglyceride lipase (PNPLA2) is mutated in neutral lipid storage disease with myopathy. Nat Genet. 2007;39(1):28–30.PubMedCrossRef Fischer J, Lefevre C, Morava E, et al. The gene encoding adipose triglyceride lipase (PNPLA2) is mutated in neutral lipid storage disease with myopathy. Nat Genet. 2007;39(1):28–30.PubMedCrossRef
67.
Zurück zum Zitat Summers SA. Ceramides in insulin resistance and lipotoxicity. Prog Lipid Res. 2006;45(1):42–72.PubMedCrossRef Summers SA. Ceramides in insulin resistance and lipotoxicity. Prog Lipid Res. 2006;45(1):42–72.PubMedCrossRef
68.
Zurück zum Zitat Liu L, Zhang Y, Chen N, Shi X, Tsang B, Yu YH. Upregulation of myocellular DGAT1 augments triglyceride synthesis in skeletal muscle and protects against fat-induced insulin resistance. J Clin Invest. 2007;117(6):1679–89.PubMedCentralPubMedCrossRef Liu L, Zhang Y, Chen N, Shi X, Tsang B, Yu YH. Upregulation of myocellular DGAT1 augments triglyceride synthesis in skeletal muscle and protects against fat-induced insulin resistance. J Clin Invest. 2007;117(6):1679–89.PubMedCentralPubMedCrossRef
69.
Zurück zum Zitat Lee H-Y, Després J-P, Koh KK. Perivascular adipose tissue in the pathogenesis of cardiovascular disease. Atherosclerosis. 2013;230(2):177–84.PubMedCrossRef Lee H-Y, Després J-P, Koh KK. Perivascular adipose tissue in the pathogenesis of cardiovascular disease. Atherosclerosis. 2013;230(2):177–84.PubMedCrossRef
70.
Zurück zum Zitat Cypess AM, Lehman S, Williams G, et al. Identification and importance of brown adipose tissue in adult humans. N Engl J Med. 2009;360(15):1509–17.PubMedCentralPubMedCrossRef Cypess AM, Lehman S, Williams G, et al. Identification and importance of brown adipose tissue in adult humans. N Engl J Med. 2009;360(15):1509–17.PubMedCentralPubMedCrossRef
71.
Zurück zum Zitat Ouellet V, Labbe SM, Blondin DP, et al. Brown adipose tissue oxidative metabolism contributes to energy expenditure during acute cold exposure in humans. J Clin Invest. 2012;122(2):545–52.PubMedCentralPubMedCrossRef Ouellet V, Labbe SM, Blondin DP, et al. Brown adipose tissue oxidative metabolism contributes to energy expenditure during acute cold exposure in humans. J Clin Invest. 2012;122(2):545–52.PubMedCentralPubMedCrossRef
72.
73.
74.
Zurück zum Zitat Whittle AJ, Carobbio S, Martins L, et al. BMP8B increases brown adipose tissue thermogenesis through both central and peripheral actions. Cell. 2012;149(4):871–85.PubMedCentralPubMedCrossRef Whittle AJ, Carobbio S, Martins L, et al. BMP8B increases brown adipose tissue thermogenesis through both central and peripheral actions. Cell. 2012;149(4):871–85.PubMedCentralPubMedCrossRef
75.
Zurück zum Zitat Whittle A, Relat-Pardo J, Vidal-Puig A. Pharmacological strategies for targeting BAT thermogenesis. Trends Pharmacol Sci. 2013;34(6):347–55.PubMedCrossRef Whittle A, Relat-Pardo J, Vidal-Puig A. Pharmacological strategies for targeting BAT thermogenesis. Trends Pharmacol Sci. 2013;34(6):347–55.PubMedCrossRef
76.
Zurück zum Zitat Villarroya F, Vidal-Puig A. Beyond the sympathetic tone: the new brown fat activators. Cell Metab. 2013;17(5):638–43.PubMedCrossRef Villarroya F, Vidal-Puig A. Beyond the sympathetic tone: the new brown fat activators. Cell Metab. 2013;17(5):638–43.PubMedCrossRef
77.
Zurück zum Zitat Bostrom P, Wu J, Jedrychowski MP, et al. A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature. 2012;481(7382):463–8.PubMedCentralPubMedCrossRef Bostrom P, Wu J, Jedrychowski MP, et al. A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature. 2012;481(7382):463–8.PubMedCentralPubMedCrossRef
78.
Zurück zum Zitat Frontini A, Vitali A, Perugini J, et al. White-to-brown transdifferentiation of omental adipocytes in patients affected by pheochromocytoma. Biochim Biophys Acta. 2013;1831(5):950–9.PubMedCrossRef Frontini A, Vitali A, Perugini J, et al. White-to-brown transdifferentiation of omental adipocytes in patients affected by pheochromocytoma. Biochim Biophys Acta. 2013;1831(5):950–9.PubMedCrossRef
79.
Zurück zum Zitat Bartelt A, Bruns OT, Reimer R, et al. Brown adipose tissue activity controls triglyceride clearance. Nat Med. 2011;17(2):200–5.PubMedCrossRef Bartelt A, Bruns OT, Reimer R, et al. Brown adipose tissue activity controls triglyceride clearance. Nat Med. 2011;17(2):200–5.PubMedCrossRef
80.
Zurück zum Zitat Dong M, Yang X, Lim S, et al. Cold exposure promotes atherosclerotic plaque growth and instability via UCP1-dependent lipolysis. Cell Metab. 2013;18(1):118–29.PubMedCentralPubMedCrossRef Dong M, Yang X, Lim S, et al. Cold exposure promotes atherosclerotic plaque growth and instability via UCP1-dependent lipolysis. Cell Metab. 2013;18(1):118–29.PubMedCentralPubMedCrossRef
81.
Zurück zum Zitat Barneda D, Frontini A, Cinti S, Christian M. Dynamic changes in lipid droplet-associated proteins in the “browning” of white adipose tissues. Biochim Biophys Acta. 2013;1831(5):924–33.PubMedCrossRef Barneda D, Frontini A, Cinti S, Christian M. Dynamic changes in lipid droplet-associated proteins in the “browning” of white adipose tissues. Biochim Biophys Acta. 2013;1831(5):924–33.PubMedCrossRef
Metadaten
Titel
Review Article: An Adipocentric View of the Metabolic Syndrome and Cardiovascular Disease
verfasst von
Michael Conall Dennedy
Antonio Vidal-Puig
Publikationsdatum
01.03.2014
Verlag
Springer US
Erschienen in
Current Cardiovascular Risk Reports / Ausgabe 3/2014
Print ISSN: 1932-9520
Elektronische ISSN: 1932-9563
DOI
https://doi.org/10.1007/s12170-014-0379-4

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.