Skip to main content
Erschienen in: International Journal of Hematology 2/2012

01.02.2012 | Progress in Hematology

New functions of the fibrinolytic system in bone marrow cell-derived angiogenesis

verfasst von: Beate Heissig, Makiko Ohki-Koizumi, Yoshihiko Tashiro, Ismael Gritli, Kaori Sato-Kusubata, Koichi Hattori

Erschienen in: International Journal of Hematology | Ausgabe 2/2012

Einloggen, um Zugang zu erhalten

Abstract

Angiogenesis is a process by which new blood vessels form from preexisting vasculature. This process includes differentiation of angioblasts into endothelial cells with the help of secreted angiogenic factors released from cells such as bone marrow (BM)-derived cells. The fibrinolytic factor plasmin, which is a serine protease, has been shown to promote endothelial cell migration either directly, by degrading matrix proteins such as fibrin, or indirectly, by converting matrix-bound angiogenic growth factors into a soluble form. Plasmin can also activate other pericellular proteases such as matrix metalloproteinases (MMPs). Recent studies indicate that plasmin can additionally alter cellular adhesion and migration. We showed that factors of the fibrinolytic pathway can recruit BM-derived hematopoietic cells into ischemic/hypoxic tissues by altering the activation status of MMPs. These BM-derived cells can function as accessory cells that promote angiogenesis by releasing angiogenic signals. This review will discuss recent data regarding the role of the fibrinolytic system in controlling myeloid cell-driven angiogenesis. We propose that plasmin/plasminogen may be a potential target not only for development of effective angiogenic therapeutic strategies for the treatment of cancer, but also for development of strategies to promote ischemic tissue regeneration.
Literatur
1.
Zurück zum Zitat Hulboy DL, Rudolph LA, Matrisian LM. Matrix metalloproteinases as mediators of reproductive function. Mol Hum Reprod. 1997;3:27–45.PubMedCrossRef Hulboy DL, Rudolph LA, Matrisian LM. Matrix metalloproteinases as mediators of reproductive function. Mol Hum Reprod. 1997;3:27–45.PubMedCrossRef
2.
Zurück zum Zitat Vu TH, Werb Z. Matrix metalloproteinases: effectors of development and normal physiology. Genes Dev. 2000;14:2123–33.PubMedCrossRef Vu TH, Werb Z. Matrix metalloproteinases: effectors of development and normal physiology. Genes Dev. 2000;14:2123–33.PubMedCrossRef
3.
Zurück zum Zitat Le NT, Xue M, Castelnoble LA, Jackson CJ. The dual personalities of matrix metalloproteinases in inflammation. Front Biosci. 2007;12:1475–87.PubMedCrossRef Le NT, Xue M, Castelnoble LA, Jackson CJ. The dual personalities of matrix metalloproteinases in inflammation. Front Biosci. 2007;12:1475–87.PubMedCrossRef
4.
Zurück zum Zitat Page-McCaw A, Ewald AJ, Werb Z. Matrix metalloproteinases and the regulation of tissue remodelling. Natl Rev Mol Cell Biol. 2007;8:221–33.CrossRef Page-McCaw A, Ewald AJ, Werb Z. Matrix metalloproteinases and the regulation of tissue remodelling. Natl Rev Mol Cell Biol. 2007;8:221–33.CrossRef
5.
Zurück zum Zitat Roy R, Zhang B, Moses MA. Making the cut: protease-mediated regulation of angiogenesis. Exp Cell Res. 2006;312:608–22.PubMedCrossRef Roy R, Zhang B, Moses MA. Making the cut: protease-mediated regulation of angiogenesis. Exp Cell Res. 2006;312:608–22.PubMedCrossRef
6.
Zurück zum Zitat Dejonckheere E, Vandenbroucke RE, Libert C. Matrix metalloproteinases as drug targets in ischemia/reperfusion injury. Drug Discov Today. 2011;16:762–78.PubMed Dejonckheere E, Vandenbroucke RE, Libert C. Matrix metalloproteinases as drug targets in ischemia/reperfusion injury. Drug Discov Today. 2011;16:762–78.PubMed
7.
Zurück zum Zitat Cauwe B, Van den Steen PE, Opdenakker G. The biochemical, biological, and pathological kaleidoscope of cell surface substrates processed by matrix metalloproteinases. Crit Rev Biochem Mol Biol. 2007;42:113–85.PubMedCrossRef Cauwe B, Van den Steen PE, Opdenakker G. The biochemical, biological, and pathological kaleidoscope of cell surface substrates processed by matrix metalloproteinases. Crit Rev Biochem Mol Biol. 2007;42:113–85.PubMedCrossRef
8.
Zurück zum Zitat Kinnaird T, Stabile E, Burnett MS, Epstein SE. Bone-marrow-derived cells for enhancing collateral development: mechanisms, animal data, and initial clinical experiences. Circ Res. 2004;95:354–63.PubMedCrossRef Kinnaird T, Stabile E, Burnett MS, Epstein SE. Bone-marrow-derived cells for enhancing collateral development: mechanisms, animal data, and initial clinical experiences. Circ Res. 2004;95:354–63.PubMedCrossRef
9.
Zurück zum Zitat Laurent J, Touvrey C, Botta F, Kuonen F, Ruegg C. Emerging paradigms and questions on pro-angiogenic bone marrow-derived myelomonocytic cells. Int J Dev Biol. 2011;55:527–34.PubMedCrossRef Laurent J, Touvrey C, Botta F, Kuonen F, Ruegg C. Emerging paradigms and questions on pro-angiogenic bone marrow-derived myelomonocytic cells. Int J Dev Biol. 2011;55:527–34.PubMedCrossRef
10.
Zurück zum Zitat Coffelt SB, Lewis CE, Naldini L, Brown JM, Ferrara N, et al. Elusive identities and overlapping phenotypes of proangiogenic myeloid cells in tumors. Am J Pathol. 2010;176:1564–76.PubMedCrossRef Coffelt SB, Lewis CE, Naldini L, Brown JM, Ferrara N, et al. Elusive identities and overlapping phenotypes of proangiogenic myeloid cells in tumors. Am J Pathol. 2010;176:1564–76.PubMedCrossRef
11.
Zurück zum Zitat Murdoch C, Muthana M, Coffelt SB, Lewis CE. The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer. 2008;8:618–31.PubMedCrossRef Murdoch C, Muthana M, Coffelt SB, Lewis CE. The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer. 2008;8:618–31.PubMedCrossRef
12.
Zurück zum Zitat Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell. 2010;141:52–67.PubMedCrossRef Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell. 2010;141:52–67.PubMedCrossRef
13.
Zurück zum Zitat Collen D. Ham-Wasserman lecture: role of the plasminogen system in fibrin-homeostasis and tissue remodeling. Hematology Am Soc Hematol Educ Program 2001:1–9. Collen D. Ham-Wasserman lecture: role of the plasminogen system in fibrin-homeostasis and tissue remodeling. Hematology Am Soc Hematol Educ Program 2001:1–9.
14.
Zurück zum Zitat Pepper MS. Role of the matrix metalloproteinase and plasminogen activator-plasmin systems in angiogenesis. Arterioscler Thromb Vasc Biol. 2001;21:1104–17.PubMedCrossRef Pepper MS. Role of the matrix metalloproteinase and plasminogen activator-plasmin systems in angiogenesis. Arterioscler Thromb Vasc Biol. 2001;21:1104–17.PubMedCrossRef
15.
Zurück zum Zitat Van den Steen PE, Opdenakker G, Wormald MR, Dwek RA, Rudd PM. Matrix remodelling enzymes, the protease cascade and glycosylation. Biochim Biophys Acta. 2001;1528:61–73.PubMedCrossRef Van den Steen PE, Opdenakker G, Wormald MR, Dwek RA, Rudd PM. Matrix remodelling enzymes, the protease cascade and glycosylation. Biochim Biophys Acta. 2001;1528:61–73.PubMedCrossRef
16.
Zurück zum Zitat Sternlicht MD, Werb Z. How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol. 2001;17:463–516.PubMedCrossRef Sternlicht MD, Werb Z. How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol. 2001;17:463–516.PubMedCrossRef
17.
Zurück zum Zitat Ra HJ, Parks WC. Control of matrix metalloproteinase catalytic activity. Matrix Biol. 2007;26:587–96.PubMedCrossRef Ra HJ, Parks WC. Control of matrix metalloproteinase catalytic activity. Matrix Biol. 2007;26:587–96.PubMedCrossRef
18.
Zurück zum Zitat Dreier R, Grassel S, Fuchs S, Schaumburger J, Bruckner P. Pro-MMP-9 is a specific macrophage product and is activated by osteoarthritic chondrocytes via MMP-3 or a MT1-MMP/MMP-13 cascade. Exp Cell Res. 2004;297:303–12.PubMedCrossRef Dreier R, Grassel S, Fuchs S, Schaumburger J, Bruckner P. Pro-MMP-9 is a specific macrophage product and is activated by osteoarthritic chondrocytes via MMP-3 or a MT1-MMP/MMP-13 cascade. Exp Cell Res. 2004;297:303–12.PubMedCrossRef
19.
Zurück zum Zitat Brew K, Nagase H. The tissue inhibitors of metalloproteinases (TIMPs): an ancient family with structural and functional diversity. Biochim Biophys Acta. 2010;1803:55–71.PubMedCrossRef Brew K, Nagase H. The tissue inhibitors of metalloproteinases (TIMPs): an ancient family with structural and functional diversity. Biochim Biophys Acta. 2010;1803:55–71.PubMedCrossRef
20.
Zurück zum Zitat Lijnen HR, Ugwu F, Bini A, Collen D. Generation of an angiostatin-like fragment from plasminogen by stromelysin-1 (MMP-3). Biochemistry. 1998;37:4699–702.PubMedCrossRef Lijnen HR, Ugwu F, Bini A, Collen D. Generation of an angiostatin-like fragment from plasminogen by stromelysin-1 (MMP-3). Biochemistry. 1998;37:4699–702.PubMedCrossRef
21.
Zurück zum Zitat Patterson BC, Sang QA. Angiostatin-converting enzyme activities of human matrilysin (MMP-7) and gelatinase B/type IV collagenase (MMP-9). J Biol Chem. 1997;272:28823–5.PubMedCrossRef Patterson BC, Sang QA. Angiostatin-converting enzyme activities of human matrilysin (MMP-7) and gelatinase B/type IV collagenase (MMP-9). J Biol Chem. 1997;272:28823–5.PubMedCrossRef
22.
Zurück zum Zitat Dong Z, Kumar R, Yang X, Fidler IJ. Macrophage-derived metalloelastase is responsible for the generation of angiostatin in Lewis lung carcinoma. Cell. 1997;88:801–10.PubMedCrossRef Dong Z, Kumar R, Yang X, Fidler IJ. Macrophage-derived metalloelastase is responsible for the generation of angiostatin in Lewis lung carcinoma. Cell. 1997;88:801–10.PubMedCrossRef
23.
Zurück zum Zitat Lijnen HR, Van Hoef B, Collen D. Inactivation of the serpin alpha(2)-antiplasmin by stromelysin-1. Biochim Biophys Acta. 2001;1547:206–13.PubMedCrossRef Lijnen HR, Van Hoef B, Collen D. Inactivation of the serpin alpha(2)-antiplasmin by stromelysin-1. Biochim Biophys Acta. 2001;1547:206–13.PubMedCrossRef
24.
Zurück zum Zitat Castellino FJ, Ploplis VA. Structure and function of the plasminogen/plasmin system. Thromb Haemost. 2005;93:647–54.PubMed Castellino FJ, Ploplis VA. Structure and function of the plasminogen/plasmin system. Thromb Haemost. 2005;93:647–54.PubMed
25.
Zurück zum Zitat Ogawa M, Kawamoto M, Yamanaka N. Matrix metalloproteinase and tissue inhibitor of metalloproteinase in human bone marrow tissues-an immunohistochemical study. J Nihon Med Sch. 2000;67:235–41.PubMedCrossRef Ogawa M, Kawamoto M, Yamanaka N. Matrix metalloproteinase and tissue inhibitor of metalloproteinase in human bone marrow tissues-an immunohistochemical study. J Nihon Med Sch. 2000;67:235–41.PubMedCrossRef
26.
Zurück zum Zitat Heissig B, Rafii S, Akiyama H, Ohki Y, Sato Y, et al. Low-dose irradiation promotes tissue revascularization through VEGF release from mast cells and MMP-9-mediated progenitor cell mobilization. J Exp Med. 2005;202:739–50.PubMedCrossRef Heissig B, Rafii S, Akiyama H, Ohki Y, Sato Y, et al. Low-dose irradiation promotes tissue revascularization through VEGF release from mast cells and MMP-9-mediated progenitor cell mobilization. J Exp Med. 2005;202:739–50.PubMedCrossRef
27.
Zurück zum Zitat Heissig B, Ohki M, Ishihara M, Tashiro Y, Nishida C, et al. Contribution of the fibrinolytic pathway to hematopoietic regeneration. J Cell Physiol. 2009;221:521–5.PubMedCrossRef Heissig B, Ohki M, Ishihara M, Tashiro Y, Nishida C, et al. Contribution of the fibrinolytic pathway to hematopoietic regeneration. J Cell Physiol. 2009;221:521–5.PubMedCrossRef
28.
Zurück zum Zitat Pruijt JF, Fibbe WE, Laterveer L, Pieters RA, Lindley IJ, et al. Prevention of interleukin-8-induced mobilization of hematopoietic progenitor cells in rhesus monkeys by inhibitory antibodies against the metalloproteinase gelatinase B (MMP-9). Proc Natl Acad Sci USA. 1999;96:10863–8.PubMedCrossRef Pruijt JF, Fibbe WE, Laterveer L, Pieters RA, Lindley IJ, et al. Prevention of interleukin-8-induced mobilization of hematopoietic progenitor cells in rhesus monkeys by inhibitory antibodies against the metalloproteinase gelatinase B (MMP-9). Proc Natl Acad Sci USA. 1999;96:10863–8.PubMedCrossRef
29.
Zurück zum Zitat Lapidot T, Kollet O. The essential roles of the chemokine SDF-1 and its receptor CXCR4 in human stem cell homing and repopulation of transplanted immune-deficient NOD/SCID and NOD/SCID/B2m(null) mice. Leukemia. 2002;16:1992–2003.PubMedCrossRef Lapidot T, Kollet O. The essential roles of the chemokine SDF-1 and its receptor CXCR4 in human stem cell homing and repopulation of transplanted immune-deficient NOD/SCID and NOD/SCID/B2m(null) mice. Leukemia. 2002;16:1992–2003.PubMedCrossRef
30.
Zurück zum Zitat Heissig B, Hattori K, Dias S, Friedrich M, Ferris B, et al. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell. 2002;109:625–37.PubMedCrossRef Heissig B, Hattori K, Dias S, Friedrich M, Ferris B, et al. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell. 2002;109:625–37.PubMedCrossRef
31.
Zurück zum Zitat Vagima Y, Avigdor A, Goichberg P, Shivtiel S, Tesio M, et al. MT1-MMP and RECK are involved in human CD34+ progenitor cell retention, egress, and mobilization. J Clin Invest. 2009;119:492–503.PubMedCrossRef Vagima Y, Avigdor A, Goichberg P, Shivtiel S, Tesio M, et al. MT1-MMP and RECK are involved in human CD34+ progenitor cell retention, egress, and mobilization. J Clin Invest. 2009;119:492–503.PubMedCrossRef
32.
Zurück zum Zitat Heissig B, Lund LR, Akiyama H, Ohki M, Morita Y, et al. The plasminogen fibrinolytic pathway is required for hematopoietic regeneration. Cell Stem Cell. 2007;1:658–70.PubMedCrossRef Heissig B, Lund LR, Akiyama H, Ohki M, Morita Y, et al. The plasminogen fibrinolytic pathway is required for hematopoietic regeneration. Cell Stem Cell. 2007;1:658–70.PubMedCrossRef
33.
Zurück zum Zitat Heissig B, Lund LR, Akiyama H, Ohki M, Morita Y, et al. The plasminogen fibrinolytic pathway is required for hematopoietic regeneration. Cell Stem Cell. 2008;3:120.CrossRef Heissig B, Lund LR, Akiyama H, Ohki M, Morita Y, et al. The plasminogen fibrinolytic pathway is required for hematopoietic regeneration. Cell Stem Cell. 2008;3:120.CrossRef
34.
Zurück zum Zitat McQuibban GA, Butler GS, Gong JH, Bendall L, Power C, et al. Matrix metalloproteinase activity inactivates the CXC chemokine stromal cell-derived factor-1. J Biol Chem. 2001;276:43503–8.PubMedCrossRef McQuibban GA, Butler GS, Gong JH, Bendall L, Power C, et al. Matrix metalloproteinase activity inactivates the CXC chemokine stromal cell-derived factor-1. J Biol Chem. 2001;276:43503–8.PubMedCrossRef
35.
Zurück zum Zitat Gong Y, Fan Y, Hoover-Plow J. Plasminogen regulates stromal cell-derived factor-1/CXCR4-mediated hematopoietic stem cell mobilization by activation of matrix metalloproteinase-9. Arterioscler Thromb Vasc Biol. 2011;31:2035–43.PubMedCrossRef Gong Y, Fan Y, Hoover-Plow J. Plasminogen regulates stromal cell-derived factor-1/CXCR4-mediated hematopoietic stem cell mobilization by activation of matrix metalloproteinase-9. Arterioscler Thromb Vasc Biol. 2011;31:2035–43.PubMedCrossRef
36.
Zurück zum Zitat Tjwa M, Moura R, Moons L, Plaisance S, De Mol M, et al. Fibrinolysis-independent role of plasmin and its activators in the hematopoietic recovery after myeloablation. J Cell Mol Med. 2008;13:4587–95.PubMedCrossRef Tjwa M, Moura R, Moons L, Plaisance S, De Mol M, et al. Fibrinolysis-independent role of plasmin and its activators in the hematopoietic recovery after myeloablation. J Cell Mol Med. 2008;13:4587–95.PubMedCrossRef
37.
Zurück zum Zitat Fietz T, Hattori K, Thiel E, Heissig B. Increased soluble urokinase plasminogen activator receptor (suPAR) serum levels after granulocyte colony-stimulating factor treatment do not predict successful progenitor cell mobilization in vivo. Blood. 2006;107:3408–9.PubMedCrossRef Fietz T, Hattori K, Thiel E, Heissig B. Increased soluble urokinase plasminogen activator receptor (suPAR) serum levels after granulocyte colony-stimulating factor treatment do not predict successful progenitor cell mobilization in vivo. Blood. 2006;107:3408–9.PubMedCrossRef
38.
Zurück zum Zitat Okaji Y, Tashiro Y, Gritli I, Nishida C, Sato A, et al. Plasminogen deficiency attenuates postnatal erythropoiesis in male C57BL/6 mice through decreased activity of the LH-testosterone axis. Exp Hematol. 2011;40:143–54.PubMedCrossRef Okaji Y, Tashiro Y, Gritli I, Nishida C, Sato A, et al. Plasminogen deficiency attenuates postnatal erythropoiesis in male C57BL/6 mice through decreased activity of the LH-testosterone axis. Exp Hematol. 2011;40:143–54.PubMedCrossRef
39.
Zurück zum Zitat van Hinsbergh VW, Koolwijk P. Endothelial sprouting and angiogenesis: matrix metalloproteinases in the lead. Cardiovasc Res. 2008;78:203–12.PubMedCrossRef van Hinsbergh VW, Koolwijk P. Endothelial sprouting and angiogenesis: matrix metalloproteinases in the lead. Cardiovasc Res. 2008;78:203–12.PubMedCrossRef
40.
Zurück zum Zitat Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res. 2003;92:827–39.PubMedCrossRef Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res. 2003;92:827–39.PubMedCrossRef
41.
Zurück zum Zitat Heissig B, Hattori K, Friedrich M, Rafii S, Werb Z. Angiogenesis: vascular remodeling of the extracellular matrix involves metalloproteinases. Curr Opin Hematol. 2003;10:136–41.PubMedCrossRef Heissig B, Hattori K, Friedrich M, Rafii S, Werb Z. Angiogenesis: vascular remodeling of the extracellular matrix involves metalloproteinases. Curr Opin Hematol. 2003;10:136–41.PubMedCrossRef
42.
Zurück zum Zitat Deryugina EI, Quigley JP. Pleiotropic roles of matrix metalloproteinases in tumor angiogenesis: contrasting, overlapping and compensatory functions. Biochim Biophys Acta. 2010;1803:103–20.PubMedCrossRef Deryugina EI, Quigley JP. Pleiotropic roles of matrix metalloproteinases in tumor angiogenesis: contrasting, overlapping and compensatory functions. Biochim Biophys Acta. 2010;1803:103–20.PubMedCrossRef
43.
Zurück zum Zitat Hajjar K, Deora A. New concepts in fibrinolysis and angiogenesis. Curr Atheroscler Rep. 2000;2:417–21.PubMedCrossRef Hajjar K, Deora A. New concepts in fibrinolysis and angiogenesis. Curr Atheroscler Rep. 2000;2:417–21.PubMedCrossRef
44.
Zurück zum Zitat Veklich Y, Francis CW, White J, Weisel JW. Structural studies of fibrinolysis by electron microscopy. Blood. 1998;92:4721–9.PubMed Veklich Y, Francis CW, White J, Weisel JW. Structural studies of fibrinolysis by electron microscopy. Blood. 1998;92:4721–9.PubMed
45.
Zurück zum Zitat Pepper MS, Sappino AP, Stocklin R, Montesano R, Orci L, et al. Upregulation of urokinase receptor expression on migrating endothelial cells. J Cell Biol. 1993;122:673–84.PubMedCrossRef Pepper MS, Sappino AP, Stocklin R, Montesano R, Orci L, et al. Upregulation of urokinase receptor expression on migrating endothelial cells. J Cell Biol. 1993;122:673–84.PubMedCrossRef
46.
Zurück zum Zitat Mazar AP, Henkin J, Goldfarb RH. The urokinase plasminogen activator system in cancer: implications for tumor angiogenesis and metastasis. Angiogenesis. 1999;3:15–32.PubMedCrossRef Mazar AP, Henkin J, Goldfarb RH. The urokinase plasminogen activator system in cancer: implications for tumor angiogenesis and metastasis. Angiogenesis. 1999;3:15–32.PubMedCrossRef
47.
Zurück zum Zitat Yebra M, Parry GC, Stromblad S, Mackman N, Rosenberg S, et al. Requirement of receptor-bound urokinase-type plasminogen activator for integrin alphavbeta5-directed cell migration. J Biol Chem. 1996;271:29393–9.PubMedCrossRef Yebra M, Parry GC, Stromblad S, Mackman N, Rosenberg S, et al. Requirement of receptor-bound urokinase-type plasminogen activator for integrin alphavbeta5-directed cell migration. J Biol Chem. 1996;271:29393–9.PubMedCrossRef
48.
Zurück zum Zitat Mignatti P, Rifkin DB. Biology and biochemistry of proteinases in tumor invasion. Physiol Rev. 1993;73:161–95.PubMed Mignatti P, Rifkin DB. Biology and biochemistry of proteinases in tumor invasion. Physiol Rev. 1993;73:161–95.PubMed
49.
Zurück zum Zitat Murphy G, Stanton H, Cowell S, Butler G, Knauper V, et al. Mechanisms for pro matrix metalloproteinase activation. Apmis. 1999;107:38–44.PubMedCrossRef Murphy G, Stanton H, Cowell S, Butler G, Knauper V, et al. Mechanisms for pro matrix metalloproteinase activation. Apmis. 1999;107:38–44.PubMedCrossRef
50.
Zurück zum Zitat Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature. 2011;473:298–307.PubMedCrossRef Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature. 2011;473:298–307.PubMedCrossRef
51.
Zurück zum Zitat Heissig B, Nishida C, Tashiro Y, Sato Y, Ishihara M, et al. Role of neutrophil-derived matrix metalloproteinase-9 in tissue regeneration. Histol Histopathol. 2010;25:765–70.PubMed Heissig B, Nishida C, Tashiro Y, Sato Y, Ishihara M, et al. Role of neutrophil-derived matrix metalloproteinase-9 in tissue regeneration. Histol Histopathol. 2010;25:765–70.PubMed
52.
Zurück zum Zitat Iruela-Arispe ML, Davis GE. Cellular and molecular mechanisms of vascular lumen formation. Dev Cell. 2009;16:222–31.PubMedCrossRef Iruela-Arispe ML, Davis GE. Cellular and molecular mechanisms of vascular lumen formation. Dev Cell. 2009;16:222–31.PubMedCrossRef
53.
Zurück zum Zitat Levi E, Fridman R, Miao HQ, Ma YS, Yayon A, et al. Matrix metalloproteinase 2 releases active soluble ectodomain of fibroblast growth factor receptor 1. Proc Natl Acad Sci USA. 1996;93:7069–74.PubMedCrossRef Levi E, Fridman R, Miao HQ, Ma YS, Yayon A, et al. Matrix metalloproteinase 2 releases active soluble ectodomain of fibroblast growth factor receptor 1. Proc Natl Acad Sci USA. 1996;93:7069–74.PubMedCrossRef
54.
Zurück zum Zitat Hattori K, Heissig B, Wu Y, Dias S, Tejada R, et al. Placental growth factor reconstitutes hematopoiesis by recruiting VEGFR1(+) stem cells from bone-marrow microenvironment. Nat Med. 2002;8:841–9.PubMed Hattori K, Heissig B, Wu Y, Dias S, Tejada R, et al. Placental growth factor reconstitutes hematopoiesis by recruiting VEGFR1(+) stem cells from bone-marrow microenvironment. Nat Med. 2002;8:841–9.PubMed
55.
Zurück zum Zitat Lyden D, Hattori K, Dias S, Costa C, Blaikie P, et al. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med. 2001;7:1194–201.PubMedCrossRef Lyden D, Hattori K, Dias S, Costa C, Blaikie P, et al. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med. 2001;7:1194–201.PubMedCrossRef
56.
Zurück zum Zitat Fischer C, Jonckx B, Mazzone M, Zacchigna S, Loges S, et al. Anti-PlGF inhibits growth of VEGF(R)-inhibitor-resistant tumors without affecting healthy vessels. Cell. 2007;131:463–75.PubMedCrossRef Fischer C, Jonckx B, Mazzone M, Zacchigna S, Loges S, et al. Anti-PlGF inhibits growth of VEGF(R)-inhibitor-resistant tumors without affecting healthy vessels. Cell. 2007;131:463–75.PubMedCrossRef
57.
Zurück zum Zitat Bais C, Wu X, Yao J, Yang S, Crawford Y, et al. PlGF blockade does not inhibit angiogenesis during primary tumor growth. Cell. 2010;141:166–77.PubMedCrossRef Bais C, Wu X, Yao J, Yang S, Crawford Y, et al. PlGF blockade does not inhibit angiogenesis during primary tumor growth. Cell. 2010;141:166–77.PubMedCrossRef
58.
Zurück zum Zitat Van de Veire S, Stalmans I, Heindryckx F, Oura H, Tijeras-Raballand A, et al. Further pharmacological and genetic evidence for the efficacy of PlGF inhibition in cancer and eye disease. Cell. 2010;141:178–90.PubMedCrossRef Van de Veire S, Stalmans I, Heindryckx F, Oura H, Tijeras-Raballand A, et al. Further pharmacological and genetic evidence for the efficacy of PlGF inhibition in cancer and eye disease. Cell. 2010;141:178–90.PubMedCrossRef
59.
Zurück zum Zitat Hattori K, Dias S, Heissig B, Hackett NR, Lyden D, et al. Vascular endothelial growth factor and angiopoietin-1 stimulate postnatal hematopoiesis by recruitment of vasculogenic and hematopoietic stem cells. J Exp Med. 2001;193:1005–14.PubMedCrossRef Hattori K, Dias S, Heissig B, Hackett NR, Lyden D, et al. Vascular endothelial growth factor and angiopoietin-1 stimulate postnatal hematopoiesis by recruitment of vasculogenic and hematopoietic stem cells. J Exp Med. 2001;193:1005–14.PubMedCrossRef
60.
Zurück zum Zitat Jin DK, Shido K, Kopp HG, Petit I, Shmelkov SV, et al. Cytokine-mediated deployment of SDF-1 induces revascularization through recruitment of CXCR4+ hemangiocytes. Nat Med. 2006;12:557–67.PubMedCrossRef Jin DK, Shido K, Kopp HG, Petit I, Shmelkov SV, et al. Cytokine-mediated deployment of SDF-1 induces revascularization through recruitment of CXCR4+ hemangiocytes. Nat Med. 2006;12:557–67.PubMedCrossRef
61.
Zurück zum Zitat Ohki Y, Heissig B, Sato Y, Akiyama H, Zhu Z, et al. Granulocyte colony-stimulating factor promotes neovascularization by releasing vascular endothelial growth factor from neutrophils. Faseb J. 2005;13:13. Ohki Y, Heissig B, Sato Y, Akiyama H, Zhu Z, et al. Granulocyte colony-stimulating factor promotes neovascularization by releasing vascular endothelial growth factor from neutrophils. Faseb J. 2005;13:13.
62.
Zurück zum Zitat Shojaei F, Wu X, Zhong C, Yu L, Liang XH, et al. Bv8 regulates myeloid-cell-dependent tumour angiogenesis. Nature. 2007;450:825–31.PubMedCrossRef Shojaei F, Wu X, Zhong C, Yu L, Liang XH, et al. Bv8 regulates myeloid-cell-dependent tumour angiogenesis. Nature. 2007;450:825–31.PubMedCrossRef
63.
Zurück zum Zitat Crivellato E, Nico B, Ribatti D. Mast cells and tumour angiogenesis: new insight from experimental carcinogenesis. Cancer Lett. 2008;269:1–6.PubMedCrossRef Crivellato E, Nico B, Ribatti D. Mast cells and tumour angiogenesis: new insight from experimental carcinogenesis. Cancer Lett. 2008;269:1–6.PubMedCrossRef
64.
Zurück zum Zitat Ahn GO, Brown JM. Matrix metalloproteinase-9 is required for tumor vasculogenesis but not for angiogenesis: role of bone marrow-derived myelomonocytic cells. Cancer Cell. 2008;13:193–205.PubMedCrossRef Ahn GO, Brown JM. Matrix metalloproteinase-9 is required for tumor vasculogenesis but not for angiogenesis: role of bone marrow-derived myelomonocytic cells. Cancer Cell. 2008;13:193–205.PubMedCrossRef
65.
Zurück zum Zitat Du R, Lu KV, Petritsch C, Liu P, Ganss R, et al. HIF1alpha induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell. 2008;13:206–20.PubMedCrossRef Du R, Lu KV, Petritsch C, Liu P, Ganss R, et al. HIF1alpha induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell. 2008;13:206–20.PubMedCrossRef
66.
Zurück zum Zitat Ohki M, Ohki Y, Ishihara M, Nishida C, Tashiro Y, et al. Tissue type plasminogen activator regulates myeloid-cell dependent neoangiogenesis during tissue regeneration. Blood. 2010;115:4302–12.PubMedCrossRef Ohki M, Ohki Y, Ishihara M, Nishida C, Tashiro Y, et al. Tissue type plasminogen activator regulates myeloid-cell dependent neoangiogenesis during tissue regeneration. Blood. 2010;115:4302–12.PubMedCrossRef
67.
Zurück zum Zitat Bugge TH, Kombrinck KW, Xiao Q, Holmback K, Daugherty CC, et al. Growth and dissemination of lewis lung carcinoma in plasminogen-deficient mice. Blood. 1997;90:4522–31.PubMed Bugge TH, Kombrinck KW, Xiao Q, Holmback K, Daugherty CC, et al. Growth and dissemination of lewis lung carcinoma in plasminogen-deficient mice. Blood. 1997;90:4522–31.PubMed
68.
Zurück zum Zitat Shapiro RL, Duquette JG, Roses DF, Nunes I, Harris MN, et al. Induction of primary cutaneous melanocytic neoplasms in urokinase-type plasminogen activator (uPA)-deficient and wild-type mice: cellular blue nevi invade but do not progress to malignant melanoma in uPA-deficient animals. Cancer Res. 1996;56:3597–604.PubMed Shapiro RL, Duquette JG, Roses DF, Nunes I, Harris MN, et al. Induction of primary cutaneous melanocytic neoplasms in urokinase-type plasminogen activator (uPA)-deficient and wild-type mice: cellular blue nevi invade but do not progress to malignant melanoma in uPA-deficient animals. Cancer Res. 1996;56:3597–604.PubMed
69.
Zurück zum Zitat Sabapathy KT, Pepper MS, Kiefer F, Mohle-Steinlein U, Tacchini-Cottier F, et al. Polyoma middle T-induced vascular tumor formation: the role of the plasminogen activator/plasmin system. J Cell Biol. 1997;137:953–63.PubMedCrossRef Sabapathy KT, Pepper MS, Kiefer F, Mohle-Steinlein U, Tacchini-Cottier F, et al. Polyoma middle T-induced vascular tumor formation: the role of the plasminogen activator/plasmin system. J Cell Biol. 1997;137:953–63.PubMedCrossRef
70.
Zurück zum Zitat Bajou K, Noel A, Gerard RD, Masson V, Brunner N, et al. Absence of host plasminogen activator inhibitor 1 prevents cancer invasion and vascularization. Nat Med. 1998;4:923–8.PubMedCrossRef Bajou K, Noel A, Gerard RD, Masson V, Brunner N, et al. Absence of host plasminogen activator inhibitor 1 prevents cancer invasion and vascularization. Nat Med. 1998;4:923–8.PubMedCrossRef
71.
Zurück zum Zitat Ishihara M, Nishida C, Tashiro Y, Gritli I, Rosenkvist J, et al. Plasmin inhibitor reduces T-cell lymphoid tumor growth by suppressing matrix metalloproteinase-9-dependent CD11b(+)/F4/80(+) myeloid cell recruitment. Leukemia 2011 (in press). Ishihara M, Nishida C, Tashiro Y, Gritli I, Rosenkvist J, et al. Plasmin inhibitor reduces T-cell lymphoid tumor growth by suppressing matrix metalloproteinase-9-dependent CD11b(+)/F4/80(+) myeloid cell recruitment. Leukemia 2011 (in press).
Metadaten
Titel
New functions of the fibrinolytic system in bone marrow cell-derived angiogenesis
verfasst von
Beate Heissig
Makiko Ohki-Koizumi
Yoshihiko Tashiro
Ismael Gritli
Kaori Sato-Kusubata
Koichi Hattori
Publikationsdatum
01.02.2012
Verlag
Springer Japan
Erschienen in
International Journal of Hematology / Ausgabe 2/2012
Print ISSN: 0925-5710
Elektronische ISSN: 1865-3774
DOI
https://doi.org/10.1007/s12185-012-1016-y

Weitere Artikel der Ausgabe 2/2012

International Journal of Hematology 2/2012 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.