Skip to main content
Erschienen in: International Journal of Hematology 5/2016

23.03.2016 | Progress in Hematology

Cell cycle regulation of hematopoietic stem or progenitor cells

verfasst von: Sha Hao, Chen Chen, Tao Cheng

Erschienen in: International Journal of Hematology | Ausgabe 5/2016

Einloggen, um Zugang zu erhalten

Abstract

The highly regulated process of blood production is achieved through the hierarchical organization of hematopoietic stem cell (HSC) subsets and their progenies, which differ in self-renewal and differentiation potential. Genetic studies in mice have demonstrated that cell cycle is tightly controlled by the complex interplay between extrinsic cues and intrinsic regulatory pathways involved in HSC self-renewal and differentiation. Deregulation of these cellular programs may transform HSCs or hematopoietic progenitor cells (HPCs) into disease-initiating stem cells, and can result in hematopoietic malignancies such as leukemia. While previous studies have shown roles for some cell cycle regulators and related signaling pathways in HSCs and HPCs, a more complete picture regarding the molecular mechanisms underlying cell cycle regulation in HSCs or HPCs is lacking. Based on accumulated studies in this field, the present review introduces the basic components of the cell cycle machinery and discusses their major cellular networks that regulate the dormancy and cell cycle progression of HSCs. Knowledge on this topic would help researchers and clinicians to better understand the pathogenesis of relevant blood disorders and to develop new strategies for therapeutic manipulation of HSCs.
Literatur
2.
3.
Zurück zum Zitat Giebel B, Bruns I. Self-renewal versus differentiation in hematopoietic stem and progenitor cells: a focus on asymmetric cell divisions. Curr Stem Cell Res Ther. 2008;3(1):9–16.CrossRefPubMed Giebel B, Bruns I. Self-renewal versus differentiation in hematopoietic stem and progenitor cells: a focus on asymmetric cell divisions. Curr Stem Cell Res Ther. 2008;3(1):9–16.CrossRefPubMed
4.
Zurück zum Zitat Weiss CN, Ito K. DNA damage: a sensible mediator of the differentiation decision in hematopoietic stem cells and in leukemia. Int J Mol Sci. 2015;16(3):6183–201.CrossRefPubMedPubMedCentral Weiss CN, Ito K. DNA damage: a sensible mediator of the differentiation decision in hematopoietic stem cells and in leukemia. Int J Mol Sci. 2015;16(3):6183–201.CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Cheung TH, Rando TA. Molecular regulation of stem cell quiescence. Nat Rev Mol Cell Biol. 2013;14(6):329–40.CrossRefPubMed Cheung TH, Rando TA. Molecular regulation of stem cell quiescence. Nat Rev Mol Cell Biol. 2013;14(6):329–40.CrossRefPubMed
7.
Zurück zum Zitat Bradford GB, et al. Quiescence, cycling, and turnover in the primitive hematopoietic stem cell compartment. Exp Hematol. 1997;25(5):445–53.PubMed Bradford GB, et al. Quiescence, cycling, and turnover in the primitive hematopoietic stem cell compartment. Exp Hematol. 1997;25(5):445–53.PubMed
8.
Zurück zum Zitat Tesio M, Trumpp A. Breaking the cell cycle of HSCs by p57 and friends. Cell Stem Cell. 2011;9(3):187–92.CrossRefPubMed Tesio M, Trumpp A. Breaking the cell cycle of HSCs by p57 and friends. Cell Stem Cell. 2011;9(3):187–92.CrossRefPubMed
9.
Zurück zum Zitat Passegue E, et al. Global analysis of proliferation and cell cycle gene expression in the regulation of hematopoietic stem and progenitor cell fates. J Exp Med. 2005;202(11):1599–611.CrossRefPubMedPubMedCentral Passegue E, et al. Global analysis of proliferation and cell cycle gene expression in the regulation of hematopoietic stem and progenitor cell fates. J Exp Med. 2005;202(11):1599–611.CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Aleem E, Kaldis P. Mouse models of cell cycle regulators: new paradigms. Results Probl Cell Differ. 2006;42:271–328.CrossRefPubMed Aleem E, Kaldis P. Mouse models of cell cycle regulators: new paradigms. Results Probl Cell Differ. 2006;42:271–328.CrossRefPubMed
12.
Zurück zum Zitat Wilson A, Trumpp A. Bone-marrow haematopoietic-stem-cell niches. Nat Rev Immunol. 2006;6(2):93–106.CrossRefPubMed Wilson A, Trumpp A. Bone-marrow haematopoietic-stem-cell niches. Nat Rev Immunol. 2006;6(2):93–106.CrossRefPubMed
14.
Zurück zum Zitat Siu KT, Minella AC. Developing a systems-based understanding of hematopoietic stem cell cycle control. Adv Exp Med Biol. 2014;844:189–200.CrossRefPubMed Siu KT, Minella AC. Developing a systems-based understanding of hematopoietic stem cell cycle control. Adv Exp Med Biol. 2014;844:189–200.CrossRefPubMed
15.
Zurück zum Zitat Cheng T, Scadden DT. Cell cycle entry of hematopoietic stem and progenitor cells controlled by distinct cyclin-dependent kinase inhibitors. Int J Hematol. 2002;75(5):460–5.CrossRefPubMed Cheng T, Scadden DT. Cell cycle entry of hematopoietic stem and progenitor cells controlled by distinct cyclin-dependent kinase inhibitors. Int J Hematol. 2002;75(5):460–5.CrossRefPubMed
16.
Zurück zum Zitat Cheng T. Cell cycle inhibitors in normal and tumor stem cells. Oncogene. 2004;23(43):7256–66.CrossRefPubMed Cheng T. Cell cycle inhibitors in normal and tumor stem cells. Oncogene. 2004;23(43):7256–66.CrossRefPubMed
17.
Zurück zum Zitat Boyer MJ, Cheng T. The CDK inhibitors: potential targets for therapeutic stem cell manipulations? Gene Ther. 2008;15(2):117–25.CrossRefPubMed Boyer MJ, Cheng T. The CDK inhibitors: potential targets for therapeutic stem cell manipulations? Gene Ther. 2008;15(2):117–25.CrossRefPubMed
18.
Zurück zum Zitat Palis J, et al. Development of erythroid and myeloid progenitors in the yolk sac and embryo proper of the mouse. Development. 1999;126(22):5073–84.PubMed Palis J, et al. Development of erythroid and myeloid progenitors in the yolk sac and embryo proper of the mouse. Development. 1999;126(22):5073–84.PubMed
19.
Zurück zum Zitat Medvinsky A, Rybtsov S, Taoudi S. Embryonic origin of the adult hematopoietic system: advances and questions. Development. 2011;138(6):1017–31.CrossRefPubMed Medvinsky A, Rybtsov S, Taoudi S. Embryonic origin of the adult hematopoietic system: advances and questions. Development. 2011;138(6):1017–31.CrossRefPubMed
20.
Zurück zum Zitat Nygren JM, Bryder D, Jacobsen SE. Prolonged cell cycle transit is a defining and developmentally conserved hemopoietic stem cell property. J Immunol. 2006;177(1):201–8.CrossRefPubMed Nygren JM, Bryder D, Jacobsen SE. Prolonged cell cycle transit is a defining and developmentally conserved hemopoietic stem cell property. J Immunol. 2006;177(1):201–8.CrossRefPubMed
21.
Zurück zum Zitat Cheshier SH, et al. In vivo proliferation and cell cycle kinetics of long-term self-renewing hematopoietic stem cells. Proc Natl Acad Sci USA. 1999;96(6):3120–5.CrossRefPubMedPubMedCentral Cheshier SH, et al. In vivo proliferation and cell cycle kinetics of long-term self-renewing hematopoietic stem cells. Proc Natl Acad Sci USA. 1999;96(6):3120–5.CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Wilson A, et al. Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell. 2008;135(6):1118–29.CrossRefPubMed Wilson A, et al. Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell. 2008;135(6):1118–29.CrossRefPubMed
23.
Zurück zum Zitat Malumbres M, et al. Mammalian cells cycle without the D-type cyclin-dependent kinases Cdk4 and Cdk6. Cell. 2004;118(4):493–504.CrossRefPubMed Malumbres M, et al. Mammalian cells cycle without the D-type cyclin-dependent kinases Cdk4 and Cdk6. Cell. 2004;118(4):493–504.CrossRefPubMed
24.
Zurück zum Zitat Jayapal SR, et al. Hematopoiesis specific loss of Cdk2 and Cdk4 results in increased erythrocyte size and delayed platelet recovery following stress. Haematologica. 2015;100(4):431–8.CrossRefPubMedPubMedCentral Jayapal SR, et al. Hematopoiesis specific loss of Cdk2 and Cdk4 results in increased erythrocyte size and delayed platelet recovery following stress. Haematologica. 2015;100(4):431–8.CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Aleem E, Kiyokawa H, Kaldis P. Cdc2-cyclin E complexes regulate the G1/S phase transition. Nat Cell Biol. 2005;7(8):831–6.CrossRefPubMed Aleem E, Kiyokawa H, Kaldis P. Cdc2-cyclin E complexes regulate the G1/S phase transition. Nat Cell Biol. 2005;7(8):831–6.CrossRefPubMed
26.
Zurück zum Zitat Berthet C, et al. Combined loss of Cdk2 and Cdk4 results in embryonic lethality and Rb hypophosphorylation. Dev Cell. 2006;10(5):563–73.CrossRefPubMed Berthet C, et al. Combined loss of Cdk2 and Cdk4 results in embryonic lethality and Rb hypophosphorylation. Dev Cell. 2006;10(5):563–73.CrossRefPubMed
27.
Zurück zum Zitat Malumbres M, Barbacid M. Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer. 2009;9(3):153–66.CrossRefPubMed Malumbres M, Barbacid M. Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer. 2009;9(3):153–66.CrossRefPubMed
28.
Zurück zum Zitat Santamaria D, et al. Cdk1 is sufficient to drive the mammalian cell cycle. Nature. 2007;448(7155):811–5.CrossRefPubMed Santamaria D, et al. Cdk1 is sufficient to drive the mammalian cell cycle. Nature. 2007;448(7155):811–5.CrossRefPubMed
29.
Zurück zum Zitat Kozar K, et al. Mouse development and cell proliferation in the absence of D-cyclins. Cell. 2004;118(4):477–91.CrossRefPubMed Kozar K, et al. Mouse development and cell proliferation in the absence of D-cyclins. Cell. 2004;118(4):477–91.CrossRefPubMed
30.
Zurück zum Zitat Fantl V, et al. Mice lacking cyclin D1 are small and show defects in eye and mammary gland development. Genes Dev. 1995;9(19):2364–72.CrossRefPubMed Fantl V, et al. Mice lacking cyclin D1 are small and show defects in eye and mammary gland development. Genes Dev. 1995;9(19):2364–72.CrossRefPubMed
31.
32.
Zurück zum Zitat Kalaszczynska I, et al. Cyclin A is redundant in fibroblasts but essential in hematopoietic and embryonic stem cells. Cell. 2009;138(2):352–65.CrossRefPubMedPubMedCentral Kalaszczynska I, et al. Cyclin A is redundant in fibroblasts but essential in hematopoietic and embryonic stem cells. Cell. 2009;138(2):352–65.CrossRefPubMedPubMedCentral
34.
36.
Zurück zum Zitat Brandeis M, et al. Cyclin B2-null mice develop normally and are fertile whereas cyclin B1-null mice die in utero. Proc Natl Acad Sci USA. 1998;95(8):4344–9.CrossRefPubMedPubMedCentral Brandeis M, et al. Cyclin B2-null mice develop normally and are fertile whereas cyclin B1-null mice die in utero. Proc Natl Acad Sci USA. 1998;95(8):4344–9.CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Cheng T, et al. Hematopoietic stem cell quiescence maintained by p21cip1/waf1. Science. 2000;287(5459):1804–8.CrossRefPubMed Cheng T, et al. Hematopoietic stem cell quiescence maintained by p21cip1/waf1. Science. 2000;287(5459):1804–8.CrossRefPubMed
38.
Zurück zum Zitat Cheng T, et al. Stem cell repopulation efficiency but not pool size is governed by p27(kip1). Nat Med. 2000;6(11):1235–40.CrossRefPubMed Cheng T, et al. Stem cell repopulation efficiency but not pool size is governed by p27(kip1). Nat Med. 2000;6(11):1235–40.CrossRefPubMed
39.
Zurück zum Zitat Furukawa Y, et al. Lineage-specific regulation of cell cycle control gene expression during haematopoietic cell differentiation. Br J Haematol. 2000;110(3):663–73.CrossRefPubMed Furukawa Y, et al. Lineage-specific regulation of cell cycle control gene expression during haematopoietic cell differentiation. Br J Haematol. 2000;110(3):663–73.CrossRefPubMed
40.
Zurück zum Zitat Serrano M, et al. Role of the INK4a locus in tumor suppression and cell mortality. Cell. 1996;85(1):27–37.CrossRefPubMed Serrano M, et al. Role of the INK4a locus in tumor suppression and cell mortality. Cell. 1996;85(1):27–37.CrossRefPubMed
41.
Zurück zum Zitat Janzen V, et al. Stem-cell ageing modified by the cyclin-dependent kinase inhibitor p16INK4a. Nature. 2006;443(7110):421–6.PubMed Janzen V, et al. Stem-cell ageing modified by the cyclin-dependent kinase inhibitor p16INK4a. Nature. 2006;443(7110):421–6.PubMed
42.
Zurück zum Zitat Ito K, et al. Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells. Nature. 2004;431(7011):997–1002.CrossRefPubMed Ito K, et al. Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells. Nature. 2004;431(7011):997–1002.CrossRefPubMed
43.
Zurück zum Zitat Teofili L, et al. Expression of p15INK4B in normal hematopoiesis. Exp Hematol. 1998;26(12):1133–9.PubMed Teofili L, et al. Expression of p15INK4B in normal hematopoiesis. Exp Hematol. 1998;26(12):1133–9.PubMed
44.
Zurück zum Zitat Rosu-Myles M, Wolff L. p15Ink4b: dual function in myelopoiesis and inactivation in myeloid disease. Blood Cells Mol Dis. 2008;40(3):406–9.CrossRefPubMed Rosu-Myles M, Wolff L. p15Ink4b: dual function in myelopoiesis and inactivation in myeloid disease. Blood Cells Mol Dis. 2008;40(3):406–9.CrossRefPubMed
45.
Zurück zum Zitat Untergasser G, et al. Profiling molecular targets of TGF-beta1 in prostate fibroblast-to-myofibroblast transdifferentiation. Mech Ageing Dev. 2005;126(1):59–69.CrossRefPubMed Untergasser G, et al. Profiling molecular targets of TGF-beta1 in prostate fibroblast-to-myofibroblast transdifferentiation. Mech Ageing Dev. 2005;126(1):59–69.CrossRefPubMed
46.
Zurück zum Zitat Franklin DS, et al. CDK inhibitors p18(INK4c) and p27(Kip1) mediate two separate pathways to collaboratively suppress pituitary tumorigenesis. Genes Dev. 1998;12(18):2899–911.CrossRefPubMedPubMedCentral Franklin DS, et al. CDK inhibitors p18(INK4c) and p27(Kip1) mediate two separate pathways to collaboratively suppress pituitary tumorigenesis. Genes Dev. 1998;12(18):2899–911.CrossRefPubMedPubMedCentral
47.
48.
Zurück zum Zitat Yuan Y, et al. In vivo self-renewing divisions of haematopoietic stem cells are increased in the absence of the early G1-phase inhibitor, p18INK4C. Nat Cell Biol. 2004;6(5):436–42.CrossRefPubMed Yuan Y, et al. In vivo self-renewing divisions of haematopoietic stem cells are increased in the absence of the early G1-phase inhibitor, p18INK4C. Nat Cell Biol. 2004;6(5):436–42.CrossRefPubMed
49.
Zurück zum Zitat Gao Y, et al. Small-molecule inhibitors targeting INK4 protein p18(INK4C) enhance ex vivo expansion of haematopoietic stem cells. Nat Commun. 2015;6:6328.CrossRefPubMedPubMedCentral Gao Y, et al. Small-molecule inhibitors targeting INK4 protein p18(INK4C) enhance ex vivo expansion of haematopoietic stem cells. Nat Commun. 2015;6:6328.CrossRefPubMedPubMedCentral
50.
Zurück zum Zitat Orford KW, Scadden DT. Deconstructing stem cell self-renewal: genetic insights into cell-cycle regulation. Nat Rev Genet. 2008;9(2):115–28.CrossRefPubMed Orford KW, Scadden DT. Deconstructing stem cell self-renewal: genetic insights into cell-cycle regulation. Nat Rev Genet. 2008;9(2):115–28.CrossRefPubMed
51.
Zurück zum Zitat Xie XQ, et al. Discovery of novel INK4C small-molecule inhibitors to promote human and murine hematopoietic stem cell ex vivo expansion. Sci Rep. 2015;5:18115.CrossRefPubMedPubMedCentral Xie XQ, et al. Discovery of novel INK4C small-molecule inhibitors to promote human and murine hematopoietic stem cell ex vivo expansion. Sci Rep. 2015;5:18115.CrossRefPubMedPubMedCentral
52.
Zurück zum Zitat Gilles L, et al. P19INK4D links endomitotic arrest and megakaryocyte maturation and is regulated by AML-1. Blood. 2008;111(8):4081–91.CrossRefPubMed Gilles L, et al. P19INK4D links endomitotic arrest and megakaryocyte maturation and is regulated by AML-1. Blood. 2008;111(8):4081–91.CrossRefPubMed
53.
Zurück zum Zitat Hilpert M, et al. p19 INK4d controls hematopoietic stem cells in a cell-autonomous manner during genotoxic stress and through the microenvironment during aging. Stem Cell Reports. 2014;3(6):1085–102.CrossRefPubMedPubMedCentral Hilpert M, et al. p19 INK4d controls hematopoietic stem cells in a cell-autonomous manner during genotoxic stress and through the microenvironment during aging. Stem Cell Reports. 2014;3(6):1085–102.CrossRefPubMedPubMedCentral
54.
Zurück zum Zitat Brugarolas J, et al. Radiation-induced cell cycle arrest compromised by p21 deficiency. Nature. 1995;377(6549):552–7.CrossRefPubMed Brugarolas J, et al. Radiation-induced cell cycle arrest compromised by p21 deficiency. Nature. 1995;377(6549):552–7.CrossRefPubMed
55.
Zurück zum Zitat el-Deiry WS, et al. WAF1/CIP1 is induced in p53-mediated G1 arrest and apoptosis. Cancer Res. 1994;54(5):1169–74.PubMed el-Deiry WS, et al. WAF1/CIP1 is induced in p53-mediated G1 arrest and apoptosis. Cancer Res. 1994;54(5):1169–74.PubMed
56.
Zurück zum Zitat Choudhury AR, et al. Cdkn1a deletion improves stem cell function and lifespan of mice with dysfunctional telomeres without accelerating cancer formation. Nat Genet. 2007;39(1):99–105.CrossRefPubMed Choudhury AR, et al. Cdkn1a deletion improves stem cell function and lifespan of mice with dysfunctional telomeres without accelerating cancer formation. Nat Genet. 2007;39(1):99–105.CrossRefPubMed
57.
Zurück zum Zitat Nakayama K, et al. Mice lacking p27(Kip1) display increased body size, multiple organ hyperplasia, retinal dysplasia, and pituitary tumors. Cell. 1996;85(5):707–20.CrossRefPubMed Nakayama K, et al. Mice lacking p27(Kip1) display increased body size, multiple organ hyperplasia, retinal dysplasia, and pituitary tumors. Cell. 1996;85(5):707–20.CrossRefPubMed
58.
Zurück zum Zitat Walkley CR, et al. Negative cell-cycle regulators cooperatively control self-renewal and differentiation of haematopoietic stem cells. Nat Cell Biol. 2005;7(2):172–8.CrossRefPubMed Walkley CR, et al. Negative cell-cycle regulators cooperatively control self-renewal and differentiation of haematopoietic stem cells. Nat Cell Biol. 2005;7(2):172–8.CrossRefPubMed
59.
Zurück zum Zitat Zou P, et al. p57(Kip2) and p27(Kip1) cooperate to maintain hematopoietic stem cell quiescence through interactions with Hsc70. Cell Stem Cell. 2011;9(3):247–61.CrossRefPubMed Zou P, et al. p57(Kip2) and p27(Kip1) cooperate to maintain hematopoietic stem cell quiescence through interactions with Hsc70. Cell Stem Cell. 2011;9(3):247–61.CrossRefPubMed
60.
Zurück zum Zitat Yoshihara H, et al. Thrombopoietin/MPL signaling regulates hematopoietic stem cell quiescence and interaction with the osteoblastic niche. Cell Stem Cell. 2007;1(6):685–97.CrossRefPubMed Yoshihara H, et al. Thrombopoietin/MPL signaling regulates hematopoietic stem cell quiescence and interaction with the osteoblastic niche. Cell Stem Cell. 2007;1(6):685–97.CrossRefPubMed
61.
Zurück zum Zitat Yamazaki S, et al. Cytokine signals modulated via lipid rafts mimic niche signals and induce hibernation in hematopoietic stem cells. EMBO J. 2006;25(15):3515–23.CrossRefPubMedPubMedCentral Yamazaki S, et al. Cytokine signals modulated via lipid rafts mimic niche signals and induce hibernation in hematopoietic stem cells. EMBO J. 2006;25(15):3515–23.CrossRefPubMedPubMedCentral
62.
Zurück zum Zitat Yamazaki S, et al. TGF-beta as a candidate bone marrow niche signal to induce hematopoietic stem cell hibernation. Blood. 2009;113(6):1250–6.CrossRefPubMed Yamazaki S, et al. TGF-beta as a candidate bone marrow niche signal to induce hematopoietic stem cell hibernation. Blood. 2009;113(6):1250–6.CrossRefPubMed
63.
Zurück zum Zitat Matsumoto A, et al. p57 is required for quiescence and maintenance of adult hematopoietic stem cells. Cell Stem Cell. 2011;9(3):262–71.CrossRefPubMed Matsumoto A, et al. p57 is required for quiescence and maintenance of adult hematopoietic stem cells. Cell Stem Cell. 2011;9(3):262–71.CrossRefPubMed
64.
Zurück zum Zitat van Os R, et al. A Limited role for p21Cip1/Waf1 in maintaining normal hematopoietic stem cell functioning. Stem Cells. 2007;25(4):836–43.CrossRefPubMed van Os R, et al. A Limited role for p21Cip1/Waf1 in maintaining normal hematopoietic stem cell functioning. Stem Cells. 2007;25(4):836–43.CrossRefPubMed
65.
Zurück zum Zitat Ganter B, Fu S, Lipsick JS. D-type cyclins repress transcriptional activation by the v-Myb but not the c-Myb DNA-binding domain. EMBO J. 1998;17(1):255–68.CrossRefPubMedPubMedCentral Ganter B, Fu S, Lipsick JS. D-type cyclins repress transcriptional activation by the v-Myb but not the c-Myb DNA-binding domain. EMBO J. 1998;17(1):255–68.CrossRefPubMedPubMedCentral
66.
Zurück zum Zitat Lei W, Liu F, Ness SA. Positive and negative regulation of c-Myb by cyclin D1, cyclin-dependent kinases, and p27 Kip1. Blood. 2005;105(10):3855–61.CrossRefPubMedPubMedCentral Lei W, Liu F, Ness SA. Positive and negative regulation of c-Myb by cyclin D1, cyclin-dependent kinases, and p27 Kip1. Blood. 2005;105(10):3855–61.CrossRefPubMedPubMedCentral
67.
Zurück zum Zitat Nakata Y, et al. c-Myb contributes to G2/M cell cycle transition in human hematopoietic cells by direct regulation of cyclin B1 expression. Mol Cell Biol. 2007;27(6):2048–58.CrossRefPubMedPubMedCentral Nakata Y, et al. c-Myb contributes to G2/M cell cycle transition in human hematopoietic cells by direct regulation of cyclin B1 expression. Mol Cell Biol. 2007;27(6):2048–58.CrossRefPubMedPubMedCentral
68.
69.
Zurück zum Zitat Lieu YK, Reddy EP. Impaired adult myeloid progenitor CMP and GMP cell function in conditional c-myb-knockout mice. Cell Cycle. 2012;11(18):3504–12.CrossRefPubMedPubMedCentral Lieu YK, Reddy EP. Impaired adult myeloid progenitor CMP and GMP cell function in conditional c-myb-knockout mice. Cell Cycle. 2012;11(18):3504–12.CrossRefPubMedPubMedCentral
70.
Zurück zum Zitat Liu D, et al. c-Myb regulates cell cycle-dependent expression of Erbin: an implication for a novel function of Erbin. PLoS One. 2012;7(8):e42903.CrossRefPubMedPubMedCentral Liu D, et al. c-Myb regulates cell cycle-dependent expression of Erbin: an implication for a novel function of Erbin. PLoS One. 2012;7(8):e42903.CrossRefPubMedPubMedCentral
71.
Zurück zum Zitat Tsai FY, et al. An early haematopoietic defect in mice lacking the transcription factor GATA-2. Nature. 1994;371(6494):221–6.CrossRefPubMed Tsai FY, et al. An early haematopoietic defect in mice lacking the transcription factor GATA-2. Nature. 1994;371(6494):221–6.CrossRefPubMed
72.
Zurück zum Zitat Ezoe S, et al. GATA-2/estrogen receptor chimera regulates cytokine-dependent growth of hematopoietic cells through accumulation of p21(WAF1) and p27(Kip1) proteins. Blood. 2002;100(10):3512–20.CrossRefPubMed Ezoe S, et al. GATA-2/estrogen receptor chimera regulates cytokine-dependent growth of hematopoietic cells through accumulation of p21(WAF1) and p27(Kip1) proteins. Blood. 2002;100(10):3512–20.CrossRefPubMed
73.
Zurück zum Zitat Kitajima K, et al. GATA-2 and GATA-2/ER display opposing activities in the development and differentiation of blood progenitors. EMBO J. 2002;21(12):3060–9.CrossRefPubMedPubMedCentral Kitajima K, et al. GATA-2 and GATA-2/ER display opposing activities in the development and differentiation of blood progenitors. EMBO J. 2002;21(12):3060–9.CrossRefPubMedPubMedCentral
74.
Zurück zum Zitat Persons DA, et al. Enforced expression of the GATA-2 transcription factor blocks normal hematopoiesis. Blood. 1999;93(2):488–99.PubMed Persons DA, et al. Enforced expression of the GATA-2 transcription factor blocks normal hematopoiesis. Blood. 1999;93(2):488–99.PubMed
75.
Zurück zum Zitat Hock H, et al. Gfi-1 restricts proliferation and preserves functional integrity of haematopoietic stem cells. Nature. 2004;431(7011):1002–7.CrossRefPubMed Hock H, et al. Gfi-1 restricts proliferation and preserves functional integrity of haematopoietic stem cells. Nature. 2004;431(7011):1002–7.CrossRefPubMed
76.
77.
Zurück zum Zitat Antonchuk J, Sauvageau G, Humphries RK. HOXB4 overexpression mediates very rapid stem cell regeneration and competitive hematopoietic repopulation. Exp Hematol. 2001;29(9):1125–34.CrossRefPubMed Antonchuk J, Sauvageau G, Humphries RK. HOXB4 overexpression mediates very rapid stem cell regeneration and competitive hematopoietic repopulation. Exp Hematol. 2001;29(9):1125–34.CrossRefPubMed
78.
Zurück zum Zitat Sauvageau G, et al. Overexpression of HOXB4 in hematopoietic cells causes the selective expansion of more primitive populations in vitro and in vivo. Genes Dev. 1995;9(14):1753–65.CrossRefPubMed Sauvageau G, et al. Overexpression of HOXB4 in hematopoietic cells causes the selective expansion of more primitive populations in vitro and in vivo. Genes Dev. 1995;9(14):1753–65.CrossRefPubMed
79.
Zurück zum Zitat Care A, et al. Enforced expression of HOXB7 promotes hematopoietic stem cell proliferation and myeloid-restricted progenitor differentiation. Oncogene. 1999;18(11):1993–2001.CrossRefPubMed Care A, et al. Enforced expression of HOXB7 promotes hematopoietic stem cell proliferation and myeloid-restricted progenitor differentiation. Oncogene. 1999;18(11):1993–2001.CrossRefPubMed
80.
Zurück zum Zitat Bjornsson JM, et al. Reduced proliferative capacity of hematopoietic stem cells deficient in Hoxb3 and Hoxb4. Mol Cell Biol. 2003;23(11):3872–83.CrossRefPubMedPubMedCentral Bjornsson JM, et al. Reduced proliferative capacity of hematopoietic stem cells deficient in Hoxb3 and Hoxb4. Mol Cell Biol. 2003;23(11):3872–83.CrossRefPubMedPubMedCentral
81.
Zurück zum Zitat Chen JY, et al. Hoxb5 marks long-term haematopoietic stem cells and reveals a homogenous perivascular niche. Nature. 2016;530(7589):223–7.CrossRefPubMed Chen JY, et al. Hoxb5 marks long-term haematopoietic stem cells and reveals a homogenous perivascular niche. Nature. 2016;530(7589):223–7.CrossRefPubMed
83.
Zurück zum Zitat Alexander WS, et al. Deficiencies in progenitor cells of multiple hematopoietic lineages and defective megakaryocytopoiesis in mice lacking the thrombopoietic receptor c-Mpl. Blood. 1996;87(6):2162–70.PubMed Alexander WS, et al. Deficiencies in progenitor cells of multiple hematopoietic lineages and defective megakaryocytopoiesis in mice lacking the thrombopoietic receptor c-Mpl. Blood. 1996;87(6):2162–70.PubMed
84.
Zurück zum Zitat Qian H, et al. Critical role of thrombopoietin in maintaining adult quiescent hematopoietic stem cells. Cell Stem Cell. 2007;1(6):671–84.CrossRefPubMed Qian H, et al. Critical role of thrombopoietin in maintaining adult quiescent hematopoietic stem cells. Cell Stem Cell. 2007;1(6):671–84.CrossRefPubMed
85.
Zurück zum Zitat Abkowitz JL, Chen J. Studies of c-Mpl function distinguish the replication of hematopoietic stem cells from the expansion of differentiating clones. Blood. 2007;109(12):5186–90.CrossRefPubMedPubMedCentral Abkowitz JL, Chen J. Studies of c-Mpl function distinguish the replication of hematopoietic stem cells from the expansion of differentiating clones. Blood. 2007;109(12):5186–90.CrossRefPubMedPubMedCentral
86.
Zurück zum Zitat Larsson J, Karlsson S. The role of Smad signaling in hematopoiesis. Oncogene. 2005;24(37):5676–92.CrossRefPubMed Larsson J, Karlsson S. The role of Smad signaling in hematopoiesis. Oncogene. 2005;24(37):5676–92.CrossRefPubMed
87.
Zurück zum Zitat Chabanon A, et al. A cross-talk between stromal cell-derived factor-1 and transforming growth factor-beta controls the quiescence/cycling switch of CD34(+) progenitors through FoxO3 and mammalian target of rapamycin. Stem Cells. 2008;26(12):3150–61.CrossRefPubMed Chabanon A, et al. A cross-talk between stromal cell-derived factor-1 and transforming growth factor-beta controls the quiescence/cycling switch of CD34(+) progenitors through FoxO3 and mammalian target of rapamycin. Stem Cells. 2008;26(12):3150–61.CrossRefPubMed
88.
Zurück zum Zitat Oshima M, Oshima H, Taketo MM. TGF-beta receptor type II deficiency results in defects of yolk sac hematopoiesis and vasculogenesis. Dev Biol. 1996;179(1):297–302.CrossRefPubMed Oshima M, Oshima H, Taketo MM. TGF-beta receptor type II deficiency results in defects of yolk sac hematopoiesis and vasculogenesis. Dev Biol. 1996;179(1):297–302.CrossRefPubMed
89.
Zurück zum Zitat Larsson J, et al. TGF-beta signaling-deficient hematopoietic stem cells have normal self-renewal and regenerative ability in vivo despite increased proliferative capacity in vitro. Blood. 2003;102(9):3129–35.CrossRefPubMed Larsson J, et al. TGF-beta signaling-deficient hematopoietic stem cells have normal self-renewal and regenerative ability in vivo despite increased proliferative capacity in vitro. Blood. 2003;102(9):3129–35.CrossRefPubMed
90.
91.
Zurück zum Zitat Zhao M, et al. Megakaryocytes maintain homeostatic quiescence and promote post-injury regeneration of hematopoietic stem cells. Nat Med. 2014;20(11):1321–6.CrossRefPubMed Zhao M, et al. Megakaryocytes maintain homeostatic quiescence and promote post-injury regeneration of hematopoietic stem cells. Nat Med. 2014;20(11):1321–6.CrossRefPubMed
92.
Zurück zum Zitat Han YC, et al. microRNA-29a induces aberrant self-renewal capacity in hematopoietic progenitors, biased myeloid development, and acute myeloid leukemia. J Exp Med. 2010;207(3):475–89.CrossRefPubMedPubMedCentral Han YC, et al. microRNA-29a induces aberrant self-renewal capacity in hematopoietic progenitors, biased myeloid development, and acute myeloid leukemia. J Exp Med. 2010;207(3):475–89.CrossRefPubMedPubMedCentral
94.
Zurück zum Zitat Herrera-Merchan A, et al. miR-33-mediated downregulation of p53 controls hematopoietic stem cell self-renewal. Cell Cycle. 2010;9(16):3277–85.CrossRefPubMed Herrera-Merchan A, et al. miR-33-mediated downregulation of p53 controls hematopoietic stem cell self-renewal. Cell Cycle. 2010;9(16):3277–85.CrossRefPubMed
96.
Zurück zum Zitat Lechman ER, et al. miR-126 regulates distinct self-renewal outcomes in normal and malignant hematopoietic stem cells. Cancer Cell. 2016;29(2):214–28.CrossRefPubMedPubMedCentral Lechman ER, et al. miR-126 regulates distinct self-renewal outcomes in normal and malignant hematopoietic stem cells. Cancer Cell. 2016;29(2):214–28.CrossRefPubMedPubMedCentral
97.
Zurück zum Zitat Zuckerman KS, Wicha MS. Extracellular matrix production by the adherent cells of long-term murine bone marrow cultures. Blood. 1983;61(3):540–7.PubMed Zuckerman KS, Wicha MS. Extracellular matrix production by the adherent cells of long-term murine bone marrow cultures. Blood. 1983;61(3):540–7.PubMed
98.
Zurück zum Zitat Varnum-Finney B, et al. The Notch ligand, Jagged-1, influences the development of primitive hematopoietic precursor cells. Blood. 1998;91(11):4084–91.PubMed Varnum-Finney B, et al. The Notch ligand, Jagged-1, influences the development of primitive hematopoietic precursor cells. Blood. 1998;91(11):4084–91.PubMed
99.
Zurück zum Zitat Wang W, et al. Notch receptor-ligand engagement maintains hematopoietic stem cell quiescence and niche retention. Stem Cells. 2015;33(7):2280–93.CrossRefPubMed Wang W, et al. Notch receptor-ligand engagement maintains hematopoietic stem cell quiescence and niche retention. Stem Cells. 2015;33(7):2280–93.CrossRefPubMed
Metadaten
Titel
Cell cycle regulation of hematopoietic stem or progenitor cells
verfasst von
Sha Hao
Chen Chen
Tao Cheng
Publikationsdatum
23.03.2016
Verlag
Springer Japan
Erschienen in
International Journal of Hematology / Ausgabe 5/2016
Print ISSN: 0925-5710
Elektronische ISSN: 1865-3774
DOI
https://doi.org/10.1007/s12185-016-1984-4

Weitere Artikel der Ausgabe 5/2016

International Journal of Hematology 5/2016 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.