Skip to main content
Erschienen in: International Journal of Hematology 3/2019

10.01.2019 | Original Article

Prominence of nestin-expressing Schwann cells in bone marrow of patients with myelodysplastic syndromes with severe fibrosis

verfasst von: Luan Cao-Sy, Naoshi Obara, Tatsuhiro Sakamoto, Takayasu Kato, Keiichiro Hattori, Shingo Sakashita, Yasuhito Nannya, Seishi Ogawa, Hironori Harada, Mamiko Sakata-Yanagimoto, Hidekazu Nishikii, Shigeru Chiba

Erschienen in: International Journal of Hematology | Ausgabe 3/2019

Einloggen, um Zugang zu erhalten

Abstract

Nestin-expressing stromal cells (NESCs) and Schwann cells in the bone marrow (BM) play crucial roles as a niche for normal hematopoietic stem cells in mice. It has been reported that both types of cells are decreased in myeloproliferative neoplasms in patients and also in a mouse model, whereas an increase in NESCs was reported in acute myeloid leukemia. It is thus of interest whether and how these BM stromal cells are structured in myelodysplastic syndromes (MDS). Here, we focused on NESCs and glial fibrillary acidic protein (GFAP)-expressing cells in the BM of MDS patients. We found a marked increase of NESCs in MDS with fibrosis (MDS-F) at a high frequency (9/19; 47.4%), but not in MDS without fibrosis (0/26; 0%). Intriguingly, in eight of the nine (88.9%) MDS-F cases with elevated NESCs, a majority of NESCs also expressed GFAP, with an additional increase in GFAP single-positive cells. Furthermore, in seven of them, we found a prominent structure characterized by neurofilament heavy chain staining surrounded by NESCs with GFAP expression. This structure may represent peripheral nerve axons surrounded by Schwann cells, and could be relevant to the pathophysiology of MDS-F.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Mendez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD, Lira SA, et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature. 2010;466:829–34.CrossRefPubMedPubMedCentral Mendez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD, Lira SA, et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature. 2010;466:829–34.CrossRefPubMedPubMedCentral
2.
Zurück zum Zitat Lendahl U, Zimmerman LB, McKay RD. CNS stem cells express a new class of intermediate filament protein. Cell. 1990;60:585–95.CrossRefPubMed Lendahl U, Zimmerman LB, McKay RD. CNS stem cells express a new class of intermediate filament protein. Cell. 1990;60:585–95.CrossRefPubMed
4.
Zurück zum Zitat Kunisaki Y, Bruns I, Scheiermann C, Ahmed J, Pinho S, Zhang D, et al. Arteriolar niches maintain haematopoietic stem cell quiescence. Nature. 2013;502:637–43.CrossRefPubMedPubMedCentral Kunisaki Y, Bruns I, Scheiermann C, Ahmed J, Pinho S, Zhang D, et al. Arteriolar niches maintain haematopoietic stem cell quiescence. Nature. 2013;502:637–43.CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Yamazaki S, Ema H, Karlsson G, Yamaguchi T, Miyoshi H, Shioda S, et al. Nonmyelinating Schwann cells maintain hematopoietic stem cell hibernation in the bone marrow niche. Cell. 2011;147:1146–58.CrossRefPubMed Yamazaki S, Ema H, Karlsson G, Yamaguchi T, Miyoshi H, Shioda S, et al. Nonmyelinating Schwann cells maintain hematopoietic stem cell hibernation in the bone marrow niche. Cell. 2011;147:1146–58.CrossRefPubMed
6.
Zurück zum Zitat Hanoun M, Zhang D, Mizoguchi T, Pinho S, Pierce H, Kunisaki Y, et al. Acute myelogenous leukemia-induced sympathetic neuropathy promotes malignancy in an altered hematopoietic stem cell niche. Cell Stem cell. 2014;15:365–75.CrossRefPubMedPubMedCentral Hanoun M, Zhang D, Mizoguchi T, Pinho S, Pierce H, Kunisaki Y, et al. Acute myelogenous leukemia-induced sympathetic neuropathy promotes malignancy in an altered hematopoietic stem cell niche. Cell Stem cell. 2014;15:365–75.CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Arranz L, Sanchez-Aguilera A, Martin-Perez D, Isern J, Langa X, Tzankov A, et al. Neuropathy of haematopoietic stem cell niche is essential for myeloproliferative neoplasms. Nature. 2014;512:78–81.CrossRefPubMed Arranz L, Sanchez-Aguilera A, Martin-Perez D, Isern J, Langa X, Tzankov A, et al. Neuropathy of haematopoietic stem cell niche is essential for myeloproliferative neoplasms. Nature. 2014;512:78–81.CrossRefPubMed
8.
Zurück zum Zitat Corey SJ, Minden MD, Barber DL, Kantarjian H, Wang JC, Schimmer AD. Myelodysplastic syndromes: the complexity of stem-cell diseases. Nat Rev Cancer. 2007;7:118–29.CrossRefPubMed Corey SJ, Minden MD, Barber DL, Kantarjian H, Wang JC, Schimmer AD. Myelodysplastic syndromes: the complexity of stem-cell diseases. Nat Rev Cancer. 2007;7:118–29.CrossRefPubMed
9.
10.
Zurück zum Zitat Cazzola M, Malcovati L. Myelodysplastic syndromes–coping with ineffective hematopoiesis. N Engl J Med. 2005;352:536–8.CrossRefPubMed Cazzola M, Malcovati L. Myelodysplastic syndromes–coping with ineffective hematopoiesis. N Engl J Med. 2005;352:536–8.CrossRefPubMed
11.
Zurück zum Zitat Xiong H, Yang XY, Han J, Wang Q, Zou ZL. Cytokine expression patterns and mesenchymal stem cell karyotypes from the bone marrow microenvironment of patients with myelodysplastic syndromes. Br J Med Biol Res. 2015;48:207–13.CrossRef Xiong H, Yang XY, Han J, Wang Q, Zou ZL. Cytokine expression patterns and mesenchymal stem cell karyotypes from the bone marrow microenvironment of patients with myelodysplastic syndromes. Br J Med Biol Res. 2015;48:207–13.CrossRef
12.
Zurück zum Zitat Abe-Suzuki S, Kurata M, Abe S, Onishi I, Kirimura S, Nashimoto M, et al. CXCL12+ stromal cells as bone marrow niche for CD34+ hematopoietic cells and their association with disease progression in myelodysplastic syndromes. Lab Invest. 2014;94:1212–23.CrossRefPubMed Abe-Suzuki S, Kurata M, Abe S, Onishi I, Kirimura S, Nashimoto M, et al. CXCL12+ stromal cells as bone marrow niche for CD34+ hematopoietic cells and their association with disease progression in myelodysplastic syndromes. Lab Invest. 2014;94:1212–23.CrossRefPubMed
13.
Zurück zum Zitat Balderman SR, Li AJ, Hoffman CM, Frisch BJ, Goodman AN, LaMere MW, et al. Targeting of the bone marrow microenvironment improves outcome in a murine model of myelodysplastic syndrome. Blood. 2016;127:616–25.CrossRefPubMedPubMedCentral Balderman SR, Li AJ, Hoffman CM, Frisch BJ, Goodman AN, LaMere MW, et al. Targeting of the bone marrow microenvironment improves outcome in a murine model of myelodysplastic syndrome. Blood. 2016;127:616–25.CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Flores-Figueroa E, Varma S, Montgomery K, Greenberg PL, Gratzinger D. Distinctive contact between CD34+ hematopoietic progenitors and CXCL12+ CD271+ mesenchymal stromal cells in benign and myelodysplastic bone marrow. Lab Invest. 2012;92:1330–41.CrossRefPubMed Flores-Figueroa E, Varma S, Montgomery K, Greenberg PL, Gratzinger D. Distinctive contact between CD34+ hematopoietic progenitors and CXCL12+ CD271+ mesenchymal stromal cells in benign and myelodysplastic bone marrow. Lab Invest. 2012;92:1330–41.CrossRefPubMed
15.
Zurück zum Zitat Buesche G, Teoman H, Wilczak W, Ganser A, Hecker H, Wilkens L, et al. Marrow fibrosis predicts early fatal marrow failure in patients with myelodysplastic syndromes. Leukemia. 2008;22:313–22.CrossRefPubMed Buesche G, Teoman H, Wilczak W, Ganser A, Hecker H, Wilkens L, et al. Marrow fibrosis predicts early fatal marrow failure in patients with myelodysplastic syndromes. Leukemia. 2008;22:313–22.CrossRefPubMed
16.
Zurück zum Zitat Fu B, Ok CY, Goswami M, Xei W, Jaso JM, Muzzafar T, et al. The clinical importance of moderate/severe bone marrow fibrosis in patients with therapy-related myelodysplastic syndromes. Ann Hematol. 2013;92:1335–43.CrossRefPubMedPubMedCentral Fu B, Ok CY, Goswami M, Xei W, Jaso JM, Muzzafar T, et al. The clinical importance of moderate/severe bone marrow fibrosis in patients with therapy-related myelodysplastic syndromes. Ann Hematol. 2013;92:1335–43.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Marisavljevic D, Rolovic Z, Cemerikic V, Boskovic D, Colovic M. Myelofibrosis in primary myelodysplastic syndromes: clinical and biological significance. Med Oncol. 2004;21:325–31.CrossRefPubMed Marisavljevic D, Rolovic Z, Cemerikic V, Boskovic D, Colovic M. Myelofibrosis in primary myelodysplastic syndromes: clinical and biological significance. Med Oncol. 2004;21:325–31.CrossRefPubMed
18.
Zurück zum Zitat Della Porta MG, Malcovati L, Boveri E, Travaglino E, Pietra D, Pascutto C, et al. Clinical relevance of bone marrow fibrosis and CD34-positive cell clusters in primary myelodysplastic syndromes. J Clin Oncol. 2009;27:754–62.CrossRefPubMed Della Porta MG, Malcovati L, Boveri E, Travaglino E, Pietra D, Pascutto C, et al. Clinical relevance of bone marrow fibrosis and CD34-positive cell clusters in primary myelodysplastic syndromes. J Clin Oncol. 2009;27:754–62.CrossRefPubMed
19.
Zurück zum Zitat Thiele J, Kvasnicka HM, Facchetti F, Franco V, van der Walt J, Orazi A. European consensus on grading bone marrow fibrosis and assessment of cellularity. Haematologica. 2005;90:1128–32.PubMed Thiele J, Kvasnicka HM, Facchetti F, Franco V, van der Walt J, Orazi A. European consensus on grading bone marrow fibrosis and assessment of cellularity. Haematologica. 2005;90:1128–32.PubMed
20.
Zurück zum Zitat Kanda Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant. 2013;48:452–8.CrossRefPubMed Kanda Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant. 2013;48:452–8.CrossRefPubMed
21.
Zurück zum Zitat Yang Z, Wang KK. Glial fibrillary acidic protein: from intermediate filament assembly and gliosis to neurobiomarker. Trends Neurosci. 2015;38:364–74.CrossRefPubMedPubMedCentral Yang Z, Wang KK. Glial fibrillary acidic protein: from intermediate filament assembly and gliosis to neurobiomarker. Trends Neurosci. 2015;38:364–74.CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Kim HS, Lee J, Lee DY, Kim YD, Kim JY, Lim HJ, et al. Schwann cell precursors from human pluripotent stem cells as a potential therapeutic target for myelin repair. Stem Cell Rep. 2017;8:1714–26.CrossRef Kim HS, Lee J, Lee DY, Kim YD, Kim JY, Lim HJ, et al. Schwann cell precursors from human pluripotent stem cells as a potential therapeutic target for myelin repair. Stem Cell Rep. 2017;8:1714–26.CrossRef
23.
Zurück zum Zitat Petzold A. Neurofilament phosphoforms: surrogate markers for axonal injury, degeneration and loss. J Neurol Sci. 2005;233:183–98.CrossRefPubMed Petzold A. Neurofilament phosphoforms: surrogate markers for axonal injury, degeneration and loss. J Neurol Sci. 2005;233:183–98.CrossRefPubMed
24.
Zurück zum Zitat Haferlach T, Nagata Y, Grossmann V, Okuno Y, Bacher U, Nagae G, et al. Landscape of genetic lesions in 944 patients with myelodysplastic syndromes. Leukemia. 2014;28:241–7.CrossRefPubMed Haferlach T, Nagata Y, Grossmann V, Okuno Y, Bacher U, Nagae G, et al. Landscape of genetic lesions in 944 patients with myelodysplastic syndromes. Leukemia. 2014;28:241–7.CrossRefPubMed
25.
Zurück zum Zitat Yoshizato T, Nannya Y, Atsuta Y, Shiozawa Y, Iijima-Yamashita Y, Yoshida K, et al. Genetic abnormalities in myelodysplasia and secondary acute myeloid leukemia: impact on outcome of stem cell transplantation. Blood. 2017;129:2347–58.CrossRefPubMedPubMedCentral Yoshizato T, Nannya Y, Atsuta Y, Shiozawa Y, Iijima-Yamashita Y, Yoshida K, et al. Genetic abnormalities in myelodysplasia and secondary acute myeloid leukemia: impact on outcome of stem cell transplantation. Blood. 2017;129:2347–58.CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Schemenau J, Baldus S, Anlauf M, Reinecke P, Braunstein S, Blum S, et al. Cellularity, characteristics of hematopoietic parameters and prognosis in myelodysplastic syndromes. Eur J Haematol. 2015;95:181–9.CrossRefPubMed Schemenau J, Baldus S, Anlauf M, Reinecke P, Braunstein S, Blum S, et al. Cellularity, characteristics of hematopoietic parameters and prognosis in myelodysplastic syndromes. Eur J Haematol. 2015;95:181–9.CrossRefPubMed
27.
Zurück zum Zitat Ramos F, Robledo C, Izquierdo-Garcia FM, Suarez-Vilela D, Benito R, Fuertes M, et al. Bone marrow fibrosis in myelodysplastic syndromes: a prospective evaluation including mutational analysis. Oncotarget. 2016;7:30492–503.CrossRefPubMedPubMedCentral Ramos F, Robledo C, Izquierdo-Garcia FM, Suarez-Vilela D, Benito R, Fuertes M, et al. Bone marrow fibrosis in myelodysplastic syndromes: a prospective evaluation including mutational analysis. Oncotarget. 2016;7:30492–503.CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Gu H, Wang S, Messam CA, Yao Z. Distribution of nestin immunoreactivity in the normal adult human forebrain. Brain Res. 2002;943:174–80.CrossRefPubMed Gu H, Wang S, Messam CA, Yao Z. Distribution of nestin immunoreactivity in the normal adult human forebrain. Brain Res. 2002;943:174–80.CrossRefPubMed
29.
Zurück zum Zitat Minovi A, Witt M, Prescher A, Gudziol V, Dazert S, Hatt H, et al. Expression and distribution of the intermediate filament protein nestin and other stem cell related molecules in the human olfactory epithelium. Histol Histopathol. 2010;25:177–87.PubMed Minovi A, Witt M, Prescher A, Gudziol V, Dazert S, Hatt H, et al. Expression and distribution of the intermediate filament protein nestin and other stem cell related molecules in the human olfactory epithelium. Histol Histopathol. 2010;25:177–87.PubMed
30.
Zurück zum Zitat Li H, Cherukuri P, Li N, Cowling V, Spinella M, Cole M, et al. Nestin is expressed in the basal/myoepithelial layer of the mammary gland and is a selective marker of basal epithelial breast tumors. Cancer Res. 2007;67:501–10.CrossRefPubMed Li H, Cherukuri P, Li N, Cowling V, Spinella M, Cole M, et al. Nestin is expressed in the basal/myoepithelial layer of the mammary gland and is a selective marker of basal epithelial breast tumors. Cancer Res. 2007;67:501–10.CrossRefPubMed
31.
Zurück zum Zitat Perry J, Ho M, Viero S, Zheng K, Jacobs R, Thorner PS. The intermediate filament nestin is highly expressed in normal human podocytes and podocytes in glomerular disease. Pediatr Dev Pathol. 2007;10:369–82.CrossRefPubMed Perry J, Ho M, Viero S, Zheng K, Jacobs R, Thorner PS. The intermediate filament nestin is highly expressed in normal human podocytes and podocytes in glomerular disease. Pediatr Dev Pathol. 2007;10:369–82.CrossRefPubMed
32.
Zurück zum Zitat Suzuki S, Namiki J, Shibata S, Mastuzaki Y, Okano H. The neural stem/progenitor cell marker nestin is expressed in proliferative endothelial cells, but not in mature vasculature. J Histochem Cytochem. 2010;58:721–30.CrossRefPubMedPubMedCentral Suzuki S, Namiki J, Shibata S, Mastuzaki Y, Okano H. The neural stem/progenitor cell marker nestin is expressed in proliferative endothelial cells, but not in mature vasculature. J Histochem Cytochem. 2010;58:721–30.CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Park D, Xiang AP, Mao FF, Zhang L, Di CG, Liu XM, et al. Nestin is required for the proper self-renewal of neural stem cells. Stem Cells. 2010;28:2162–71.CrossRefPubMed Park D, Xiang AP, Mao FF, Zhang L, Di CG, Liu XM, et al. Nestin is required for the proper self-renewal of neural stem cells. Stem Cells. 2010;28:2162–71.CrossRefPubMed
34.
Zurück zum Zitat Wiese C, Rolletschek A, Kania G, Blyszczuk P, Tarasov KV, Tarasova Y, et al. Nestin expression–a property of multi-lineage progenitor cells? Cell Mol Life Sci. 2004;61:2510–22.CrossRefPubMed Wiese C, Rolletschek A, Kania G, Blyszczuk P, Tarasov KV, Tarasova Y, et al. Nestin expression–a property of multi-lineage progenitor cells? Cell Mol Life Sci. 2004;61:2510–22.CrossRefPubMed
35.
Zurück zum Zitat Vaittinen S, Lukka R, Sahlgren C, Hurme T, Rantanen J, Lendahl U, et al. The expression of intermediate filament protein nestin as related to vimentin and desmin in regenerating skeletal muscle. J Neuropathol Exp Neurol. 2001;60:588–97.CrossRefPubMed Vaittinen S, Lukka R, Sahlgren C, Hurme T, Rantanen J, Lendahl U, et al. The expression of intermediate filament protein nestin as related to vimentin and desmin in regenerating skeletal muscle. J Neuropathol Exp Neurol. 2001;60:588–97.CrossRefPubMed
36.
Zurück zum Zitat Calderone A. The biological role of Nestin((+))-cells in physiological and pathological cardiovascular remodeling. Front Cell Dev Biol. 2018;6:15.CrossRefPubMedPubMedCentral Calderone A. The biological role of Nestin((+))-cells in physiological and pathological cardiovascular remodeling. Front Cell Dev Biol. 2018;6:15.CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Beguin PC, Gosselin H, Mamarbachi M, Calderone A. Nestin expression is lost in ventricular fibroblasts during postnatal development of the rat heart and re-expressed in scar myofibroblasts. J Cell Physiol. 2012;227:813–20.CrossRefPubMed Beguin PC, Gosselin H, Mamarbachi M, Calderone A. Nestin expression is lost in ventricular fibroblasts during postnatal development of the rat heart and re-expressed in scar myofibroblasts. J Cell Physiol. 2012;227:813–20.CrossRefPubMed
38.
Zurück zum Zitat Hertig V, Tardif K, Meus MA, Duquette N, Villeneuve L, Toussaint F, et al. Nestin expression is upregulated in the fibrotic rat heart and is localized in collagen-expressing mesenchymal cells and interstitial CD31(+)- cells. PLoS One. 2017;12:e0176147.CrossRefPubMedPubMedCentral Hertig V, Tardif K, Meus MA, Duquette N, Villeneuve L, Toussaint F, et al. Nestin expression is upregulated in the fibrotic rat heart and is localized in collagen-expressing mesenchymal cells and interstitial CD31(+)- cells. PLoS One. 2017;12:e0176147.CrossRefPubMedPubMedCentral
39.
Zurück zum Zitat Dong Z, Sinanan A, Parkinson D, Parmantier E, Mirsky R, Jessen KR. Schwann cell development in embryonic mouse nerves. J Neurosci Res. 1999;56:334–48.CrossRefPubMed Dong Z, Sinanan A, Parkinson D, Parmantier E, Mirsky R, Jessen KR. Schwann cell development in embryonic mouse nerves. J Neurosci Res. 1999;56:334–48.CrossRefPubMed
40.
Zurück zum Zitat Isern J, Garcia-Garcia A, Martin AM, Arranz L, Martin-Perez D, Torroja C, et al. The neural crest is a source of mesenchymal stem cells with specialized hematopoietic stem cell niche function. eLife. 2014;3:e03696.CrossRefPubMedPubMedCentral Isern J, Garcia-Garcia A, Martin AM, Arranz L, Martin-Perez D, Torroja C, et al. The neural crest is a source of mesenchymal stem cells with specialized hematopoietic stem cell niche function. eLife. 2014;3:e03696.CrossRefPubMedPubMedCentral
41.
Zurück zum Zitat Dybedal I, Guan F, Borge OJ, Veiby OP, Ramsfjell V, Nagata S, et al. Transforming growth factor-beta1 abrogates Fas-induced growth suppression and apoptosis of murine bone marrow progenitor cells. Blood. 1997;90:3395–403.PubMed Dybedal I, Guan F, Borge OJ, Veiby OP, Ramsfjell V, Nagata S, et al. Transforming growth factor-beta1 abrogates Fas-induced growth suppression and apoptosis of murine bone marrow progenitor cells. Blood. 1997;90:3395–403.PubMed
42.
Zurück zum Zitat Batard P, Monier MN, Fortunel N, Ducos K, Sansilvestri-Morel P, Phan T, et al. TGF-(beta)1 maintains hematopoietic immaturity by a reversible negative control of cell cycle and induces CD34 antigen up-modulation. J Cell Sci. 2000;113:383–90.PubMed Batard P, Monier MN, Fortunel N, Ducos K, Sansilvestri-Morel P, Phan T, et al. TGF-(beta)1 maintains hematopoietic immaturity by a reversible negative control of cell cycle and induces CD34 antigen up-modulation. J Cell Sci. 2000;113:383–90.PubMed
Metadaten
Titel
Prominence of nestin-expressing Schwann cells in bone marrow of patients with myelodysplastic syndromes with severe fibrosis
verfasst von
Luan Cao-Sy
Naoshi Obara
Tatsuhiro Sakamoto
Takayasu Kato
Keiichiro Hattori
Shingo Sakashita
Yasuhito Nannya
Seishi Ogawa
Hironori Harada
Mamiko Sakata-Yanagimoto
Hidekazu Nishikii
Shigeru Chiba
Publikationsdatum
10.01.2019
Verlag
Springer Japan
Erschienen in
International Journal of Hematology / Ausgabe 3/2019
Print ISSN: 0925-5710
Elektronische ISSN: 1865-3774
DOI
https://doi.org/10.1007/s12185-018-02576-9

Weitere Artikel der Ausgabe 3/2019

International Journal of Hematology 3/2019 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.