Skip to main content

Advertisement

Log in

Accuracy of dose calculation algorithms for virtual heterogeneous phantoms and intensity-modulated radiation therapy in the head and neck

  • Published:
Radiological Physics and Technology Aims and scope Submit manuscript

Abstract

This study verified the dose calculation accuracy of the analytical anisotropic algorithm (AAA), Acuros XB version 10 (AXB10), and version 11 (AXB11) installed in an Eclipse treatment planning system, by comparing with Monte Carlo (MC) simulations. First, the algorithms were compared in terms of dose distributions using four types of virtual heterogeneous multi-layer phantom for 6 and 15 MV photons. Next, the clinical head and neck intensity-modulated radiation therapy (IMRT) dose distributions for 6 MV photons were evaluated using dose volume histograms (DVHs) and three-dimensional gamma analysis. In percentage depth doses (PDDs) for virtual heterogeneous phantoms, AAA overestimated absorbed doses in the air cavity, bone, and aluminum in comparison with MC, AXB10, and AXB11. The PDDs of AXB10 almost agreed with those of MC and AXB11, except for the air cavity. The dose in the air cavity was higher for AXB10 than for AXB11, because their electron cutoff energies are set at 500 and 200 keV, respectively. For head and neck IMRT dose distributions, the D95 in the clinical target volume (CTV) for AAA was almost the same as that for AXB10 and was approximately 7 % larger than that for MC. Comparing each approach with MC using a criterion of 3 %/3 mm, the pass rates for AXB10, AXB11, and AAA were 92.4, 94.7, and 90.4 % in the CTV, respectively. In conclusion, AAA produces dose errors in heterogeneous regions, while AXB11 provides calculation accuracy comparable to MC. AXB10 overestimates the dose in regions that include an air cavity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Mell LK, Roeske JC, Mundt AJ. A survey of intensity-modulated radiation therapy use in the United States. Cancer. 2003;98:204–11.

    Article  PubMed  Google Scholar 

  2. De Neve W, Duthoy W. Intensity-modulated radiation therapy for head and neck cancer. Expert Rev Anticancer Ther. 2004;4:425–34.

    Article  PubMed  Google Scholar 

  3. Grégoire V, De Neve W, Eisbruch A, et al. Intensity-modulated radiation therapy for head and neck carcinoma. Oncologist. 2007;12:555–64.

    Article  PubMed  Google Scholar 

  4. Sakthi N, Keall P, Mihaylov I, et al. Monte Carlo-based dosimetry of head-and-neck patients treated with SIB-IMRT. Int J Radiat Oncol Biol Phys. 2006;64:968–77.

    Article  PubMed  Google Scholar 

  5. Han T, Mikell JK, Salehpour M, et al. Dosimetric comparison of Acuros XB deterministic radiation transport method with Monte Carlo and model-based convolution methods in heterogeneous media. Med Phys. 2011;38:2651–64.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Bush K, Gagne IM, Zavgorodni S, et al. Dosimetric validation of Acuros XB with Monte Carlo methods for photon dose calculations. Med Phys. 2011;38:2208–21.

    Article  CAS  PubMed  Google Scholar 

  7. Han T, Followill D, Mikell J, et al. Dosimetric impact of Acuros XB deterministic radiation transport algorithm for heterogeneous dose calculation in lung cancer. Med Phys. 2013;40:51710–21.

    Article  Google Scholar 

  8. Mißlbeck M, Kneschaurek P. Comparison between Acuros XB and Brainlab Monte Carlo algorithms for photon dose calculation. Strahlenther Onkol. 2012;188:599–605.

    Article  PubMed  Google Scholar 

  9. Kan MW, Leung LH, Yu PK. Dosimetric impact of using the Acuros XB algorithm for intensity modulated radiation therapy and RapidArc planning in nasopharyngeal carcinomas. Int J Radiat Oncol Biol Phys. 2013;85:73–80.

    Article  Google Scholar 

  10. Kroon PS, Hol S, Essers M. Dosimetric accuracy and clinical quality of Acuros XB and AAA dose calculation algorithm for stereotactic and conventional lung volumetric modulated arc therapy plans. Radiat Oncol. 2013;8:149.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Kan MW, Leung LH, Yu PK. Verification and dosimetric impact of Acuros XB algorithm on intensity modulated stereotactic radiotherapy for locally persistent nasopharyngeal carcinoma. Med Phys. 2012;39:4704–14.

    Article  Google Scholar 

  12. Fogliata A, Nicolini G, Clivio A, et al. Dosimetric evaluation of Acuros XB Advanced Dose Calculation algorithm in heterogeneous media. Radiat Oncol. 2011;6:82.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Tsuruta Y, Nakata M, Nakamura M, et al. Dosimetric comparison of Acuros XB, AAA, and XVMC in stereotactic body radiotherapy for lung cancer. Med Phys. 2014;41:081715.

    Article  PubMed  Google Scholar 

  14. Koo T, Chung JB, Eom KY, et al. Dosimetric effects of the acuros XB and anisotropic analytical algorithm on volumetric modulated arc therapy planning for prostate cancer using an endorectal balloon. Radiat Oncol. 2015;10:48.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Han T, Mourtada F, Kisling K, et al. Experimental validation of deterministic Acuros XB algorithm for IMRT and VMAT dose calculations with the Radiological Physics Center’s head and neck phantom. Med Phys. 2012;39:2193–202.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Fogliata A, Nicolini G, Vanetti E, et al. Dosimetric validation of the anisotropic analytical algorithm for photon dose calculation: fundamental characterization in water. Phys Med Biol. 2006;51(6):1421–38.

    Article  PubMed  Google Scholar 

  17. Breitman K, Rathee S, Newcomb C, et al. Experimental validation of the Eclipse AAA algorithm. J Appl Clin Med Phys. 2007;8:76–92.

    PubMed  Google Scholar 

  18. Kawrakow I. Accurate condensed history Monte Carlo simulation of electron transport. I. EGSnrc, the new EGS4 version. Med Phys. 2000;27:485–98.

    Article  CAS  PubMed  Google Scholar 

  19. Kawrakow I, Rogers DW, Tessier F et al. The EGSnrc code system: Monte Carlo simulation of electron and photon transport. National Research Council of Canada Report PIRS-701 2013.

  20. Rogers DW, Faddegon BA, Ding GX, et al. BEAM: a Monte Carlo code to simulate radiotherapy treatment units. Med Phys. 1995;22:503–24.

    Article  CAS  PubMed  Google Scholar 

  21. Rogers DW, Walters BR and Kawrakow I. BEAMnrc users manual. National Research Council of Canada Report PIRS-509(A) Rev L, 2013.

  22. Araki F. Monte Carlo-based correction factors for ion chamber dosimetry in heterogeneous phantoms for megavoltage photon beams. Phys Med Biol. 2012;57:7615–27.

    Article  PubMed  Google Scholar 

  23. Araki F, Ohno T The response of a radiophotoluminescent glass dosimeter in megavoltage photon and electron beams. Med Phys. 2014;41: 22102-1-22102-8.

  24. Tomiyama Y, Araki F, Ohno T, et al. Three-dimensional gamma analysis of dose distributions in each structure for IMRT dose verification. Radiol Phys Technol. 2014;7:303–9.

    Article  PubMed  Google Scholar 

  25. Walters BR, Kawrakow I, Rogers DW. DOSXYZnrc users manual. National Research Council of Canada, Report PIRS-794 Rev B, 2013.

  26. Sterpin E, Tomsej M, De Smedt B, et al. Monte Carlo evaluation of the AAA treatment planning algorithm in a heterogeneous multilayer phantom and IMRT clinical treatments for an Elekta SL25 linear accelerator. Med Phys. 2007;34:1665–77.

    Article  CAS  PubMed  Google Scholar 

  27. Low DA, Harms WB, Mutic S, et al. A technique for the quantitative evaluation of dose distributions. Med Phys. 1998;25:656–61.

    Article  CAS  PubMed  Google Scholar 

  28. Verbakel WF, Cuijpers JP, Hoffmans D, et al. Volumetric intensity-modulated arc therapy vs conventional IMRT in head-and-neck cancer: a comparative planning and dosimetric study. Int J Radiat Oncol Biol Phys. 2009;74:252–9.

    Article  PubMed  Google Scholar 

  29. Blanpain B, Mercier D. The delta envelope: a technique for dose distribution comparison. Med Phys. 2009;36:797–808.

    Article  PubMed  Google Scholar 

  30. Seltzer SM, Hubbell JH. Tables and graphs of photon mass attenuation coefficients and mass energy-absorption coefficients for photon energies 1 keV to 20 MeV for elements Z = 1 to 92, in The X-ray Attenuation and Absorption for Materials of Dosimetric Interest Database. USA: NIST; 1996.

    Google Scholar 

  31. ESTAR: stopping powers and ranges for electrons, national institute of standards and technology: http://physics.nist.gov/PhysRefData/Star/Text/ESTAR.html.

  32. Rogers DW, Kawrakow I, Seuntjens JP et al. NRC user codes for EGSnrc. National Research Council of Canada Report PIRS-702 Rev C; 2013.

  33. Kan MW, Leung LH, So RW, et al. Experimental verification of the Acuros XB and AAA dose calculation adjacent to heterogeneous media for IMRT and RapidArc of nasopharyngeal carcinoma. Med Phys. 2013;40:031714.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the staff of Kumamoto University Hospital for their help and discussion during this work, and Varian Medical Systems in Japan for providing AXB11.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fujio Araki.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Onizuka, R., Araki, F., Ohno, T. et al. Accuracy of dose calculation algorithms for virtual heterogeneous phantoms and intensity-modulated radiation therapy in the head and neck. Radiol Phys Technol 9, 77–87 (2016). https://doi.org/10.1007/s12194-015-0336-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12194-015-0336-z

Keywords

Navigation