Skip to main content
Log in

Verification of the dose attenuation of a newly developed vacuum cushion for intensity-modulated radiation therapy of prostate cancer

  • Published:
Radiological Physics and Technology Aims and scope Submit manuscript

Abstract

This study measured the dose attenuation of a newly developed vacuum cushion for intensity-modulated radiation therapy (IMRT) of prostate cancer, and verified the effect of dose-correction accuracy in a radiation treatment planning system (RTPS). The new cushion was filled with polystyrene foams inflated 15-fold (Sφ ≒ 1 mm) to reduce contraction caused by air suction and was compared to normal polystyrene foam inflated to 50-fold (Sφ ≒ 2 mm). The dose attenuation at several thicknesses of compression bag filled with normal and low-inflation materials was measured using an ionization chamber; and then the calculated RTPS dose was compared to ionization chamber measurements, while the new cushion was virtually included as region of interest in the calculation area. The dose attenuation rate of the normal cushion was 0.010 %/mm (R 2 = 0.9958), compared to 0.031 %/mm (R 2 = 0.9960) in the new cushion. Although the dose attenuation rate of the new cushion was three times that of the normal cushion, the high agreement between calculated dose by RTPS and ionization chamber measurements was within approximately 0.005 %/mm. Thus, the results of the current study indicate that the new cushion may be effective in clinical use for dose calculation accuracy in RTPS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Burman C, Chui CS, Kutcher G, Leibel S, Zelefsky M, LoSasso T, et al. Planning, delivery, and quality assurance of intensity-modulated radiotherapy using dynamic multileaf collimator: a strategy for large-scale implementation for the treatment of carcinoma of the prostate. Int J Radiat Oncol Biol Phys. 1997;39(4):863–73.

    Article  CAS  PubMed  Google Scholar 

  2. Hatano K, Araki H, Sakai M, Kodama T, Tohyama N, Kawachi T, et al. Current status of intensity-modulated radiation therapy (IMRT). Int J Clin Oncol. 2007;12(6):408–15.

    Article  PubMed  Google Scholar 

  3. Inokuchi H, Mizowaki T, Norihisa Y, Takayama K, Ikeda I, Nakamura K, et al. Clinical effect of multileaf collimator width on the incidence of late rectal bleeding after high-dose intensity-modulated radiotherapy for localized prostate carcinoma. Int J Clin Oncol. 2016;21(1):156–61.

    Article  PubMed  Google Scholar 

  4. Low DA, Gerber RL, Mutic S, Purdy JA. Phantoms for IMRT dose distribution measurement and treatment verification. Int J Radiat Oncol Biol Phys. 1998;40(5):1231–5.

    Article  CAS  PubMed  Google Scholar 

  5. van Lin EN, Hoffmann AL, van Kollenburg P, Leer JW, Visser AG. Rectal wall sparing effect of three different endorectal balloons in 3D conformal and IMRT prostate radiotherapy. Int J Radiat Oncol Biol Phys. 2005;63(2):565–76.

    Article  PubMed  Google Scholar 

  6. Algan O, Jamgade A, Ali I, Christie A, Thompson JS, Thompson D, et al. The dosimetric impact of daily setup error on target volumes and surrounding normal tissue in the treatment of prostate cancer with intensity-modulated radiation therapy. Med Dosim. 2012;37(4):406–11.

    Article  PubMed  Google Scholar 

  7. Fu W, Yang Y, Li X, Heron DE, Huq MS, Yue NJ. Dosimetric effects of patient rotational setup errors on prostate IMRT treatments. Phys Med Biol. 2006;51(20):5321–31.

    Article  PubMed  Google Scholar 

  8. Hirose Y, Nakamura M, Tomita T, Kitsuda K, Notogawa T, Miki K, et al. Evaluation of different set-up error corrections on dose-volume metrics in prostate IMRT using CBCT images. J Radiat Res. 2014;55(5):966–75.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Landoni V, Saracino B, Marzi S, Gallucci M, Petrongari MG, Chianese E, et al. A study of the effect of setup errors and organ motion on prostate cancer treatment with IMRT. Int J Radiat Oncol Biol Phys. 2006;65(2):587–94.

    Article  PubMed  Google Scholar 

  10. de Boer HC, Heijmen BJ. A protocol for the reduction of systematic patient setup errors with minimal portal imaging workload. Int J Radiat Oncol Biol Phys. 2001;50(5):1350–65.

    Article  PubMed  Google Scholar 

  11. de Boer HC, van Os MJ, Jansen PP, Heijmen BJ. Application of the No Action Level (NAL) protocol to correct for prostate motion based on electronic portal imaging of implanted markers. Int J Radiat Oncol Biol Phys. 2005;61(4):969–83.

    Article  PubMed  Google Scholar 

  12. Ludbrook JJ, Greer PB, Blood P, D’yachkova Y, Coldman A, Beckham WA, et al. Correction of systematic setup errors in prostate radiation therapy: how many images to perform? Med Dosim. 2005;30(2):76–84.

    Article  PubMed  Google Scholar 

  13. van Lin EN, Nijenhuis E, Huizenga H, van der Vight L, Visser A. Effectiveness of couch height-based patient set-up and an off-line correction protocol in prostate cancer radiotherapy. Int J Radiat Oncol Biol Phys. 2001;50(2):569–77.

    Article  PubMed  Google Scholar 

  14. Keller H, Jaffray DA, Rosewall T, White E. Efficient on-line setup correction strategies using plan-intent functions. Med Phys. 2006;33(5):1388–97.

    Article  PubMed  Google Scholar 

  15. Moseley DJ, White EA, Wiltshire KL, Rosewall T, Sharpe MB, Siewerdsen JH, et al. Comparison of localization performance with implanted fiducial markers and cone-beam computed tomography for on-line image-guided radiotherapy of the prostate. Int J Radiat Oncol Biol Phys. 2007;67(3):942–53.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Song WY, Wong E, Bauman GS, Battista JJ, Van Dyk J. Dosimetric evaluation of daily rigid and nonrigid geometric correction strategies during on-line image-guided radiation therapy (IGRT) of prostate cancer. Med Phys. 2007;34(1):352–65.

    Article  PubMed  Google Scholar 

  17. Sorcini B, Tilikidis A. Clinical application of image-guided radiotherapy, IGRT (on the Varian OBI platform). Cancer Radiother. 2006;10(5):252–7.

    Article  PubMed  Google Scholar 

  18. Wang C, Shiu A, Lii M, Woo S, Chang EL. Automatic target localization and verification for on-line image-guided stereotactic body radiotherapy of the spine. Technol Cancer Res Treat. 2007;6(3):187–96.

    Article  PubMed  Google Scholar 

  19. Ohira S, Ueda Y, Nishiyama K, Miyazaki M, Isono M, Tsujii K, et al. Couch height-based patient setup for abdominal radiation therapy. Med Dosim. 2016;41(1):59–63.

    Article  PubMed  Google Scholar 

  20. Martens D, Luesink M, Huizenga H, Pasma KL. eNAL ++: a new and effective off-line correction protocol for rotational setup errors when using a robotic couch. J Appl Clin Med Phys. 2015;16(6):5583.

    PubMed  Google Scholar 

  21. Han Z, Bondeson JC, Lewis JH, Mannarino EG, Friesen SA, Wagar MM, et al. Evaluation of initial setup accuracy and intrafraction motion for spine stereotactic body radiation therapy using stereotactic body frames. Pract Radiat Oncol. 2016;6(1):e17–24.

    Article  PubMed  Google Scholar 

  22. Olch AJ, Gerig L, Li H, Mihaylov I, Morgan A. Dosimetric effects caused by couch tops and immobilization devices: report of AAPM Task Group 176. Med Phys. 2014;41(6):061501.

    Article  PubMed  Google Scholar 

  23. Johnson MW, Griggs MA, Sharma SC. A comparison of surface doses for two immobilizing systems. Med Dosim. 1995;20(3):191–4.

    Article  CAS  PubMed  Google Scholar 

  24. Lee KW, Wu JK, Jeng SC. Hsueh Liu YW, Cheng JC. Skin dose impact from vacuum immobilization device and carbon fiber couch in intensity modulated radiation therapy for prostate cancer. Med Dosim. 2009;34(3):228–32.

    Article  PubMed  Google Scholar 

  25. Mellenberg DE. Dose behind various immobilization and beam-modifying devices. Int J Radiat Oncol Biol Phys. 1995;32(4):1193–7.

    Article  CAS  PubMed  Google Scholar 

  26. Meydanci TP, Kemikler G. Effect of a carbon fiber tabletop on the surface dose and attenuation for high-energy photon beams. Radiat Med. 2008;26(9):539–44.

    Article  PubMed  Google Scholar 

  27. Smith DW, Christophides D, Dean C, Naisbit M, Mason J, Morgan A. Dosimetric characterization of the iBEAM evo carbon fiber couch for radiotherapy. Med Phys. 2010;37(7):3595–606.

    Article  CAS  PubMed  Google Scholar 

  28. Spezi E, Ferri A. Dosimetric characteristics of the Siemens IGRT carbon fiber tabletop. Med Dosim. 2007;32(4):295–8.

    Article  PubMed  Google Scholar 

  29. Gerig LH, Niedbala M, Nyiri BJ. Dose perturbations by two carbon fiber treatment couches and the ability of a commercial treatment planning system to predict these effects. Med Phys. 2010;37(1):322–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This manuscript was partly supported by Akiyoshi Ohtsuka Fellowship of the Japanese Society of Radiological Technology for improvement in English expression of a draft version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toru Takakura.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takakura, T., Ito, Y., Higashikawa, A. et al. Verification of the dose attenuation of a newly developed vacuum cushion for intensity-modulated radiation therapy of prostate cancer. Radiol Phys Technol 9, 270–276 (2016). https://doi.org/10.1007/s12194-016-0359-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12194-016-0359-0

Keywords

Navigation