Skip to main content
Erschienen in: Pathology & Oncology Research 3/2017

21.12.2016 | Original Article

Systematic Investigation of Expression of G2/M Transition Genes Reveals CDC25 Alteration in Nonfunctioning Pituitary Adenomas

verfasst von: Henriett Butz, Kinga Németh, Dóra Czenke, István Likó, Sándor Czirják, Vladimir Zivkovic, Kornélia Baghy, Márta Korbonits, Ilona Kovalszky, Péter Igaz, Károly Rácz, Attila Patócs

Erschienen in: Pathology & Oncology Research | Ausgabe 3/2017

Einloggen, um Zugang zu erhalten

Abstract

Dysregulation of G1/S checkpoint of cell cycle has been reported in pituitary adenomas. In addition, our previous finding showing that deregulation of Wee1 kinase by microRNAs together with other studies demonstrating alteration of G2/M transition in nonfunctioning pituitary adenomas (NFPAs) suggest that G2/M transition may also be important in pituitary tumorigenesis. To systematically study the expression of members of the G2/M transition in NFPAs and to investigate potential microRNA (miRNA) involvement. Totally, 80 NFPA and 14 normal pituitary (NP) tissues were examined. Expression of 46 genes encoding members of the G2/M transition was profiled on 34 NFPA and 10 NP samples on TaqMan Low Density Array. Expression of CDC25A and two miRNAs targeting CDC25A were validated by individual quantitative real time PCR using TaqMan assays. Protein expression of CDC25A, CDC25C, CDK1 and phospho-CDK1 (Tyr-15) was investigated on tissue microarray and immunohistochemistry. Several genes’ expression alteration were observed in NFPA compared to normal tissues by transcription profiling. On protein level CDC25A and both the total and the phospho-CDK1 were overexpressed in adenoma tissues. CDC25A correlated with nuclear localized CDK1 (nCDK1) and with tumor size and nCDK1 with Ki-67 index. Comparing primary vs. recurrent adenomas we found that Ki-67 proliferation index was higher and phospho-CDK1 (inactive form) was downregulated in recurrent tumors compared to primary adenomas. Investigating the potential causes behind CDC25A overexpression we could not find copy number variation at the coding region nor expression alteration of CDC25A regulating transcription factors however CDC25A targeting miRNAs were downregulated in NFPA and negatively correlated with CDC25A expression. Our results suggest that among alterations of G2/M transition of the cell cycle, overexpression of the CDK1 and CDC25A may have a role in the pathogenesis of the NFPA and that CDC25A is potentially regulated by miRNAs.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Dolecek TA, Propp JM, Stroup NE, Kruchko C (2012) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2005-2009. Neuro Oncol Suppl 5:v1–49CrossRef Dolecek TA, Propp JM, Stroup NE, Kruchko C (2012) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2005-2009. Neuro Oncol Suppl 5:v1–49CrossRef
2.
Zurück zum Zitat McDowell BD, Wallace RB, Carnahan RM, Chrischilles EA, Lynch CF, Schlechte JA (2011) Demographic differences in incidence for pituitary adenoma. Pituitary 14:23–30CrossRefPubMedPubMedCentral McDowell BD, Wallace RB, Carnahan RM, Chrischilles EA, Lynch CF, Schlechte JA (2011) Demographic differences in incidence for pituitary adenoma. Pituitary 14:23–30CrossRefPubMedPubMedCentral
3.
Zurück zum Zitat Daly AF, Tichomirowa MA, Beckers A (2009) The epidemiology and genetics of pituitary adenomas. Best Pract Res Clin Endocrinol Metab 23:543–554CrossRefPubMed Daly AF, Tichomirowa MA, Beckers A (2009) The epidemiology and genetics of pituitary adenomas. Best Pract Res Clin Endocrinol Metab 23:543–554CrossRefPubMed
4.
Zurück zum Zitat Ezzat S, Asa SL, Couldwell WT, Barr CE, Dodge WE, Vance ML, McCutcheon IE (2004) The prevalence of pituitary adenomas: a systematic review. Cancer 101:613–619CrossRefPubMed Ezzat S, Asa SL, Couldwell WT, Barr CE, Dodge WE, Vance ML, McCutcheon IE (2004) The prevalence of pituitary adenomas: a systematic review. Cancer 101:613–619CrossRefPubMed
5.
Zurück zum Zitat Tjörnstrand A, Gunnarsson K, Evert M, Holmberg E, Ragnarsson O, Rosén T, Filipsson Nyström H (2014) The incidence rate of pituitary adenomas in western Sweden for the period 2001-2011. Eur J Endocrinol 171:519–526CrossRefPubMed Tjörnstrand A, Gunnarsson K, Evert M, Holmberg E, Ragnarsson O, Rosén T, Filipsson Nyström H (2014) The incidence rate of pituitary adenomas in western Sweden for the period 2001-2011. Eur J Endocrinol 171:519–526CrossRefPubMed
6.
Zurück zum Zitat Beckers A (2010) Higher prevalence of clinically relevant pituitary adenomas confirmed. Clin Endocrinol (Oxf) 72:290–291CrossRef Beckers A (2010) Higher prevalence of clinically relevant pituitary adenomas confirmed. Clin Endocrinol (Oxf) 72:290–291CrossRef
7.
Zurück zum Zitat Fernandez A, Karavitaki N, Wass JA (2010) Prevalence of pituitary adenomas: a community-based, cross-sectional study in Banbury (Oxfordshire, UK). Clin Endocrinol (Oxf) 72:377–382CrossRef Fernandez A, Karavitaki N, Wass JA (2010) Prevalence of pituitary adenomas: a community-based, cross-sectional study in Banbury (Oxfordshire, UK). Clin Endocrinol (Oxf) 72:377–382CrossRef
8.
Zurück zum Zitat Heaney AP (2005) Pituitary tumour pathogenesis. Br Med Bull 75–76:81–97PubMed Heaney AP (2005) Pituitary tumour pathogenesis. Br Med Bull 75–76:81–97PubMed
9.
Zurück zum Zitat Musat M, Morris DG, Korbonits M, Grossman AB (2010) Cyclins and their related proteins in pituitary tumourigenesis. Mol Cell Endocrinol 326:25–29CrossRefPubMed Musat M, Morris DG, Korbonits M, Grossman AB (2010) Cyclins and their related proteins in pituitary tumourigenesis. Mol Cell Endocrinol 326:25–29CrossRefPubMed
10.
Zurück zum Zitat Ogino A, Yoshino A, Katayama Y, Watanabe T, Ota T, Komine C, Yokoyama T, Fukushima T (2005) The p15(INK4b)/p16(INK4a)/RB1 pathway is frequently deregulated in human pituitary adenomas. J Neuropathol Exp Neurol 64:398–403CrossRefPubMed Ogino A, Yoshino A, Katayama Y, Watanabe T, Ota T, Komine C, Yokoyama T, Fukushima T (2005) The p15(INK4b)/p16(INK4a)/RB1 pathway is frequently deregulated in human pituitary adenomas. J Neuropathol Exp Neurol 64:398–403CrossRefPubMed
11.
Zurück zum Zitat Yoshino A, Katayama Y, Ogino A, Watanabe T, Yachi K, Ohta T, Komine C, Yokoyama T, Fukushima T (2007) Promoter hypermethylation profile of cell cycle regulator genes in pituitary adenomas. J Neurooncol 83:153–162CrossRefPubMed Yoshino A, Katayama Y, Ogino A, Watanabe T, Yachi K, Ohta T, Komine C, Yokoyama T, Fukushima T (2007) Promoter hypermethylation profile of cell cycle regulator genes in pituitary adenomas. J Neurooncol 83:153–162CrossRefPubMed
12.
Zurück zum Zitat Zhao J, Dahle D, Zhou Y, Zhang X, Klibanski A (2005) Hypermethylation of the promoter region is associated with the loss of MEG3 gene expression in human pituitary tumors. J Clin Endocrinol Metab 90:2179–2186CrossRefPubMed Zhao J, Dahle D, Zhou Y, Zhang X, Klibanski A (2005) Hypermethylation of the promoter region is associated with the loss of MEG3 gene expression in human pituitary tumors. J Clin Endocrinol Metab 90:2179–2186CrossRefPubMed
13.
Zurück zum Zitat Gejman R, Batista DL, Zhong Y, Zhou Y, Zhang X, Swearingen B, Stratakis CA, Hedley-Whyte ET, Klibanski A (2008) Selective loss of MEG3 expression and intergenic differentially methylated region hypermethylation in the MEG3/DLK1 locus in human clinically nonfunctioning pituitary adenomas. J Clin Endocrinol Metab 93:4119–4125CrossRefPubMedPubMedCentral Gejman R, Batista DL, Zhong Y, Zhou Y, Zhang X, Swearingen B, Stratakis CA, Hedley-Whyte ET, Klibanski A (2008) Selective loss of MEG3 expression and intergenic differentially methylated region hypermethylation in the MEG3/DLK1 locus in human clinically nonfunctioning pituitary adenomas. J Clin Endocrinol Metab 93:4119–4125CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Simpson DJ, Frost SJ, Bicknell JE, Broome JC, McNicol AM, Clayton RN, Farrell WE (2001) Aberrant expression of G (1)/S regulators is a frequent event in sporadic pituitary adenomas. Carcinogenesis 22:1149–1154CrossRefPubMed Simpson DJ, Frost SJ, Bicknell JE, Broome JC, McNicol AM, Clayton RN, Farrell WE (2001) Aberrant expression of G (1)/S regulators is a frequent event in sporadic pituitary adenomas. Carcinogenesis 22:1149–1154CrossRefPubMed
15.
Zurück zum Zitat Jordan S, Lidhar K, Korbonits M, Lowe DG, Grossman AB (2000) Cyclin D and cyclin E expression in normal and adenomatous pituitary. Eur J Endocrinol 143:R1–R6CrossRefPubMed Jordan S, Lidhar K, Korbonits M, Lowe DG, Grossman AB (2000) Cyclin D and cyclin E expression in normal and adenomatous pituitary. Eur J Endocrinol 143:R1–R6CrossRefPubMed
16.
Zurück zum Zitat Turner HE, Nagy Z, Sullivan N, Esiri MM, Wass JA (2000) Expression analysis of cyclins in pituitary adenomas and the normal pituitary gland. Clin Endocrinol (Oxf) 53:337–344CrossRef Turner HE, Nagy Z, Sullivan N, Esiri MM, Wass JA (2000) Expression analysis of cyclins in pituitary adenomas and the normal pituitary gland. Clin Endocrinol (Oxf) 53:337–344CrossRef
17.
Zurück zum Zitat Butz H, Liko I, Czirjak S, Igaz P, Khan MM, Zivkovic V, Balint K, Korbonits M, Racz K, Patocs A (2010) Down-regulation of Wee1 kinase by a specific subset of microRNA in human sporadic pituitary adenomas. J Clin Endocrinol Metab 95:E181–E191CrossRefPubMed Butz H, Liko I, Czirjak S, Igaz P, Khan MM, Zivkovic V, Balint K, Korbonits M, Racz K, Patocs A (2010) Down-regulation of Wee1 kinase by a specific subset of microRNA in human sporadic pituitary adenomas. J Clin Endocrinol Metab 95:E181–E191CrossRefPubMed
18.
Zurück zum Zitat Backert S, Gelos M, Kobalz U, Hanski ML, Bohm C, Mann B, Lovin N, Gratchev A, Mansmann U, Moyer MP, Riecken EO, Hanski C (1999) Differential gene expression in colon carcinoma cells and tissues detected with a cDNA array. Int J Cancer 82:868–874CrossRefPubMed Backert S, Gelos M, Kobalz U, Hanski ML, Bohm C, Mann B, Lovin N, Gratchev A, Mansmann U, Moyer MP, Riecken EO, Hanski C (1999) Differential gene expression in colon carcinoma cells and tissues detected with a cDNA array. Int J Cancer 82:868–874CrossRefPubMed
19.
Zurück zum Zitat Yoshida T, Tanaka S, Mogi A, Shitara Y, Kuwano H (2004) The clinical significance of Cyclin B1 and Wee1 expression in non-small-cell lung cancer. Ann Oncol 15:252–256CrossRefPubMed Yoshida T, Tanaka S, Mogi A, Shitara Y, Kuwano H (2004) The clinical significance of Cyclin B1 and Wee1 expression in non-small-cell lung cancer. Ann Oncol 15:252–256CrossRefPubMed
21.
Zurück zum Zitat Yu R, Ren SG, Melmed S (2002) Proteasome inhibitors induce apoptosis in growth hormone- and prolactin-secreting rat pituitary tumor cells. J Endocrinol 174:379–386CrossRefPubMed Yu R, Ren SG, Melmed S (2002) Proteasome inhibitors induce apoptosis in growth hormone- and prolactin-secreting rat pituitary tumor cells. J Endocrinol 174:379–386CrossRefPubMed
22.
Zurück zum Zitat Yang JH, Hsia TC, Kuo HM, Chao PD, Chou CC, Wei YH, Chung JG (2006) Inhibition of lung cancer cell growth by quercetin glucuronides via G2/M arrest and induction of apoptosis. Drug Metab Dispos 34:296–304CrossRefPubMed Yang JH, Hsia TC, Kuo HM, Chao PD, Chou CC, Wei YH, Chung JG (2006) Inhibition of lung cancer cell growth by quercetin glucuronides via G2/M arrest and induction of apoptosis. Drug Metab Dispos 34:296–304CrossRefPubMed
23.
Zurück zum Zitat Al-Shraim M, Asa SL (2006) The 2004 World Health Organization classification of pituitary tumors: what is new? Acta Neuropathol 111:1–7CrossRefPubMed Al-Shraim M, Asa SL (2006) The 2004 World Health Organization classification of pituitary tumors: what is new? Acta Neuropathol 111:1–7CrossRefPubMed
24.
Zurück zum Zitat Butz H, Likó I, Czirják S, Igaz P, Korbonits M, Rácz K, Patócs A (2011) MicroRNA profile indicates downregulation of the TGFbeta pathway in sporadic non-functioning pituitary adenomas. Pituitary 14:112–124CrossRefPubMed Butz H, Likó I, Czirják S, Igaz P, Korbonits M, Rácz K, Patócs A (2011) MicroRNA profile indicates downregulation of the TGFbeta pathway in sporadic non-functioning pituitary adenomas. Pituitary 14:112–124CrossRefPubMed
25.
Zurück zum Zitat Kobayashi I, Oka H, Naritaka H, Sato Y, Fujii K, Kameya T (2002) Expression of Pit-1 and growth hormone-releasing hormone receptor mRNA in human pituitary adenomas: difference among functioning, silent, and other nonfunctioning adenomas. Endocr Pathol 13:83–98CrossRefPubMed Kobayashi I, Oka H, Naritaka H, Sato Y, Fujii K, Kameya T (2002) Expression of Pit-1 and growth hormone-releasing hormone receptor mRNA in human pituitary adenomas: difference among functioning, silent, and other nonfunctioning adenomas. Endocr Pathol 13:83–98CrossRefPubMed
26.
Zurück zum Zitat Asa SL, Bamberger AM, Cao B, Wong M, Parker KL, Ezzat S (1996) The transcription activator steroidogenic factor-1 is preferentially expressed in the human pituitary gonadotroph. J Clin Endocrinol Metab 81:2165–2170PubMed Asa SL, Bamberger AM, Cao B, Wong M, Parker KL, Ezzat S (1996) The transcription activator steroidogenic factor-1 is preferentially expressed in the human pituitary gonadotroph. J Clin Endocrinol Metab 81:2165–2170PubMed
27.
Zurück zum Zitat Daniely M, Aviram A, Adams EF, Buchfelder M, Barkai G, Fahlbusch R, Goldman B, Friedman E (1998) Comparative genomic hybridization analysis of nonfunctioning pituitary tumors. J Clin Endocrinol Metab 83:1801–1805PubMed Daniely M, Aviram A, Adams EF, Buchfelder M, Barkai G, Fahlbusch R, Goldman B, Friedman E (1998) Comparative genomic hybridization analysis of nonfunctioning pituitary tumors. J Clin Endocrinol Metab 83:1801–1805PubMed
28.
Zurück zum Zitat Metzger AK, Mohapatra G, Minn YA, Bollen AW, Lamborn K, Waldman FM, Wilson CB, Feuerstein BG (1999) Multiple genetic aberrations including evidence of chromosome 11q13 rearrangement detected in pituitary adenomas by comparative genomic hybridization. J Neurosurg 90:306–314CrossRefPubMed Metzger AK, Mohapatra G, Minn YA, Bollen AW, Lamborn K, Waldman FM, Wilson CB, Feuerstein BG (1999) Multiple genetic aberrations including evidence of chromosome 11q13 rearrangement detected in pituitary adenomas by comparative genomic hybridization. J Neurosurg 90:306–314CrossRefPubMed
29.
Zurück zum Zitat Harada K, Nishizaki T, Ozaki S, Kubota H, Harada K, Okamura T, Ito H, Sasaki K (1999) Cytogenetic alterations in pituitary adenomas detected by comparative genomic hybridization. Cancer Genet Cytogenet 112:38–41CrossRefPubMed Harada K, Nishizaki T, Ozaki S, Kubota H, Harada K, Okamura T, Ito H, Sasaki K (1999) Cytogenetic alterations in pituitary adenomas detected by comparative genomic hybridization. Cancer Genet Cytogenet 112:38–41CrossRefPubMed
30.
Zurück zum Zitat Trautmann K, Thakker RV, Ellison DW, Ibrahim A, Lees PD, Harding B, Fischer C, Popp S, Bartram CR, Jauch A (2001) Chromosomal aberrations in sporadic pituitary tumors. Int J Cancer 91:809–814CrossRefPubMed Trautmann K, Thakker RV, Ellison DW, Ibrahim A, Lees PD, Harding B, Fischer C, Popp S, Bartram CR, Jauch A (2001) Chromosomal aberrations in sporadic pituitary tumors. Int J Cancer 91:809–814CrossRefPubMed
31.
Zurück zum Zitat Szymas J, Schluens K, Liebert W, Petersen I (2002) Genomic instability in pituitary adenomas. Pituitary 5:211–219CrossRefPubMed Szymas J, Schluens K, Liebert W, Petersen I (2002) Genomic instability in pituitary adenomas. Pituitary 5:211–219CrossRefPubMed
32.
Zurück zum Zitat Michaelis KA, Knox AJ, Xu M, Kiseljak-Vassiliades K, Edwards MG, Geraci M, Kleinschmidt-DeMasters BK, Lillehei KO, Wierman ME (2011) Identification of growth arrest and DNA-damage-inducible gene beta (GADD45beta) as a novel tumor suppressor in pituitary gonadotrope tumors. Endocrinology 152:3603–3613CrossRefPubMedPubMedCentral Michaelis KA, Knox AJ, Xu M, Kiseljak-Vassiliades K, Edwards MG, Geraci M, Kleinschmidt-DeMasters BK, Lillehei KO, Wierman ME (2011) Identification of growth arrest and DNA-damage-inducible gene beta (GADD45beta) as a novel tumor suppressor in pituitary gonadotrope tumors. Endocrinology 152:3603–3613CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Elston MS, Gill AJ, Conaglen JV, Clarkson A, Shaw JM, Law AJ, Cook RJ, Little NS, Clifton-Bligh RJ, Robinson BG, McDonald KL (2008) Wnt pathway inhibitors are strongly down-regulated in pituitary tumors. Endocrinology 149:1235–1242CrossRefPubMed Elston MS, Gill AJ, Conaglen JV, Clarkson A, Shaw JM, Law AJ, Cook RJ, Little NS, Clifton-Bligh RJ, Robinson BG, McDonald KL (2008) Wnt pathway inhibitors are strongly down-regulated in pituitary tumors. Endocrinology 149:1235–1242CrossRefPubMed
34.
Zurück zum Zitat Evans CO, Young AN, Brown MR, Brat DJ, Parks JS, Neish AS, Oyesiku NM (2001) Novel patterns of gene expression in pituitary adenomas identified by complementary deoxyribonucleic acid microarrays and quantitative reverse transcription-polymerase chain reaction. J Clin Endocrinol Metab 86:3097–3107PubMed Evans CO, Young AN, Brown MR, Brat DJ, Parks JS, Neish AS, Oyesiku NM (2001) Novel patterns of gene expression in pituitary adenomas identified by complementary deoxyribonucleic acid microarrays and quantitative reverse transcription-polymerase chain reaction. J Clin Endocrinol Metab 86:3097–3107PubMed
35.
Zurück zum Zitat Morris DG, Musat M, Czirják S, Hanzély Z, Lillington DM, Korbonits M, Grossman AB (2005) Differential gene expression in pituitary adenomas by oligonucleotide array analysis. Eur J Endocrinol 153:143–151CrossRefPubMed Morris DG, Musat M, Czirják S, Hanzély Z, Lillington DM, Korbonits M, Grossman AB (2005) Differential gene expression in pituitary adenomas by oligonucleotide array analysis. Eur J Endocrinol 153:143–151CrossRefPubMed
36.
Zurück zum Zitat Moreno CS, Evans CO, Zhan X, Okor M, Desiderio DM, Oyesiku NM (2005) Novel molecular signaling and classification of human clinically nonfunctional pituitary adenomas identified by gene expression profiling and proteomic analyses. Cancer Res 65:10214–10222CrossRefPubMed Moreno CS, Evans CO, Zhan X, Okor M, Desiderio DM, Oyesiku NM (2005) Novel molecular signaling and classification of human clinically nonfunctional pituitary adenomas identified by gene expression profiling and proteomic analyses. Cancer Res 65:10214–10222CrossRefPubMed
38.
Zurück zum Zitat Boutros R, Lobjois V, Ducommun B (2007) CDC25 phosphatases in cancer cells: key players? Good targets? Nat Rev Cancer 7:495–507CrossRefPubMed Boutros R, Lobjois V, Ducommun B (2007) CDC25 phosphatases in cancer cells: key players? Good targets? Nat Rev Cancer 7:495–507CrossRefPubMed
39.
Zurück zum Zitat Huang JC, Babak T, Corson TW, Chua G, Khan S, Gallie BL, Hughes TR, Blencowe BJ, Frey BJ, Morris QD (2007) Using expression profiling data to identify human microRNA targets. Nat Methods. 4(12):1045–1049CrossRefPubMed Huang JC, Babak T, Corson TW, Chua G, Khan S, Gallie BL, Hughes TR, Blencowe BJ, Frey BJ, Morris QD (2007) Using expression profiling data to identify human microRNA targets. Nat Methods. 4(12):1045–1049CrossRefPubMed
40.
Zurück zum Zitat Shi L, Zhang J, Pan T, Zhou J, Gong W, Liu N, Fu Z, You Y (2010) MiR-125b is critical for the suppression of human U251 glioma stem cell proliferation. Brain Res 1312:120–126CrossRefPubMed Shi L, Zhang J, Pan T, Zhou J, Gong W, Liu N, Fu Z, You Y (2010) MiR-125b is critical for the suppression of human U251 glioma stem cell proliferation. Brain Res 1312:120–126CrossRefPubMed
41.
Zurück zum Zitat Lee SO, Masyuk T, Splinter P, Banales JM, Masyuk A, Stroope A, Larusso N (2008) MicroRNA15a modulates expression of the cell-cycle regulator Cdc25A and affects hepatic cystogenesis in a rat model of polycystic kidney disease. J Clin Invest 118:3714–3724CrossRefPubMedPubMedCentral Lee SO, Masyuk T, Splinter P, Banales JM, Masyuk A, Stroope A, Larusso N (2008) MicroRNA15a modulates expression of the cell-cycle regulator Cdc25A and affects hepatic cystogenesis in a rat model of polycystic kidney disease. J Clin Invest 118:3714–3724CrossRefPubMedPubMedCentral
42.
Zurück zum Zitat de Oliveira PE, Zhang L, Wang Z, Lazo JS (2009) Hypoxia-mediated regulation of Cdc25A phosphatase by p21 and miR-21. Cell Cycle 8:3157–3164CrossRef de Oliveira PE, Zhang L, Wang Z, Lazo JS (2009) Hypoxia-mediated regulation of Cdc25A phosphatase by p21 and miR-21. Cell Cycle 8:3157–3164CrossRef
43.
Zurück zum Zitat Sarkar S, Dey BK, Dutta A (2010) MiR-322/424 and -503 are induced during muscle differentiation and promote cell cycle quiescence and differentiation by down-regulation of Cdc25A. Mol Biol Cell 21:2138–2149CrossRefPubMedPubMedCentral Sarkar S, Dey BK, Dutta A (2010) MiR-322/424 and -503 are induced during muscle differentiation and promote cell cycle quiescence and differentiation by down-regulation of Cdc25A. Mol Biol Cell 21:2138–2149CrossRefPubMedPubMedCentral
44.
Zurück zum Zitat Yang X, Feng M, Jiang X, Wu Z, Li Z, Aau M, Yu Q (2009) miR-449a and miR-449b are direct transcriptional targets of E2F1 and negatively regulate pRb-E2F1 activity through a feedback loop by targeting CDK6 and CDC25A. Genes Dev 23:2388–2393CrossRefPubMedPubMedCentral Yang X, Feng M, Jiang X, Wu Z, Li Z, Aau M, Yu Q (2009) miR-449a and miR-449b are direct transcriptional targets of E2F1 and negatively regulate pRb-E2F1 activity through a feedback loop by targeting CDK6 and CDC25A. Genes Dev 23:2388–2393CrossRefPubMedPubMedCentral
45.
Zurück zum Zitat Galaktionov K, Beach D (1991) Specific activation of cdc25 tyrosine phosphatases by B-type cyclins: evidence for multiple roles of mitotic cyclins. Cell 67:1181–1194CrossRefPubMed Galaktionov K, Beach D (1991) Specific activation of cdc25 tyrosine phosphatases by B-type cyclins: evidence for multiple roles of mitotic cyclins. Cell 67:1181–1194CrossRefPubMed
46.
Zurück zum Zitat Sadhu K, Reed SI, Richardson H, Russell P (1990) Human homolog of fission yeast cdc25 mitotic inducer is predominantly expressed in G2. Proc Natl Acad Sci U S A 87:5139–5143CrossRefPubMedPubMedCentral Sadhu K, Reed SI, Richardson H, Russell P (1990) Human homolog of fission yeast cdc25 mitotic inducer is predominantly expressed in G2. Proc Natl Acad Sci U S A 87:5139–5143CrossRefPubMedPubMedCentral
47.
Zurück zum Zitat Fernandez-Vidal A, Mazars A, Manenti S (2008) CDC25A: a rebel within the CDC25 phosphatases family? Anticancer Agents Med Chem 8:825–831CrossRefPubMed Fernandez-Vidal A, Mazars A, Manenti S (2008) CDC25A: a rebel within the CDC25 phosphatases family? Anticancer Agents Med Chem 8:825–831CrossRefPubMed
48.
Zurück zum Zitat Mailand N, Podtelejnikov AV, Groth A, Mann M, Bartek J, Lukas J (2002) Regulation of G (2)/M events by Cdc25A through phosphorylation-dependent modulation of its stability. EMBO J 21:5911–5920CrossRefPubMedPubMedCentral Mailand N, Podtelejnikov AV, Groth A, Mann M, Bartek J, Lukas J (2002) Regulation of G (2)/M events by Cdc25A through phosphorylation-dependent modulation of its stability. EMBO J 21:5911–5920CrossRefPubMedPubMedCentral
49.
Zurück zum Zitat Li M, Yin S, Yuan J, Wei L, Ai JS, Hou Y, Chen DY, Sun QY (2008) Cdc25A promotes G2/M transition in oocytes. Cell Cycle 7:1301–1302CrossRefPubMed Li M, Yin S, Yuan J, Wei L, Ai JS, Hou Y, Chen DY, Sun QY (2008) Cdc25A promotes G2/M transition in oocytes. Cell Cycle 7:1301–1302CrossRefPubMed
50.
Zurück zum Zitat Melixetian M, Klein DK, Sørensen CS, Helin K (2009) NEK11 regulates CDC25A degradation and the IR-induced G2/M checkpoint. Nat Cell Biol 11:1247–1253CrossRefPubMed Melixetian M, Klein DK, Sørensen CS, Helin K (2009) NEK11 regulates CDC25A degradation and the IR-induced G2/M checkpoint. Nat Cell Biol 11:1247–1253CrossRefPubMed
51.
52.
Zurück zum Zitat Wierinckx A, Auger C, Devauchelle P, Reynaud A, Chevallier P, Jan M, Perrin G, Fèvre-Montange M, Rey C, Figarella-Branger D, Raverot G, Belin MF, Lachuer J, Trouillas J (2007) A diagnostic marker set for invasion, proliferation, and aggressiveness of prolactin pituitary tumors. Endocr Relat Cancer 14:887–900CrossRefPubMed Wierinckx A, Auger C, Devauchelle P, Reynaud A, Chevallier P, Jan M, Perrin G, Fèvre-Montange M, Rey C, Figarella-Branger D, Raverot G, Belin MF, Lachuer J, Trouillas J (2007) A diagnostic marker set for invasion, proliferation, and aggressiveness of prolactin pituitary tumors. Endocr Relat Cancer 14:887–900CrossRefPubMed
53.
Zurück zum Zitat Raverot G, Wierinckx A, Dantony E, Auger C, Chapas G, Villeneuve L, Brue T, Figarella-Branger D, Roy P, Jouanneau E, Jan M, Lachuer J, Trouillas J (2010) Prognostic factors in prolactin pituitary tumors: clinical, histological, and molecular data from a series of 94 patients with a long postoperative follow-up. J Clin Endocrinol Metab 95:1708–1716CrossRefPubMed Raverot G, Wierinckx A, Dantony E, Auger C, Chapas G, Villeneuve L, Brue T, Figarella-Branger D, Roy P, Jouanneau E, Jan M, Lachuer J, Trouillas J (2010) Prognostic factors in prolactin pituitary tumors: clinical, histological, and molecular data from a series of 94 patients with a long postoperative follow-up. J Clin Endocrinol Metab 95:1708–1716CrossRefPubMed
54.
Zurück zum Zitat Mraz M, Dolezalova D, Plevova K, Stano Kozubik K, Mayerova V, Cerna K, Musilova K, Tichy B, Pavlova S, Borsky M, Verner J, Doubek M, Brychtova Y, Trbusek M, Hampl A, Mayer J, Pospisilova S (2012) MicroRNA-650 expression is influenced by immunoglobulin gene rearrangement and affects the biology of chronic lymphocytic leukemia. Blood 119:2110–2113CrossRefPubMed Mraz M, Dolezalova D, Plevova K, Stano Kozubik K, Mayerova V, Cerna K, Musilova K, Tichy B, Pavlova S, Borsky M, Verner J, Doubek M, Brychtova Y, Trbusek M, Hampl A, Mayer J, Pospisilova S (2012) MicroRNA-650 expression is influenced by immunoglobulin gene rearrangement and affects the biology of chronic lymphocytic leukemia. Blood 119:2110–2113CrossRefPubMed
55.
Zurück zum Zitat Chien WW, Domenech C, Catallo R, Kaddar T, Magaud JP, Salles G, Ffrench M (2011) Cyclin-dependent kinase 1 expression is inhibited by p16(INK4a) at the post-transcriptional level through the microRNA pathway. Oncogene 30:1880–1891CrossRefPubMed Chien WW, Domenech C, Catallo R, Kaddar T, Magaud JP, Salles G, Ffrench M (2011) Cyclin-dependent kinase 1 expression is inhibited by p16(INK4a) at the post-transcriptional level through the microRNA pathway. Oncogene 30:1880–1891CrossRefPubMed
56.
Zurück zum Zitat Takeshita F, Patrawala L, Osaki M, Takahashi RU, Yamamoto Y, Kosaka N, Kawamata M, Kelnar K, Bader AG, Brown D, Ochiya T (2010) Systemic delivery of synthetic microRNA-16 inhibits the growth of metastatic prostate tumors via downregulation of multiple cell-cycle genes. Mol Ther 18:181–187CrossRefPubMed Takeshita F, Patrawala L, Osaki M, Takahashi RU, Yamamoto Y, Kosaka N, Kawamata M, Kelnar K, Bader AG, Brown D, Ochiya T (2010) Systemic delivery of synthetic microRNA-16 inhibits the growth of metastatic prostate tumors via downregulation of multiple cell-cycle genes. Mol Ther 18:181–187CrossRefPubMed
57.
Zurück zum Zitat Li XH, Wang EL, Zhou HM, Yoshimoto K, Qian ZR (2014) MicroRNAs in human pituitary adenomas. Int J Endocrinol 2014:435171PubMedPubMedCentral Li XH, Wang EL, Zhou HM, Yoshimoto K, Qian ZR (2014) MicroRNAs in human pituitary adenomas. Int J Endocrinol 2014:435171PubMedPubMedCentral
58.
Zurück zum Zitat Sivapragasam M, Rotondo F, Lloyd RV, Scheithauer BW, Cusimano M, Syro LV, Kovacs K (2011) MicroRNAs in the human pituitary. Endocr Pathol 22:134–143CrossRefPubMed Sivapragasam M, Rotondo F, Lloyd RV, Scheithauer BW, Cusimano M, Syro LV, Kovacs K (2011) MicroRNAs in the human pituitary. Endocr Pathol 22:134–143CrossRefPubMed
59.
Zurück zum Zitat Liang S, Chen L, Huang H, Zhi D (2013) The experimental study of miRNA in pituitary adenomas. Turk Neurosurg 23:721–727PubMed Liang S, Chen L, Huang H, Zhi D (2013) The experimental study of miRNA in pituitary adenomas. Turk Neurosurg 23:721–727PubMed
60.
Zurück zum Zitat Bottoni A, Zatelli MC, Ferracin M, Tagliati F, Piccin D, Vignali C, Calin GA, Negrini M, Croce CM, Degli Uberti EC (2007) Identification of differentially expressed microRNAs by microarray: a possible role for microRNA genes in pituitary adenomas. J Cell Physiol 210:370–377CrossRefPubMed Bottoni A, Zatelli MC, Ferracin M, Tagliati F, Piccin D, Vignali C, Calin GA, Negrini M, Croce CM, Degli Uberti EC (2007) Identification of differentially expressed microRNAs by microarray: a possible role for microRNA genes in pituitary adenomas. J Cell Physiol 210:370–377CrossRefPubMed
61.
Zurück zum Zitat D'Angelo D, Palmieri D, Mussnich P, Roche M, Wierinckx A, Raverot G, Fedele M, Croce CM, Trouillas J, Fusco A (2012) Altered microRNA expression profile in human pituitary GH adenomas: down-regulation of miRNA targeting HMGA1, HMGA2, and E2F1. J Clin Endocrinol Metab 97:E1128–E1138CrossRefPubMed D'Angelo D, Palmieri D, Mussnich P, Roche M, Wierinckx A, Raverot G, Fedele M, Croce CM, Trouillas J, Fusco A (2012) Altered microRNA expression profile in human pituitary GH adenomas: down-regulation of miRNA targeting HMGA1, HMGA2, and E2F1. J Clin Endocrinol Metab 97:E1128–E1138CrossRefPubMed
Metadaten
Titel
Systematic Investigation of Expression of G2/M Transition Genes Reveals CDC25 Alteration in Nonfunctioning Pituitary Adenomas
verfasst von
Henriett Butz
Kinga Németh
Dóra Czenke
István Likó
Sándor Czirják
Vladimir Zivkovic
Kornélia Baghy
Márta Korbonits
Ilona Kovalszky
Péter Igaz
Károly Rácz
Attila Patócs
Publikationsdatum
21.12.2016
Verlag
Springer Netherlands
Erschienen in
Pathology & Oncology Research / Ausgabe 3/2017
Print ISSN: 1219-4956
Elektronische ISSN: 1532-2807
DOI
https://doi.org/10.1007/s12253-016-0163-5

Weitere Artikel der Ausgabe 3/2017

Pathology & Oncology Research 3/2017 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.