Skip to main content

01.06.2016

Non-coding RNAs as Emerging Regulators of Neural Injury Responses and Regeneration

verfasst von: Songlin Zhou, Fei Ding, Xiaosong Gu

Erschienen in: Neuroscience Bulletin | Ausgabe 3/2016

Einloggen, um Zugang zu erhalten

Abstract

Non-coding RNAs (ncRNAs) are a large cluster of RNAs that do not encode proteins, but have multiple functions in diverse cellular processes. Mounting evidence indicates the involvement of ncRNAs in the physiology and pathophysiology of the central and peripheral nervous systems. It has been shown that numerous ncRNAs, especially microRNAs and long non-coding RNAs, are differentially expressed after insults such as acquired brain injury, spinal cord injury, and peripheral nerve injury. These ncRNAs affect neuronal survival, neurite regrowth, and glial phenotype primarily by targeting specific mRNAs, resulting in translation repression or degradation of the mRNAs. An increasing number of studies have investigated the regulatory roles of microRNAs and long non-coding RNAs in neural injury and regeneration, and thus a new research field is emerging. In this review, we highlight current progress in the field in an attempt to provide further insight into post-transcriptional changes occurring after neural injury, and to facilitate the potential use of ncRNAs for improving neural regeneration. We also suggest potential directions for future studies.
Literatur
2.
Zurück zum Zitat Shen D, Wang X, Gu X. Scar-modulating treatments for central nervous system injury. Neurosci Bull 2014, 30: 967–984.PubMedCrossRef Shen D, Wang X, Gu X. Scar-modulating treatments for central nervous system injury. Neurosci Bull 2014, 30: 967–984.PubMedCrossRef
3.
Zurück zum Zitat Battiston B, Papalia I, Tos P, Geuna S. Chapter 1: Peripheral nerve repair and regeneration research: a historical note. Int Rev Neurobiol 2009, 87: 1–7. Battiston B, Papalia I, Tos P, Geuna S. Chapter 1: Peripheral nerve repair and regeneration research: a historical note. Int Rev Neurobiol 2009, 87: 1–7.
5.
Zurück zum Zitat Park KK, Liu K, Hu Y, Smith PD, Wang C, Cai B, et al. Promoting axon regeneration in the adult CNS by modulation of the PTEN/mTOR pathway. Science 2008, 322: 963–966.PubMedPubMedCentralCrossRef Park KK, Liu K, Hu Y, Smith PD, Wang C, Cai B, et al. Promoting axon regeneration in the adult CNS by modulation of the PTEN/mTOR pathway. Science 2008, 322: 963–966.PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Belin S, Nawabi H, Wang C, Tang S, Latremoliere A, Warren P, et al. Injury-induced decline of intrinsic regenerative ability revealed by quantitative proteomics. Neuron 2015, 86: 1000–1014.PubMedPubMedCentralCrossRef Belin S, Nawabi H, Wang C, Tang S, Latremoliere A, Warren P, et al. Injury-induced decline of intrinsic regenerative ability revealed by quantitative proteomics. Neuron 2015, 86: 1000–1014.PubMedPubMedCentralCrossRef
7.
Zurück zum Zitat Liu Q, Paroo Z. Biochemical principles of small RNA pathways. Annu Rev Biochem 2010, 79: 295–319.PubMedCrossRef Liu Q, Paroo Z. Biochemical principles of small RNA pathways. Annu Rev Biochem 2010, 79: 295–319.PubMedCrossRef
8.
Zurück zum Zitat Taft RJ, Pang KC, Mercer TR, Dinger M, Mattick JS. Non-coding RNAs: regulators of disease. J Pathol 2010, 220: 126–139.PubMedCrossRef Taft RJ, Pang KC, Mercer TR, Dinger M, Mattick JS. Non-coding RNAs: regulators of disease. J Pathol 2010, 220: 126–139.PubMedCrossRef
9.
Zurück zum Zitat Kapranov P, Cheng J, Dike S, Nix DA, Duttagupta R, Willingham AT, et al. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 2007, 316: 1484–1488.PubMedCrossRef Kapranov P, Cheng J, Dike S, Nix DA, Duttagupta R, Willingham AT, et al. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 2007, 316: 1484–1488.PubMedCrossRef
10.
Zurück zum Zitat Kaur P, Liu F, Tan JR, Lim KY, Sepramaniam S, Karolina DS, et al. Non-Coding RNAs as Potential Neuroprotectants against Ischemic Brain Injury. Brain Sci 2013, 3: 360–395.PubMedPubMedCentralCrossRef Kaur P, Liu F, Tan JR, Lim KY, Sepramaniam S, Karolina DS, et al. Non-Coding RNAs as Potential Neuroprotectants against Ischemic Brain Injury. Brain Sci 2013, 3: 360–395.PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Ghildiyal M, Xu J, Seitz H, Weng Z, Zamore PD. Sorting of Drosophila small silencing RNAs partitions microRNA* strands into the RNA interference pathway. RNA 2010, 16: 43–56.PubMedPubMedCentralCrossRef Ghildiyal M, Xu J, Seitz H, Weng Z, Zamore PD. Sorting of Drosophila small silencing RNAs partitions microRNA* strands into the RNA interference pathway. RNA 2010, 16: 43–56.PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Sun E, Shi Y. MicroRNAs: Small molecules with big roles in neurodevelopment and diseases. Exp Neurol 2015, 268: 46–53.PubMedCrossRef Sun E, Shi Y. MicroRNAs: Small molecules with big roles in neurodevelopment and diseases. Exp Neurol 2015, 268: 46–53.PubMedCrossRef
13.
Zurück zum Zitat Jovicic A, Roshan R, Moisoi N, Pradervand S, Moser R, Pillai B, et al. Comprehensive expression analyses of neural cell-type-specific miRNAs identify new determinants of the specification and maintenance of neuronal phenotypes. J Neurosci 2013, 33: 5127–5137.PubMedCrossRef Jovicic A, Roshan R, Moisoi N, Pradervand S, Moser R, Pillai B, et al. Comprehensive expression analyses of neural cell-type-specific miRNAs identify new determinants of the specification and maintenance of neuronal phenotypes. J Neurosci 2013, 33: 5127–5137.PubMedCrossRef
14.
Zurück zum Zitat Magill ST, Cambronne XA, Luikart BW, Lioy DT, Leighton BH, Westbrook GL, et al. microRNA-132 regulates dendritic growth and arborization of newborn neurons in the adult hippocampus. Proc Natl Acad Sci U S A 2010, 107: 20382–20387.PubMedPubMedCentralCrossRef Magill ST, Cambronne XA, Luikart BW, Lioy DT, Leighton BH, Westbrook GL, et al. microRNA-132 regulates dendritic growth and arborization of newborn neurons in the adult hippocampus. Proc Natl Acad Sci U S A 2010, 107: 20382–20387.PubMedPubMedCentralCrossRef
15.
Zurück zum Zitat Aksoy-Aksel A, Zampa F, Schratt G. MicroRNAs and synaptic plasticity—a mutual relationship. Philos Trans R Soc Lond B Biol Sci 2014, 369(1652). doi:10.1098/rstb.2013.0515. Aksoy-Aksel A, Zampa F, Schratt G. MicroRNAs and synaptic plasticity—a mutual relationship. Philos Trans R Soc Lond B Biol Sci 2014, 369(1652). doi:10.​1098/​rstb.​2013.​0515.
16.
Zurück zum Zitat Olde Loohuis NF, Kos A, Martens GJ, Van Bokhoven H, Nadif Kasri N, Aschrafi A. MicroRNA networks direct neuronal development and plasticity. Cell Mol Life Sci 2012, 69: 89–102.PubMedPubMedCentralCrossRef Olde Loohuis NF, Kos A, Martens GJ, Van Bokhoven H, Nadif Kasri N, Aschrafi A. MicroRNA networks direct neuronal development and plasticity. Cell Mol Life Sci 2012, 69: 89–102.PubMedPubMedCentralCrossRef
17.
Zurück zum Zitat Lee HJ. Exceptional stories of microRNAs. Exp Biol Med (Maywood) 2013, 238: 339–343.CrossRef Lee HJ. Exceptional stories of microRNAs. Exp Biol Med (Maywood) 2013, 238: 339–343.CrossRef
18.
Zurück zum Zitat Arthanari Y, Heintzen C, Griffiths-Jones S, Crosthwaite SK. Natural antisense transcripts and long non-coding RNA in Neurospora crassa. PLoS One 2014, 9: e91353.PubMedPubMedCentralCrossRef Arthanari Y, Heintzen C, Griffiths-Jones S, Crosthwaite SK. Natural antisense transcripts and long non-coding RNA in Neurospora crassa. PLoS One 2014, 9: e91353.PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Moran VA, Perera RJ, Khalil AM. Emerging functional and mechanistic paradigms of mammalian long non-coding RNAs. Nucleic Acids Res 2012, 40: 6391–6400.PubMedPubMedCentralCrossRef Moran VA, Perera RJ, Khalil AM. Emerging functional and mechanistic paradigms of mammalian long non-coding RNAs. Nucleic Acids Res 2012, 40: 6391–6400.PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat Kapsimali M, Kloosterman WP, de Bruijn E, Rosa F, Plasterk RH, Wilson SW. MicroRNAs show a wide diversity of expression profiles in the developing and mature central nervous system. Genome Biol 2007, 8: R173.PubMedPubMedCentralCrossRef Kapsimali M, Kloosterman WP, de Bruijn E, Rosa F, Plasterk RH, Wilson SW. MicroRNAs show a wide diversity of expression profiles in the developing and mature central nervous system. Genome Biol 2007, 8: R173.PubMedPubMedCentralCrossRef
22.
23.
Zurück zum Zitat Beveridge NJ, Cairns MJ. MicroRNA dysregulation in schizophrenia. Neurobiol Dis 2012, 46: 263–271.PubMedCrossRef Beveridge NJ, Cairns MJ. MicroRNA dysregulation in schizophrenia. Neurobiol Dis 2012, 46: 263–271.PubMedCrossRef
24.
Zurück zum Zitat Lee ST, Chu K, Im WS, Yoon HJ, Im JY, Park JE, et al. Altered microRNA regulation in Huntington’s disease models. Exp Neurol 2011, 227: 172–179.PubMedCrossRef Lee ST, Chu K, Im WS, Yoon HJ, Im JY, Park JE, et al. Altered microRNA regulation in Huntington’s disease models. Exp Neurol 2011, 227: 172–179.PubMedCrossRef
25.
Zurück zum Zitat Merico D, Costain G, Butcher NJ, Warnica W, Ogura L, Alfred SE, et al. MicroRNA Dysregulation, Gene Networks, and Risk for Schizophrenia in 22q11.2 Deletion Syndrome. Front Neurol 2014, 5: 238. Merico D, Costain G, Butcher NJ, Warnica W, Ogura L, Alfred SE, et al. MicroRNA Dysregulation, Gene Networks, and Risk for Schizophrenia in 22q11.2 Deletion Syndrome. Front Neurol 2014, 5: 238.
26.
Zurück zum Zitat Xu B, Hsu PK, Karayiorgou M, Gogos JA. MicroRNA dysregulation in neuropsychiatric disorders and cognitive dysfunction. Neurobiol Dis 2012, 46: 291–301.PubMedPubMedCentralCrossRef Xu B, Hsu PK, Karayiorgou M, Gogos JA. MicroRNA dysregulation in neuropsychiatric disorders and cognitive dysfunction. Neurobiol Dis 2012, 46: 291–301.PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat O’Reilly K, Pryor J. Young people with brain injury in nursing homes: not the best option! Aust Health Rev 2002, 25: 46–51.PubMedCrossRef O’Reilly K, Pryor J. Young people with brain injury in nursing homes: not the best option! Aust Health Rev 2002, 25: 46–51.PubMedCrossRef
28.
Zurück zum Zitat Chen A, Bushmeneva K, Zagorski B, Colantonio A, Parsons D, Wodchis WP. Direct cost associated with acquired brain injury in Ontario. BMC Neurol 2012, 12: 76.PubMedPubMedCentralCrossRef Chen A, Bushmeneva K, Zagorski B, Colantonio A, Parsons D, Wodchis WP. Direct cost associated with acquired brain injury in Ontario. BMC Neurol 2012, 12: 76.PubMedPubMedCentralCrossRef
29.
Zurück zum Zitat Schratt GM, Tuebing F, Nigh EA, Kane CG, Sabatini ME, Kiebler M, et al. A brain-specific microRNA regulates dendritic spine development. Nature 2006, 439: 283–289.PubMedCrossRef Schratt GM, Tuebing F, Nigh EA, Kane CG, Sabatini ME, Kiebler M, et al. A brain-specific microRNA regulates dendritic spine development. Nature 2006, 439: 283–289.PubMedCrossRef
30.
Zurück zum Zitat Sempere LF, Freemantle S, Pitha-Rowe I, Moss E, Dmitrovsky E, Ambros V. Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol 2004, 5: R13.PubMedPubMedCentralCrossRef Sempere LF, Freemantle S, Pitha-Rowe I, Moss E, Dmitrovsky E, Ambros V. Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol 2004, 5: R13.PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat He X, Zhang Q, Liu Y, Pan X. Cloning and identification of novel microRNAs from rat hippocampus. Acta Biochim Biophys Sin 2007, 39: 708–714.PubMedCrossRef He X, Zhang Q, Liu Y, Pan X. Cloning and identification of novel microRNAs from rat hippocampus. Acta Biochim Biophys Sin 2007, 39: 708–714.PubMedCrossRef
32.
Zurück zum Zitat Brosnan CA, Voinnet O. The long and the short of noncoding RNAs. Curr Opin Cell Biol 2009, 21: 416–425.PubMedCrossRef Brosnan CA, Voinnet O. The long and the short of noncoding RNAs. Curr Opin Cell Biol 2009, 21: 416–425.PubMedCrossRef
33.
Zurück zum Zitat Liu C, Zhao L, Han S, Li J, Li D. Identification and Functional Analysis of MicroRNAs in Mice following Focal Cerebral Ischemia Injury. Int J Mol Sci 2015, 16: 24302–24318.PubMedPubMedCentralCrossRef Liu C, Zhao L, Han S, Li J, Li D. Identification and Functional Analysis of MicroRNAs in Mice following Focal Cerebral Ischemia Injury. Int J Mol Sci 2015, 16: 24302–24318.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Chen F, Du Y, Esposito E, Liu Y, Guo S, Wang X, et al. Effects of Focal Cerebral Ischemia on Exosomal Versus Serum miR126. Transl Stroke Res 2015, 6: 478–484.PubMedCrossRef Chen F, Du Y, Esposito E, Liu Y, Guo S, Wang X, et al. Effects of Focal Cerebral Ischemia on Exosomal Versus Serum miR126. Transl Stroke Res 2015, 6: 478–484.PubMedCrossRef
35.
Zurück zum Zitat Dharap A, Bowen K, Place R, Li LC, Vemuganti R. Transient focal ischemia induces extensive temporal changes in rat cerebral microRNAome. J Cereb Blood Flow Metab 2009, 29: 675–687.PubMedPubMedCentralCrossRef Dharap A, Bowen K, Place R, Li LC, Vemuganti R. Transient focal ischemia induces extensive temporal changes in rat cerebral microRNAome. J Cereb Blood Flow Metab 2009, 29: 675–687.PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Jeyaseelan K, Lim KY, Armugam A. MicroRNA expression in the blood and brain of rats subjected to transient focal ischemia by middle cerebral artery occlusion. Stroke 2008, 39: 959–966.PubMedCrossRef Jeyaseelan K, Lim KY, Armugam A. MicroRNA expression in the blood and brain of rats subjected to transient focal ischemia by middle cerebral artery occlusion. Stroke 2008, 39: 959–966.PubMedCrossRef
37.
Zurück zum Zitat Harraz MM, Eacker SM, Wang X, Dawson TM, Dawson VL. MicroRNA-223 is neuroprotective by targeting glutamate receptors. Proc Natl Acad Sci U S A 2012, 109: 18962–18967.PubMedPubMedCentralCrossRef Harraz MM, Eacker SM, Wang X, Dawson TM, Dawson VL. MicroRNA-223 is neuroprotective by targeting glutamate receptors. Proc Natl Acad Sci U S A 2012, 109: 18962–18967.PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Sepramaniam S, Armugam A, Lim KY, Karolina DS, Swaminathan P, Tan JR, et al. MicroRNA 320a functions as a novel endogenous modulator of aquaporins 1 and 4 as well as a potential therapeutic target in cerebral ischemia. J Biol Chem 2010, 285: 29223–29230.PubMedPubMedCentralCrossRef Sepramaniam S, Armugam A, Lim KY, Karolina DS, Swaminathan P, Tan JR, et al. MicroRNA 320a functions as a novel endogenous modulator of aquaporins 1 and 4 as well as a potential therapeutic target in cerebral ischemia. J Biol Chem 2010, 285: 29223–29230.PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Ni J, Wang X, Chen S, Liu H, Wang Y, Xu X, et al. MicroRNA let-7c-5p protects against cerebral ischemia injury via mechanisms involving the inhibition of microglia activation. Brain Behav Immun 2015, 49: 75–85.PubMedCrossRef Ni J, Wang X, Chen S, Liu H, Wang Y, Xu X, et al. MicroRNA let-7c-5p protects against cerebral ischemia injury via mechanisms involving the inhibition of microglia activation. Brain Behav Immun 2015, 49: 75–85.PubMedCrossRef
40.
Zurück zum Zitat Shi H, Sun BL, Zhang J, Lu S, Zhang P, Wang H, et al. miR-15b suppression of Bcl-2 contributes to cerebral ischemic injury and is reversed by sevoflurane preconditioning. CNS Neurol Disord Drug Targets 2013, 12: 381–391.PubMedPubMedCentralCrossRef Shi H, Sun BL, Zhang J, Lu S, Zhang P, Wang H, et al. miR-15b suppression of Bcl-2 contributes to cerebral ischemic injury and is reversed by sevoflurane preconditioning. CNS Neurol Disord Drug Targets 2013, 12: 381–391.PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Shi G, Liu Y, Liu T, Yan W, Liu X, Wang Y, et al. Up-regulated miR-29b promotes neuronal cell death by inhibiting Bcl2L2 after ischemic brain injury. Exp Brain Res 2012, 216: 225–230.PubMedCrossRef Shi G, Liu Y, Liu T, Yan W, Liu X, Wang Y, et al. Up-regulated miR-29b promotes neuronal cell death by inhibiting Bcl2L2 after ischemic brain injury. Exp Brain Res 2012, 216: 225–230.PubMedCrossRef
42.
Zurück zum Zitat Moon JM, Xu L, Giffard RG. Inhibition of microRNA-181 reduces forebrain ischemia-induced neuronal loss. J Cereb Blood Flow Metab 2013, 33: 1976–1982.PubMedPubMedCentralCrossRef Moon JM, Xu L, Giffard RG. Inhibition of microRNA-181 reduces forebrain ischemia-induced neuronal loss. J Cereb Blood Flow Metab 2013, 33: 1976–1982.PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Yin KJ, Deng Z, Huang H, Hamblin M, Xie C, Zhang J, et al. miR-497 regulates neuronal death in mouse brain after transient focal cerebral ischemia. Neurobiol Dis 2010, 38: 17–26.PubMedPubMedCentralCrossRef Yin KJ, Deng Z, Huang H, Hamblin M, Xie C, Zhang J, et al. miR-497 regulates neuronal death in mouse brain after transient focal cerebral ischemia. Neurobiol Dis 2010, 38: 17–26.PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Hutchison ER, Kawamoto EM, Taub DD, Lal A, Abdelmohsen K, Zhang Y, et al. Evidence for miR-181 involvement in neuroinflammatory responses of astrocytes. Glia 2013, 61: 1018–1028.PubMedPubMedCentralCrossRef Hutchison ER, Kawamoto EM, Taub DD, Lal A, Abdelmohsen K, Zhang Y, et al. Evidence for miR-181 involvement in neuroinflammatory responses of astrocytes. Glia 2013, 61: 1018–1028.PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Irmady K, Jackman KA, Padow VA, Shahani N, Martin LA, Cerchietti L, et al. Mir-592 regulates the induction and cell death-promoting activity of p75NTR in neuronal ischemic injury. J Neurosci 2014, 34: 3419–3428.PubMedPubMedCentralCrossRef Irmady K, Jackman KA, Padow VA, Shahani N, Martin LA, Cerchietti L, et al. Mir-592 regulates the induction and cell death-promoting activity of p75NTR in neuronal ischemic injury. J Neurosci 2014, 34: 3419–3428.PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat Chi W, Meng F, Li Y, Wang Q, Wang G, Han S, et al. Down-regulation of miRNA-134 protects neural cells against ischemic injury in N2A cells and mouse brain with ischemic stroke by targeting HSPA12B. Neuroscience 2014, 277: 111–122.PubMedCrossRef Chi W, Meng F, Li Y, Wang Q, Wang G, Han S, et al. Down-regulation of miRNA-134 protects neural cells against ischemic injury in N2A cells and mouse brain with ischemic stroke by targeting HSPA12B. Neuroscience 2014, 277: 111–122.PubMedCrossRef
47.
Zurück zum Zitat Stary CM, Xu L, Sun X, Ouyang YB, White RE, Leong J, et al. MicroRNA-200c contributes to injury from transient focal cerebral ischemia by targeting Reelin. Stroke 2015, 46: 551–556.PubMedPubMedCentralCrossRef Stary CM, Xu L, Sun X, Ouyang YB, White RE, Leong J, et al. MicroRNA-200c contributes to injury from transient focal cerebral ischemia by targeting Reelin. Stroke 2015, 46: 551–556.PubMedPubMedCentralCrossRef
48.
Zurück zum Zitat Wang P, Zhang N, Liang J, Li J, Han S, Li J. Micro-RNA-30a regulates ischemia-induced cell death by targeting heat shock protein HSPA5 in primary cultured cortical neurons and mouse brain after stroke. J Neurosci Res 2015, 93: 1756–1768.PubMedCrossRef Wang P, Zhang N, Liang J, Li J, Han S, Li J. Micro-RNA-30a regulates ischemia-induced cell death by targeting heat shock protein HSPA5 in primary cultured cortical neurons and mouse brain after stroke. J Neurosci Res 2015, 93: 1756–1768.PubMedCrossRef
49.
Zurück zum Zitat Wang P, Liang J, Li Y, Li J, Yang X, Zhang X, et al. Down-regulation of miRNA-30a alleviates cerebral ischemic injury through enhancing beclin 1-mediated autophagy. Neurochem Res 2014, 39: 1279–1291.PubMedCrossRef Wang P, Liang J, Li Y, Li J, Yang X, Zhang X, et al. Down-regulation of miRNA-30a alleviates cerebral ischemic injury through enhancing beclin 1-mediated autophagy. Neurochem Res 2014, 39: 1279–1291.PubMedCrossRef
50.
Zurück zum Zitat Liu P, Zhao H, Wang R, Wang P, Tao Z, Gao L, et al. MicroRNA-424 protects against focal cerebral ischemia and reperfusion injury in mice by suppressing oxidative stress. Stroke 2015, 46: 513–519.PubMedCrossRef Liu P, Zhao H, Wang R, Wang P, Tao Z, Gao L, et al. MicroRNA-424 protects against focal cerebral ischemia and reperfusion injury in mice by suppressing oxidative stress. Stroke 2015, 46: 513–519.PubMedCrossRef
51.
Zurück zum Zitat Zhao H, Tao Z, Wang R, Liu P, Yan F, Li J, et al. MicroRNA-23a-3p attenuates oxidative stress injury in a mouse model of focal cerebral ischemia-reperfusion. Brain Res 2014, 1592: 65–72.PubMedCrossRef Zhao H, Tao Z, Wang R, Liu P, Yan F, Li J, et al. MicroRNA-23a-3p attenuates oxidative stress injury in a mouse model of focal cerebral ischemia-reperfusion. Brain Res 2014, 1592: 65–72.PubMedCrossRef
52.
Zurück zum Zitat Chi W, Meng F, Li Y, Li P, Wang G, Cheng H, et al. Impact of microRNA-134 on neural cell survival against ischemic injury in primary cultured neuronal cells and mouse brain with ischemic stroke by targeting HSPA12B. Brain Res 2014, 1592: 22–33.PubMedCrossRef Chi W, Meng F, Li Y, Li P, Wang G, Cheng H, et al. Impact of microRNA-134 on neural cell survival against ischemic injury in primary cultured neuronal cells and mouse brain with ischemic stroke by targeting HSPA12B. Brain Res 2014, 1592: 22–33.PubMedCrossRef
53.
Zurück zum Zitat Yu H, Wu M, Zhao P, Huang Y, Wang W, Yin W. Neuroprotective effects of viral overexpression of microRNA-22 in rat and cell models of cerebral ischemia-reperfusion injury. J Cell Biochem 2015, 116: 233–241.PubMedCrossRef Yu H, Wu M, Zhao P, Huang Y, Wang W, Yin W. Neuroprotective effects of viral overexpression of microRNA-22 in rat and cell models of cerebral ischemia-reperfusion injury. J Cell Biochem 2015, 116: 233–241.PubMedCrossRef
54.
Zurück zum Zitat Chen Q, Xu J, Li L, Li H, Mao S, Zhang F, et al. MicroRNA-23a/b and microRNA-27a/b suppress Apaf-1 protein and alleviate hypoxia-induced neuronal apoptosis. Cell Death Dis 2014, 5: e1132.PubMedPubMedCentralCrossRef Chen Q, Xu J, Li L, Li H, Mao S, Zhang F, et al. MicroRNA-23a/b and microRNA-27a/b suppress Apaf-1 protein and alleviate hypoxia-induced neuronal apoptosis. Cell Death Dis 2014, 5: e1132.PubMedPubMedCentralCrossRef
55.
Zurück zum Zitat Zhu F, Liu JL, Li JP, Xiao F, Zhang ZX, Zhang L. MicroRNA-124 (miR-124) regulates Ku70 expression and is correlated with neuronal death induced by ischemia/reperfusion. J Mol Neurosci 2014, 52: 148–155.PubMedCrossRef Zhu F, Liu JL, Li JP, Xiao F, Zhang ZX, Zhang L. MicroRNA-124 (miR-124) regulates Ku70 expression and is correlated with neuronal death induced by ischemia/reperfusion. J Mol Neurosci 2014, 52: 148–155.PubMedCrossRef
56.
Zurück zum Zitat Meissner L, Gallozzi M, Balbi M, Schwarzmaier SM, Tiedt S, Terpolilli NA, et al. Temporal profile of microRNA expression in contused cortex following traumatic brain injury in mice. J Neurotrauma 2015. doi:10.1089/neu.2015.4077. Meissner L, Gallozzi M, Balbi M, Schwarzmaier SM, Tiedt S, Terpolilli NA, et al. Temporal profile of microRNA expression in contused cortex following traumatic brain injury in mice. J Neurotrauma 2015. doi:10.​1089/​neu.​2015.​4077.
57.
Zurück zum Zitat Miao W, Bao TH, Han JH, Yin M, Yan Y, Wang WW, et al. Voluntary exercise prior to traumatic brain injury alters miRNA expression in the injured mouse cerebral cortex. Braz J Med Biol Res 2015, 48: 433–439.PubMedPubMedCentralCrossRef Miao W, Bao TH, Han JH, Yin M, Yan Y, Wang WW, et al. Voluntary exercise prior to traumatic brain injury alters miRNA expression in the injured mouse cerebral cortex. Braz J Med Biol Res 2015, 48: 433–439.PubMedPubMedCentralCrossRef
58.
Zurück zum Zitat Truettner JS, Alonso OF, Bramlett HM, Dietrich WD. Therapeutic hypothermia alters microRNA responses to traumatic brain injury in rats. J Cereb Blood Flow Metab 2011, 31: 1897–1907.PubMedPubMedCentralCrossRef Truettner JS, Alonso OF, Bramlett HM, Dietrich WD. Therapeutic hypothermia alters microRNA responses to traumatic brain injury in rats. J Cereb Blood Flow Metab 2011, 31: 1897–1907.PubMedPubMedCentralCrossRef
59.
Zurück zum Zitat Wang WX, Visavadiya NP, Pandya JD, Nelson PT, Sullivan PG, Springer JE. Mitochondria-associated microRNAs in rat hippocampus following traumatic brain injury. Exp Neurol 2015, 265: 84–93.PubMedPubMedCentralCrossRef Wang WX, Visavadiya NP, Pandya JD, Nelson PT, Sullivan PG, Springer JE. Mitochondria-associated microRNAs in rat hippocampus following traumatic brain injury. Exp Neurol 2015, 265: 84–93.PubMedPubMedCentralCrossRef
60.
Zurück zum Zitat Sabirzhanov B, Stoica BA, Zhao Z, Loane DJ, Wu J, Dorsey SG, et al. miR-711 up-regulation induces neuronal cell death after traumatic brain injury. Cell Death Differ 2016, 23: 654–668. Sabirzhanov B, Stoica BA, Zhao Z, Loane DJ, Wu J, Dorsey SG, et al. miR-711 up-regulation induces neuronal cell death after traumatic brain injury. Cell Death Differ 2016, 23: 654–668.
61.
Zurück zum Zitat Ge XT, Lei P, Wang HC, Zhang AL, Han ZL, Chen X, et al. miR-21 improves the neurological outcome after traumatic brain injury in rats. Sci Rep 2014, 4: 6718.PubMedPubMedCentralCrossRef Ge XT, Lei P, Wang HC, Zhang AL, Han ZL, Chen X, et al. miR-21 improves the neurological outcome after traumatic brain injury in rats. Sci Rep 2014, 4: 6718.PubMedPubMedCentralCrossRef
62.
Zurück zum Zitat Han Z, Chen F, Ge X, Tan J, Lei P, Zhang J. miR-21 alleviated apoptosis of cortical neurons through promoting PTEN-Akt signaling pathway in vitro after experimental traumatic brain injury. Brain Res 2014, 1582: 12–20.PubMedCrossRef Han Z, Chen F, Ge X, Tan J, Lei P, Zhang J. miR-21 alleviated apoptosis of cortical neurons through promoting PTEN-Akt signaling pathway in vitro after experimental traumatic brain injury. Brain Res 2014, 1582: 12–20.PubMedCrossRef
63.
Zurück zum Zitat Sabirzhanov B, Zhao Z, Stoica BA, Loane DJ, Wu J, Borroto C, et al. Down-regulation of miR-23a and miR-27a following experimental traumatic brain injury induces neuronal cell death through activation of proapoptotic Bcl-2 proteins. J Neurosci 2014, 34: 10055–10071.PubMedPubMedCentralCrossRef Sabirzhanov B, Zhao Z, Stoica BA, Loane DJ, Wu J, Borroto C, et al. Down-regulation of miR-23a and miR-27a following experimental traumatic brain injury induces neuronal cell death through activation of proapoptotic Bcl-2 proteins. J Neurosci 2014, 34: 10055–10071.PubMedPubMedCentralCrossRef
64.
Zurück zum Zitat Han F, Huo Y, Huang CJ, Chen CL, Ye J. MicroRNA-30b promotes axon outgrowth of retinal ganglion cells by inhibiting Semaphorin3A expression. Brain Res 2015, 1611: 65–73.PubMedCrossRef Han F, Huo Y, Huang CJ, Chen CL, Ye J. MicroRNA-30b promotes axon outgrowth of retinal ganglion cells by inhibiting Semaphorin3A expression. Brain Res 2015, 1611: 65–73.PubMedCrossRef
65.
Zurück zum Zitat Fuller-Carter PI, Carter KW, Anderson D, Harvey AR, Giles KM, Rodger J. Integrated analyses of zebrafish miRNA and mRNA expression profiles identify miR-29b and miR-223 as potential regulators of optic nerve regeneration. BMC Genomics 2015, 16: 591.PubMedPubMedCentralCrossRef Fuller-Carter PI, Carter KW, Anderson D, Harvey AR, Giles KM, Rodger J. Integrated analyses of zebrafish miRNA and mRNA expression profiles identify miR-29b and miR-223 as potential regulators of optic nerve regeneration. BMC Genomics 2015, 16: 591.PubMedPubMedCentralCrossRef
66.
Zurück zum Zitat Yilmaz T, Kaptanoglu E. Current and future medical therapeutic strategies for the functional repair of spinal cord injury. World J Orthop 2015, 6: 42–55.PubMedPubMedCentralCrossRef Yilmaz T, Kaptanoglu E. Current and future medical therapeutic strategies for the functional repair of spinal cord injury. World J Orthop 2015, 6: 42–55.PubMedPubMedCentralCrossRef
68.
Zurück zum Zitat Nakanishi K, Nakasa T, Tanaka N, Ishikawa M, Yamada K, Yamasaki K, et al. Responses of microRNAs 124a and 223 following spinal cord injury in mice. Spinal Cord 2010, 48: 192–196.PubMedCrossRef Nakanishi K, Nakasa T, Tanaka N, Ishikawa M, Yamada K, Yamasaki K, et al. Responses of microRNAs 124a and 223 following spinal cord injury in mice. Spinal Cord 2010, 48: 192–196.PubMedCrossRef
69.
Zurück zum Zitat Cheng LC, Pastrana E, Tavazoie M, Doetsch F. miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nat Neurosci 2009, 12: 399–408.PubMedPubMedCentralCrossRef Cheng LC, Pastrana E, Tavazoie M, Doetsch F. miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nat Neurosci 2009, 12: 399–408.PubMedPubMedCentralCrossRef
70.
Zurück zum Zitat Yu JY, Chung KH, Deo M, Thompson RC, Turner DL. MicroRNA miR-124 regulates neurite outgrowth during neuronal differentiation. Exp Cell Res 2008, 314: 2618–2633.PubMedPubMedCentralCrossRef Yu JY, Chung KH, Deo M, Thompson RC, Turner DL. MicroRNA miR-124 regulates neurite outgrowth during neuronal differentiation. Exp Cell Res 2008, 314: 2618–2633.PubMedPubMedCentralCrossRef
71.
Zurück zum Zitat Kynast KL, Russe OQ, Moser CV, Geisslinger G, Niederberger E. Modulation of central nervous system-specific microRNA-124a alters the inflammatory response in the formalin test in mice. Pain 2013, 154: 368–376.PubMedCrossRef Kynast KL, Russe OQ, Moser CV, Geisslinger G, Niederberger E. Modulation of central nervous system-specific microRNA-124a alters the inflammatory response in the formalin test in mice. Pain 2013, 154: 368–376.PubMedCrossRef
72.
Zurück zum Zitat Ponomarev ED, Veremeyko T, Barteneva N, Krichevsky AM, Weiner HL. MicroRNA-124 promotes microglia quiescence and suppresses EAE by deactivating macrophages via the C/EBP-alpha-PU.1 pathway. Nat Med 2011, 17: 64–70.PubMedPubMedCentralCrossRef Ponomarev ED, Veremeyko T, Barteneva N, Krichevsky AM, Weiner HL. MicroRNA-124 promotes microglia quiescence and suppresses EAE by deactivating macrophages via the C/EBP-alpha-PU.1 pathway. Nat Med 2011, 17: 64–70.PubMedPubMedCentralCrossRef
73.
Zurück zum Zitat Jee MK, Jung JS, Choi JI, Jang JA, Kang KS, Im YB, et al. MicroRNA 486 is a potentially novel target for the treatment of spinal cord injury. Brain 2012, 135: 1237–1252.PubMedCrossRef Jee MK, Jung JS, Choi JI, Jang JA, Kang KS, Im YB, et al. MicroRNA 486 is a potentially novel target for the treatment of spinal cord injury. Brain 2012, 135: 1237–1252.PubMedCrossRef
74.
Zurück zum Zitat Hu J, Zeng L, Huang J, Wang G, Lu H. miR-126 promotes angiogenesis and attenuates inflammation after contusion spinal cord injury in rats. Brain Res 2015, 1608: 191–202.PubMedCrossRef Hu J, Zeng L, Huang J, Wang G, Lu H. miR-126 promotes angiogenesis and attenuates inflammation after contusion spinal cord injury in rats. Brain Res 2015, 1608: 191–202.PubMedCrossRef
76.
Zurück zum Zitat Iyer A, Zurolo E, Prabowo A, Fluiter K, Spliet WG, van Rijen PC, et al. MicroRNA-146a: a key regulator of astrocyte-mediated inflammatory response. PLoS One 2012, 7: e44789.PubMedPubMedCentralCrossRef Iyer A, Zurolo E, Prabowo A, Fluiter K, Spliet WG, van Rijen PC, et al. MicroRNA-146a: a key regulator of astrocyte-mediated inflammatory response. PLoS One 2012, 7: e44789.PubMedPubMedCentralCrossRef
77.
Zurück zum Zitat Hong P, Jiang M, Li H. Functional requirement of dicer1 and miR-17-5p in reactive astrocyte proliferation after spinal cord injury in the mouse. Glia 2014, 62: 2044–2060.PubMedCrossRef Hong P, Jiang M, Li H. Functional requirement of dicer1 and miR-17-5p in reactive astrocyte proliferation after spinal cord injury in the mouse. Glia 2014, 62: 2044–2060.PubMedCrossRef
78.
Zurück zum Zitat Xu W, Li P, Qin K, Wang X, Jiang X. miR-124 regulates neural stem cells in the treatment of spinal cord injury. Neurosci Lett 2012, 529: 12–17.PubMedCrossRef Xu W, Li P, Qin K, Wang X, Jiang X. miR-124 regulates neural stem cells in the treatment of spinal cord injury. Neurosci Lett 2012, 529: 12–17.PubMedCrossRef
79.
Zurück zum Zitat Dasen JS, Jessell TM. Hox networks and the origins of motor neuron diversity. Curr Top Dev Biol 2009, 88: 169–200.PubMedCrossRef Dasen JS, Jessell TM. Hox networks and the origins of motor neuron diversity. Curr Top Dev Biol 2009, 88: 169–200.PubMedCrossRef
80.
Zurück zum Zitat Jung H, Lacombe J, Mazzoni EO, Liem KF, Jr., Grinstein J, Mahony S, et al. Global control of motor neuron topography mediated by the repressive actions of a single hox gene. Neuron 2010, 67: 781–796.PubMedPubMedCentralCrossRef Jung H, Lacombe J, Mazzoni EO, Liem KF, Jr., Grinstein J, Mahony S, et al. Global control of motor neuron topography mediated by the repressive actions of a single hox gene. Neuron 2010, 67: 781–796.PubMedPubMedCentralCrossRef
81.
Zurück zum Zitat Dalla Torre di Sanguinetto SA, Dasen JS, Arber S. Transcriptional mechanisms controlling motor neuron diversity and connectivity. Curr Opin Neurobiol 2008, 18: 36–43.PubMedCrossRef Dalla Torre di Sanguinetto SA, Dasen JS, Arber S. Transcriptional mechanisms controlling motor neuron diversity and connectivity. Curr Opin Neurobiol 2008, 18: 36–43.PubMedCrossRef
82.
Zurück zum Zitat Jee MK, Jung JS, Im YB, Jung SJ, Kang SK. Silencing of miR20a is crucial for Ngn1-mediated neuroprotection in injured spinal cord. Hum Gene Ther 2012, 23: 508–520.PubMedCrossRef Jee MK, Jung JS, Im YB, Jung SJ, Kang SK. Silencing of miR20a is crucial for Ngn1-mediated neuroprotection in injured spinal cord. Hum Gene Ther 2012, 23: 508–520.PubMedCrossRef
83.
Zurück zum Zitat Liu XJ, Zheng XP, Zhang R, Guo YL, Wang JH. Combinatorial effects of miR-20a and miR-29b on neuronal apoptosis induced by spinal cord injury. Int J Clin Exp Pathol 2015, 8: 3811–3818.PubMedPubMedCentral Liu XJ, Zheng XP, Zhang R, Guo YL, Wang JH. Combinatorial effects of miR-20a and miR-29b on neuronal apoptosis induced by spinal cord injury. Int J Clin Exp Pathol 2015, 8: 3811–3818.PubMedPubMedCentral
84.
Zurück zum Zitat Yu YM, Gibbs KM, Davila J, Campbell N, Sung S, Todorova TI, et al. MicroRNA miR-133b is essential for functional recovery after spinal cord injury in adult zebrafish. Eur J Neurosci 2011, 33: 1587–1597.PubMedPubMedCentralCrossRef Yu YM, Gibbs KM, Davila J, Campbell N, Sung S, Todorova TI, et al. MicroRNA miR-133b is essential for functional recovery after spinal cord injury in adult zebrafish. Eur J Neurosci 2011, 33: 1587–1597.PubMedPubMedCentralCrossRef
85.
Zurück zum Zitat Parrinello S, Napoli I, Ribeiro S, Wingfield Digby P, Fedorova M, Parkinson DB, et al. EphB signaling directs peripheral nerve regeneration through Sox2-dependent Schwann cell sorting. Cell 2010, 143: 145–155.PubMedCrossRef Parrinello S, Napoli I, Ribeiro S, Wingfield Digby P, Fedorova M, Parkinson DB, et al. EphB signaling directs peripheral nerve regeneration through Sox2-dependent Schwann cell sorting. Cell 2010, 143: 145–155.PubMedCrossRef
86.
Zurück zum Zitat Wu D, Raafat A, Pak E, Clemens S, Murashov AK. Dicer-microRNA pathway is critical for peripheral nerve regeneration and functional recovery in vivo and regenerative axonogenesis in vitro. Exp Neurol 2012, 233: 555–565.PubMedPubMedCentralCrossRef Wu D, Raafat A, Pak E, Clemens S, Murashov AK. Dicer-microRNA pathway is critical for peripheral nerve regeneration and functional recovery in vivo and regenerative axonogenesis in vitro. Exp Neurol 2012, 233: 555–565.PubMedPubMedCentralCrossRef
87.
Zurück zum Zitat Zhou S, Zhang S, Wang Y, Yi S, Zhao L, Tang X, et al. MiR-21 and miR-222 inhibit apoptosis of adult dorsal root ganglion neurons by repressing TIMP3 following sciatic nerve injury. Neurosci Lett 2015, 586: 43–49.PubMedCrossRef Zhou S, Zhang S, Wang Y, Yi S, Zhao L, Tang X, et al. MiR-21 and miR-222 inhibit apoptosis of adult dorsal root ganglion neurons by repressing TIMP3 following sciatic nerve injury. Neurosci Lett 2015, 586: 43–49.PubMedCrossRef
88.
Zurück zum Zitat Wang L, Chopp M, Szalad A, Zhang Y, Wang X, Zhang RL, et al. The role of miR-146a in dorsal root ganglia neurons of experimental diabetic peripheral neuropathy. Neuroscience 2014, 259: 155–163.PubMedPubMedCentralCrossRef Wang L, Chopp M, Szalad A, Zhang Y, Wang X, Zhang RL, et al. The role of miR-146a in dorsal root ganglia neurons of experimental diabetic peripheral neuropathy. Neuroscience 2014, 259: 155–163.PubMedPubMedCentralCrossRef
89.
Zurück zum Zitat Strickland IT, Richards L, Holmes FE, Wynick D, Uney JB, Wong LF. Axotomy-induced miR-21 promotes axon growth in adult dorsal root ganglion neurons. PLoS One 2011, 6: e23423.PubMedPubMedCentralCrossRef Strickland IT, Richards L, Holmes FE, Wynick D, Uney JB, Wong LF. Axotomy-induced miR-21 promotes axon growth in adult dorsal root ganglion neurons. PLoS One 2011, 6: e23423.PubMedPubMedCentralCrossRef
90.
Zurück zum Zitat Zhou S, Shen D, Wang Y, Gong L, Tang X, Yu B, et al. microRNA-222 targeting PTEN promotes neurite outgrowth from adult dorsal root ganglion neurons following sciatic nerve transection. PLoS One 2012, 7: e44768.PubMedPubMedCentralCrossRef Zhou S, Shen D, Wang Y, Gong L, Tang X, Yu B, et al. microRNA-222 targeting PTEN promotes neurite outgrowth from adult dorsal root ganglion neurons following sciatic nerve transection. PLoS One 2012, 7: e44768.PubMedPubMedCentralCrossRef
91.
Zurück zum Zitat Liu CM, Wang RY, Saijilafu, Jiao ZX, Zhang BY, Zhou FQ. MicroRNA-138 and SIRT1 form a mutual negative feedback loop to regulate mammalian axon regeneration. Genes Dev 2013, 27: 1473–1483. Liu CM, Wang RY, Saijilafu, Jiao ZX, Zhang BY, Zhou FQ. MicroRNA-138 and SIRT1 form a mutual negative feedback loop to regulate mammalian axon regeneration. Genes Dev 2013, 27: 1473–1483.
92.
Zurück zum Zitat Lu CS, Zhai B, Mauss A, Landgraf M, Gygi S, Van Vactor D. MicroRNA-8 promotes robust motor axon targeting by coordinate regulation of cell adhesion molecules during synapse development. Philos Trans R Soc Lond B Biol Sci 2014, 369(1652). doi:10.1098/rstb.2013.0517. Lu CS, Zhai B, Mauss A, Landgraf M, Gygi S, Van Vactor D. MicroRNA-8 promotes robust motor axon targeting by coordinate regulation of cell adhesion molecules during synapse development. Philos Trans R Soc Lond B Biol Sci 2014, 369(1652). doi:10.​1098/​rstb.​2013.​0517.
93.
Zurück zum Zitat Wu D, Murashov AK. MicroRNA-431 regulates axon regeneration in mature sensory neurons by targeting the Wnt antagonist Kremen1. Front Mol Neurosci 2013, 6: 35.PubMedPubMedCentralCrossRef Wu D, Murashov AK. MicroRNA-431 regulates axon regeneration in mature sensory neurons by targeting the Wnt antagonist Kremen1. Front Mol Neurosci 2013, 6: 35.PubMedPubMedCentralCrossRef
94.
Zurück zum Zitat Zhang HY, Zheng SJ, Zhao JH, Zhao W, Zheng LF, Zhao D, et al. MicroRNAs 144, 145, and 214 are down-regulated in primary neurons responding to sciatic nerve transection. Brain Res 2011, 1383: 62–70.PubMedCrossRef Zhang HY, Zheng SJ, Zhao JH, Zhao W, Zheng LF, Zhao D, et al. MicroRNAs 144, 145, and 214 are down-regulated in primary neurons responding to sciatic nerve transection. Brain Res 2011, 1383: 62–70.PubMedCrossRef
96.
Zurück zum Zitat Siegel G, Saba R, Schratt G. microRNAs in neurons: manifold regulatory roles at the synapse. Curr Opin Genet Dev 2011, 21: 491–497.PubMedCrossRef Siegel G, Saba R, Schratt G. microRNAs in neurons: manifold regulatory roles at the synapse. Curr Opin Genet Dev 2011, 21: 491–497.PubMedCrossRef
97.
Zurück zum Zitat Hancock ML, Preitner N, Quan J, Flanagan JG. MicroRNA-132 is enriched in developing axons, locally regulates Rasa1 mRNA, and promotes axon extension. J Neurosci 2014, 34: 66–78.PubMedPubMedCentralCrossRef Hancock ML, Preitner N, Quan J, Flanagan JG. MicroRNA-132 is enriched in developing axons, locally regulates Rasa1 mRNA, and promotes axon extension. J Neurosci 2014, 34: 66–78.PubMedPubMedCentralCrossRef
98.
Zurück zum Zitat Jiang JJ, Liu CM, Zhang BY, Wang XW, Zhang M, Saijilafu, et al. MicroRNA-26a supports mammalian axon regeneration in vivo by suppressing GSK3beta expression. Cell Death Dis 2015, 6: e1865. Jiang JJ, Liu CM, Zhang BY, Wang XW, Zhang M, Saijilafu, et al. MicroRNA-26a supports mammalian axon regeneration in vivo by suppressing GSK3beta expression. Cell Death Dis 2015, 6: e1865.
99.
Zurück zum Zitat Zou Y, Chiu H, Zinovyeva A, Ambros V, Chuang CF, Chang C. Developmental decline in neuronal regeneration by the progressive change of two intrinsic timers. Science 2013, 340: 372–376.PubMedPubMedCentralCrossRef Zou Y, Chiu H, Zinovyeva A, Ambros V, Chuang CF, Chang C. Developmental decline in neuronal regeneration by the progressive change of two intrinsic timers. Science 2013, 340: 372–376.PubMedPubMedCentralCrossRef
100.
Zurück zum Zitat Adilakshmi T, Sudol I, Tapinos N. Combinatorial action of miRNAs regulates transcriptional and post-transcriptional gene silencing following in vivo PNS injury. PLoS One 2012, 7: e39674.PubMedPubMedCentralCrossRef Adilakshmi T, Sudol I, Tapinos N. Combinatorial action of miRNAs regulates transcriptional and post-transcriptional gene silencing following in vivo PNS injury. PLoS One 2012, 7: e39674.PubMedPubMedCentralCrossRef
101.
Zurück zum Zitat Gao R, Wang L, Sun J, Nie K, Jian H, Gao L, et al. MiR-204 promotes apoptosis in oxidative stress-induced rat Schwann cells by suppressing neuritin expression. FEBS Lett 2014, 588: 3225–3232.PubMedCrossRef Gao R, Wang L, Sun J, Nie K, Jian H, Gao L, et al. MiR-204 promotes apoptosis in oxidative stress-induced rat Schwann cells by suppressing neuritin expression. FEBS Lett 2014, 588: 3225–3232.PubMedCrossRef
102.
Zurück zum Zitat Yu B, Qian TM, Wang YJ, Zhou SL, Ding GH, Ding F, et al. miR-182 inhibits Schwann cell proliferation and migration by targeting FGF9 and NTM, respectively at an early stage following sciatic nerve injury. Nucleic Acids Res 2012, 40: 10356–10365.PubMedPubMedCentralCrossRef Yu B, Qian TM, Wang YJ, Zhou SL, Ding GH, Ding F, et al. miR-182 inhibits Schwann cell proliferation and migration by targeting FGF9 and NTM, respectively at an early stage following sciatic nerve injury. Nucleic Acids Res 2012, 40: 10356–10365.PubMedPubMedCentralCrossRef
103.
Zurück zum Zitat Yu B, Zhou S, Wang Y, Qian T, Ding G, Ding F, et al. miR-221 and miR-222 promote Schwann cell proliferation and migration by targeting LASS2 after sciatic nerve injury. J Cell Sci 2012, 125: 2675–2683.PubMedCrossRef Yu B, Zhou S, Wang Y, Qian T, Ding G, Ding F, et al. miR-221 and miR-222 promote Schwann cell proliferation and migration by targeting LASS2 after sciatic nerve injury. J Cell Sci 2012, 125: 2675–2683.PubMedCrossRef
104.
Zurück zum Zitat Zhou S, Gao R, Hu W, Qian T, Wang N, Ding G, et al. MiR-9 inhibits Schwann cell migration by targeting Cthrc1 following sciatic nerve injury. J Cell Sci 2014, 127: 967–976.PubMedCrossRef Zhou S, Gao R, Hu W, Qian T, Wang N, Ding G, et al. MiR-9 inhibits Schwann cell migration by targeting Cthrc1 following sciatic nerve injury. J Cell Sci 2014, 127: 967–976.PubMedCrossRef
105.
Zurück zum Zitat Li S, Wang X, Gu Y, Chen C, Wang Y, Liu J, et al. Let-7 microRNAs regenerate peripheral nerve regeneration by targeting nerve growth factor. Mol Ther 2015, 23: 423–433.PubMedPubMedCentralCrossRef Li S, Wang X, Gu Y, Chen C, Wang Y, Liu J, et al. Let-7 microRNAs regenerate peripheral nerve regeneration by targeting nerve growth factor. Mol Ther 2015, 23: 423–433.PubMedPubMedCentralCrossRef
106.
Zurück zum Zitat Yao C, Shi X, Zhang Z, Zhou S, Qian T, Wang Y, et al. Hypoxia-Induced Up-regulation of miR-132 Promotes Schwann Cell Migration After Sciatic Nerve Injury by Targeting PRKAG3. Mol Neurobiol 2015. doi:10.1007/s12035-015-9449-y. Yao C, Shi X, Zhang Z, Zhou S, Qian T, Wang Y, et al. Hypoxia-Induced Up-regulation of miR-132 Promotes Schwann Cell Migration After Sciatic Nerve Injury by Targeting PRKAG3. Mol Neurobiol 2015. doi:10.​1007/​s12035-015-9449-y.
107.
Zurück zum Zitat Pang RT, Leung CO, Ye TM, Liu W, Chiu PC, Lam KK, et al. MicroRNA-34a suppresses invasion through down-regulation of Notch1 and Jagged1 in cervical carcinoma and choriocarcinoma cells. Carcinogenesis 2010, 31: 1037–1044.PubMedCrossRef Pang RT, Leung CO, Ye TM, Liu W, Chiu PC, Lam KK, et al. MicroRNA-34a suppresses invasion through down-regulation of Notch1 and Jagged1 in cervical carcinoma and choriocarcinoma cells. Carcinogenesis 2010, 31: 1037–1044.PubMedCrossRef
108.
Zurück zum Zitat Kim HA, Ratner N, Roberts TM, Stiles CD. Schwann cell proliferative responses to cAMP and Nf1 are mediated by cyclin D1. J Neurosci 2001, 21: 1110–1116.PubMed Kim HA, Ratner N, Roberts TM, Stiles CD. Schwann cell proliferative responses to cAMP and Nf1 are mediated by cyclin D1. J Neurosci 2001, 21: 1110–1116.PubMed
109.
Zurück zum Zitat Woodhoo A, Alonso MB, Droggiti A, Turmaine M, D’Antonio M, Parkinson DB, et al. Notch controls embryonic Schwann cell differentiation, postnatal myelination and adult plasticity. Nat Neurosci 2009, 12: 839–847.PubMedPubMedCentralCrossRef Woodhoo A, Alonso MB, Droggiti A, Turmaine M, D’Antonio M, Parkinson DB, et al. Notch controls embryonic Schwann cell differentiation, postnatal myelination and adult plasticity. Nat Neurosci 2009, 12: 839–847.PubMedPubMedCentralCrossRef
110.
Zurück zum Zitat Viader A, Chang LW, Fahrner T, Nagarajan R, Milbrandt J. MicroRNAs modulate Schwann cell response to nerve injury by reinforcing transcriptional silencing of dedifferentiation-related genes. J Neurosci 2011, 31: 17358–17369.PubMedPubMedCentralCrossRef Viader A, Chang LW, Fahrner T, Nagarajan R, Milbrandt J. MicroRNAs modulate Schwann cell response to nerve injury by reinforcing transcriptional silencing of dedifferentiation-related genes. J Neurosci 2011, 31: 17358–17369.PubMedPubMedCentralCrossRef
111.
Zurück zum Zitat Verrier JD, Lau P, Hudson L, Murashov AK, Renne R, Notterpek L. Peripheral myelin protein 22 is regulated post-transcriptionally by miRNA-29a. Glia 2009, 57: 1265–1279.PubMedPubMedCentralCrossRef Verrier JD, Lau P, Hudson L, Murashov AK, Renne R, Notterpek L. Peripheral myelin protein 22 is regulated post-transcriptionally by miRNA-29a. Glia 2009, 57: 1265–1279.PubMedPubMedCentralCrossRef
112.
Zurück zum Zitat Goff LA, Groff AF, Sauvageau M, Trayes-Gibson Z, Sanchez-Gomez DB, Morse M, et al. Spatiotemporal expression and transcriptional perturbations by long noncoding RNAs in the mouse brain. Proc Natl Acad Sci U S A 2015, 112: 6855–6862.PubMedPubMedCentralCrossRef Goff LA, Groff AF, Sauvageau M, Trayes-Gibson Z, Sanchez-Gomez DB, Morse M, et al. Spatiotemporal expression and transcriptional perturbations by long noncoding RNAs in the mouse brain. Proc Natl Acad Sci U S A 2015, 112: 6855–6862.PubMedPubMedCentralCrossRef
113.
Zurück zum Zitat Kour S, Rath PC. Age-dependent differential expression profile of a novel intergenic long noncoding RNA in rat brain. Int J Dev Neurosci 2015, 46: 55–66. Kour S, Rath PC. Age-dependent differential expression profile of a novel intergenic long noncoding RNA in rat brain. Int J Dev Neurosci 2015, 46: 55–66.
114.
Zurück zum Zitat Zhao F, Qu Y, Liu J, Liu H, Zhang L, Feng Y, et al. Microarray Profiling and Co-Expression Network Analysis of LncRNAs and mRNAs in Neonatal Rats Following Hypoxic-ischemic Brain Damage. Sci Rep 2015, 5: 13850.PubMedPubMedCentralCrossRef Zhao F, Qu Y, Liu J, Liu H, Zhang L, Feng Y, et al. Microarray Profiling and Co-Expression Network Analysis of LncRNAs and mRNAs in Neonatal Rats Following Hypoxic-ischemic Brain Damage. Sci Rep 2015, 5: 13850.PubMedPubMedCentralCrossRef
115.
Zurück zum Zitat Yu B, Zhou S, Hu W, Qian T, Gao R, Ding G, et al. Altered long noncoding RNA expressions in dorsal root ganglion after rat sciatic nerve injury. Neurosci Lett 2013, 534: 117–122.PubMedCrossRef Yu B, Zhou S, Hu W, Qian T, Gao R, Ding G, et al. Altered long noncoding RNA expressions in dorsal root ganglion after rat sciatic nerve injury. Neurosci Lett 2013, 534: 117–122.PubMedCrossRef
116.
Zurück zum Zitat Yao C, Wang J, Zhang H, Zhou S, Qian T, Ding F, et al. Long non-coding RNA uc.217 regulates neurite outgrowth in dorsal root ganglion neurons following peripheral nerve injury. Eur J Neurosci 2015, 42: 1718–1725.PubMedCrossRef Yao C, Wang J, Zhang H, Zhou S, Qian T, Ding F, et al. Long non-coding RNA uc.217 regulates neurite outgrowth in dorsal root ganglion neurons following peripheral nerve injury. Eur J Neurosci 2015, 42: 1718–1725.PubMedCrossRef
117.
Zurück zum Zitat Delay C, Mandemakers W, Hebert SS. MicroRNAs in Alzheimer’s disease. Neurobiol. Dis. 2012, 46: 285–290.PubMedCrossRef Delay C, Mandemakers W, Hebert SS. MicroRNAs in Alzheimer’s disease. Neurobiol. Dis. 2012, 46: 285–290.PubMedCrossRef
118.
Zurück zum Zitat Li S, Xue C, Yuan Y, Zhang R, Wang Y, Yu B, et al. The transcriptional landscape of dorsal root ganglia after sciatic nerve transection. Sci Rep 2015, 5: 16888.PubMedPubMedCentralCrossRef Li S, Xue C, Yuan Y, Zhang R, Wang Y, Yu B, et al. The transcriptional landscape of dorsal root ganglia after sciatic nerve transection. Sci Rep 2015, 5: 16888.PubMedPubMedCentralCrossRef
Metadaten
Titel
Non-coding RNAs as Emerging Regulators of Neural Injury Responses and Regeneration
verfasst von
Songlin Zhou
Fei Ding
Xiaosong Gu
Publikationsdatum
01.06.2016
Verlag
Springer Singapore
Erschienen in
Neuroscience Bulletin / Ausgabe 3/2016
Print ISSN: 1673-7067
Elektronische ISSN: 1995-8218
DOI
https://doi.org/10.1007/s12264-016-0028-7

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.