Skip to main content
Erschienen in: Neuroscience Bulletin 2/2018

01.04.2018 | Original Article

Melatonin Augments the Effects of Fluoxetine on Depression-Like Behavior and Hippocampal BDNF–TrkB Signaling

verfasst von: Kun Li, Si Shen, Yu-Tian Ji, Xu-Yun Li, Li-San Zhang, Xiao-Dong Wang

Erschienen in: Neuroscience Bulletin | Ausgabe 2/2018

Einloggen, um Zugang zu erhalten

Abstract

Depression is a debilitating psychiatric disorder with a huge socioeconomic burden, and its treatment relies on antidepressants including selective serotonin reuptake inhibitors (SSRIs). Recently, the melatonergic system that is closely associated with the serotonergic system has been implicated in the pathophysiology and treatment of depression. However, it remains unknown whether combined treatment with SSRI and melatonin has synergistic antidepressant effects. In this study, we applied a sub-chronic restraint stress paradigm, and evaluated the potential antidepressant effects of combined fluoxetine and melatonin in adult male mice. Sub-chronic restraint stress (6 h/day for 10 days) induced depression-like behavior as shown by deteriorated fur state, increased latency to groom in the splash test, and increased immobility time in the forced-swim test. Repeated administration of either fluoxetine or melatonin at 10 mg/kg during stress exposure failed to prevent depression-like phenotypes. However, combined treatment with fluoxetine and melatonin at the selected dose attenuated stress-induced behavioral abnormalities. Moreover, we found that the antidepressant effects of combined treatment were associated with the normalization of brain-derived neurotrophic factor (BDNF)–tropomyosin receptor kinase B (TrkB) signaling in the hippocampus, but not in the prefrontal cortex. Our findings suggest that combined fluoxetine and melatonin treatment exerts synergistic antidepressant effects possibly by restoring hippocampal BDNF–TrkB signaling.
Literatur
2.
Zurück zum Zitat Whiteford HA, Degenhardt L, Rehm J, Baxter AJ, Ferrari AJ, Erskine HE, et al. Global burden of disease attributable to mental and substance use disorders: findings from the Global Burden of Disease Study 2010. Lancet 2013, 382: 1575–1586.CrossRefPubMed Whiteford HA, Degenhardt L, Rehm J, Baxter AJ, Ferrari AJ, Erskine HE, et al. Global burden of disease attributable to mental and substance use disorders: findings from the Global Burden of Disease Study 2010. Lancet 2013, 382: 1575–1586.CrossRefPubMed
3.
Zurück zum Zitat Nestler EJ, Barrot M, DiLeone RJ, Eisch AJ, Gold SJ, Monteggia LM. Neurobiology of depression. Neuron 2002, 34: 13–25.CrossRefPubMed Nestler EJ, Barrot M, DiLeone RJ, Eisch AJ, Gold SJ, Monteggia LM. Neurobiology of depression. Neuron 2002, 34: 13–25.CrossRefPubMed
4.
5.
Zurück zum Zitat Jans LA, Riedel WJ, Markus CR, Blokland A. Serotonergic vulnerability and depression: assumptions, experimental evidence and implications. Mol Psychiatry 2007, 12: 522–543.CrossRefPubMed Jans LA, Riedel WJ, Markus CR, Blokland A. Serotonergic vulnerability and depression: assumptions, experimental evidence and implications. Mol Psychiatry 2007, 12: 522–543.CrossRefPubMed
7.
Zurück zum Zitat Licinio J, Wong ML. Depression, antidepressants and suicidality: a critical appraisal. Nat Rev Drug Discov 2005, 4: 165–171.CrossRefPubMed Licinio J, Wong ML. Depression, antidepressants and suicidality: a critical appraisal. Nat Rev Drug Discov 2005, 4: 165–171.CrossRefPubMed
8.
Zurück zum Zitat Wong DT, Perry KW, Bymaster FP. Case history: the discovery of fluoxetine hydrochloride (Prozac). Nat Rev Drug Discov 2005, 4: 764–774.CrossRefPubMed Wong DT, Perry KW, Bymaster FP. Case history: the discovery of fluoxetine hydrochloride (Prozac). Nat Rev Drug Discov 2005, 4: 764–774.CrossRefPubMed
9.
Zurück zum Zitat Kong H, Sha LL, Fan Y, Xiao M, Ding JH, Wu J, et al. Requirement of AQP4 for antidepressive efficiency of fluoxetine: implication in adult hippocampal neurogenesis. Neuropsychopharmacology 2009, 34: 1263–1276.CrossRefPubMed Kong H, Sha LL, Fan Y, Xiao M, Ding JH, Wu J, et al. Requirement of AQP4 for antidepressive efficiency of fluoxetine: implication in adult hippocampal neurogenesis. Neuropsychopharmacology 2009, 34: 1263–1276.CrossRefPubMed
10.
Zurück zum Zitat Dubocovich ML, Delagrange P, Krause DN, Sugden D, Cardinali DP, Olcese J. International Union of Basic and Clinical Pharmacology. LXXV. Nomenclature, classification, and pharmacology of G protein-coupled melatonin receptors. Pharmacol Rev 2010, 62: 343–380.CrossRefPubMedPubMedCentral Dubocovich ML, Delagrange P, Krause DN, Sugden D, Cardinali DP, Olcese J. International Union of Basic and Clinical Pharmacology. LXXV. Nomenclature, classification, and pharmacology of G protein-coupled melatonin receptors. Pharmacol Rev 2010, 62: 343–380.CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Hansen MV, Danielsen AK, Hageman I, Rosenberg J, Gogenur I. The therapeutic or prophylactic effect of exogenous melatonin against depression and depressive symptoms: a systematic review and meta-analysis. Eur Neuropsychopharmacol 2014, 24: 1719–1728.CrossRefPubMed Hansen MV, Danielsen AK, Hageman I, Rosenberg J, Gogenur I. The therapeutic or prophylactic effect of exogenous melatonin against depression and depressive symptoms: a systematic review and meta-analysis. Eur Neuropsychopharmacol 2014, 24: 1719–1728.CrossRefPubMed
12.
Zurück zum Zitat Comai S, Gobbi G. Unveiling the role of melatonin MT2 receptors in sleep, anxiety and other neuropsychiatric diseases: a novel target in psychopharmacology. J Psychiatry Neurosci 2014, 39: 6–21.CrossRefPubMedPubMedCentral Comai S, Gobbi G. Unveiling the role of melatonin MT2 receptors in sleep, anxiety and other neuropsychiatric diseases: a novel target in psychopharmacology. J Psychiatry Neurosci 2014, 39: 6–21.CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Croxtall JD, Scott LJ. Olanzapine/Fluiloxietine A Review of its Use in Patients With Treatment-Resistant Major Depressive Disorder. CNS Drugs 2010, 24: 245–262.CrossRefPubMed Croxtall JD, Scott LJ. Olanzapine/Fluiloxietine A Review of its Use in Patients With Treatment-Resistant Major Depressive Disorder. CNS Drugs 2010, 24: 245–262.CrossRefPubMed
14.
Zurück zum Zitat Hickie IB, Rogers NL. Novel melatonin-based therapies: potential advances in the treatment of major depression. Lancet 2011, 378: 621–631.CrossRefPubMed Hickie IB, Rogers NL. Novel melatonin-based therapies: potential advances in the treatment of major depression. Lancet 2011, 378: 621–631.CrossRefPubMed
15.
Zurück zum Zitat Yu H, Chen ZY. The role of BDNF in depression on the basis of its location in the neural circuitry. Acta Pharmacol Sin 2011, 32: 3–11.CrossRefPubMed Yu H, Chen ZY. The role of BDNF in depression on the basis of its location in the neural circuitry. Acta Pharmacol Sin 2011, 32: 3–11.CrossRefPubMed
16.
Zurück zum Zitat Duman RS, Aghajanian GK, Sanacora G, Krystal JH. Synaptic plasticity and depression: new insights from stress and rapid-acting antidepressants. Nat Med 2016, 22: 238–249.CrossRefPubMedPubMedCentral Duman RS, Aghajanian GK, Sanacora G, Krystal JH. Synaptic plasticity and depression: new insights from stress and rapid-acting antidepressants. Nat Med 2016, 22: 238–249.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Zhou D, Zhang Z, Liu L, Li C, Li M, Yu H, et al. The antidepressant-like effects of biperiden may involve BDNF/TrkB signaling-mediated BICC1 expression in the hippocampus and prefrontal cortex of mice. Pharmacol Biochem Behav 2017, 157: 47–57.CrossRefPubMed Zhou D, Zhang Z, Liu L, Li C, Li M, Yu H, et al. The antidepressant-like effects of biperiden may involve BDNF/TrkB signaling-mediated BICC1 expression in the hippocampus and prefrontal cortex of mice. Pharmacol Biochem Behav 2017, 157: 47–57.CrossRefPubMed
18.
20.
Zurück zum Zitat Tsankova NM, Berton O, Renthal W, Kumar A, Neve RL, Nestler EJ. Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat Neurosci 2006, 9: 519–525.CrossRefPubMed Tsankova NM, Berton O, Renthal W, Kumar A, Neve RL, Nestler EJ. Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat Neurosci 2006, 9: 519–525.CrossRefPubMed
21.
Zurück zum Zitat Guo QH, Tong QH, Lu N, Cao H, Yang L, Zhang YQ. Proteomic analysis of the hippocampus in mouse models of trigeminal neuralgia and inescapable shock-induced depression. Neurosci Bull 2017. doi: 10.1007/s12264-017-0131-4. Guo QH, Tong QH, Lu N, Cao H, Yang L, Zhang YQ. Proteomic analysis of the hippocampus in mouse models of trigeminal neuralgia and inescapable shock-induced depression. Neurosci Bull 2017. doi: 10.​1007/​s12264-017-0131-4.
22.
Zurück zum Zitat Liu W, Mao Y, Wei D, Yang J, Du X, Xie P, et al. Structural asymmetry of dorsolateral prefrontal cortex correlates with depressive symptoms: evidence from healthy individuals and patients with major depressive disorder. Neurosci Bull 2016, 32: 217–226.CrossRefPubMedPubMedCentral Liu W, Mao Y, Wei D, Yang J, Du X, Xie P, et al. Structural asymmetry of dorsolateral prefrontal cortex correlates with depressive symptoms: evidence from healthy individuals and patients with major depressive disorder. Neurosci Bull 2016, 32: 217–226.CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Gelman PL, Flores-Ramos M, Lopez-Martinez M, Fuentes CC, Grajeda JP. Hypothalamic-pituitary-adrenal axis function during perinatal depression. Neurosci Bull 2015, 31: 338–350.CrossRefPubMedPubMedCentral Gelman PL, Flores-Ramos M, Lopez-Martinez M, Fuentes CC, Grajeda JP. Hypothalamic-pituitary-adrenal axis function during perinatal depression. Neurosci Bull 2015, 31: 338–350.CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Ding K, Xu J, Wang H, Zhang L, Wu Y, Li T. Melatonin protects the brain from apoptosis by enhancement of autophagy after traumatic brain injury in mice. Neurochem Int 2015, 91: 46–54.CrossRefPubMed Ding K, Xu J, Wang H, Zhang L, Wu Y, Li T. Melatonin protects the brain from apoptosis by enhancement of autophagy after traumatic brain injury in mice. Neurochem Int 2015, 91: 46–54.CrossRefPubMed
25.
Zurück zum Zitat Ma M, Ren Q, Yang C, Zhang JC, Yao W, Dong C, et al. Adjunctive treatment of brexpiprazole with fluoxetine shows a rapid antidepressant effect in social defeat stress model: Role of BDNF–TrkB signaling. Sci Rep 2016, 6: 39209.CrossRefPubMedPubMedCentral Ma M, Ren Q, Yang C, Zhang JC, Yao W, Dong C, et al. Adjunctive treatment of brexpiprazole with fluoxetine shows a rapid antidepressant effect in social defeat stress model: Role of BDNF–TrkB signaling. Sci Rep 2016, 6: 39209.CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Mineur YS, Prasol DJ, Belzung C, Crusio WE. Agonistic behavior and unpredictable chronic mild stress in mice. Behavior Genetics 2003, 33: 513–519.CrossRefPubMed Mineur YS, Prasol DJ, Belzung C, Crusio WE. Agonistic behavior and unpredictable chronic mild stress in mice. Behavior Genetics 2003, 33: 513–519.CrossRefPubMed
27.
Zurück zum Zitat Wang XD, Labermaier C, Holsboer F, Wurst W, Deussing JM, Muller MB, et al. Early-life stress-induced anxiety-related behavior in adult mice partially requires forebrain corticotropin-releasing hormone receptor 1. Eur J Neurosci 2012, 36: 2360–2367.CrossRefPubMed Wang XD, Labermaier C, Holsboer F, Wurst W, Deussing JM, Muller MB, et al. Early-life stress-induced anxiety-related behavior in adult mice partially requires forebrain corticotropin-releasing hormone receptor 1. Eur J Neurosci 2012, 36: 2360–2367.CrossRefPubMed
28.
Zurück zum Zitat Schmidt MV, Trumbach D, Weber P, Wagner K, Scharf SH, Liebl C, et al. Individual stress vulnerability is predicted by short-term memory and AMPA receptor subunit ratio in the hippocampus. J Neurosci 2010, 30: 16949–16958.CrossRefPubMed Schmidt MV, Trumbach D, Weber P, Wagner K, Scharf SH, Liebl C, et al. Individual stress vulnerability is predicted by short-term memory and AMPA receptor subunit ratio in the hippocampus. J Neurosci 2010, 30: 16949–16958.CrossRefPubMed
29.
Zurück zum Zitat Moretti M, Neis VB, Matheus FC, Cunha MP, Rosa PB, Ribeiro CM, et al. Effects of agmatine on depressive-like behavior induced by intracerebroventricular administration of 1-methyl-4-phenylpyridinium (MPP(+)). Neurotox Res 2015, 28: 222–231.CrossRefPubMed Moretti M, Neis VB, Matheus FC, Cunha MP, Rosa PB, Ribeiro CM, et al. Effects of agmatine on depressive-like behavior induced by intracerebroventricular administration of 1-methyl-4-phenylpyridinium (MPP(+)). Neurotox Res 2015, 28: 222–231.CrossRefPubMed
30.
Zurück zum Zitat Porsolt RD, Anton G, Blavet N, Jalfre M. Behavioral despair in rats - new model sensitive to antidepressant treatments. Eur J Pharmacol 1978, 47: 379–391.CrossRefPubMed Porsolt RD, Anton G, Blavet N, Jalfre M. Behavioral despair in rats - new model sensitive to antidepressant treatments. Eur J Pharmacol 1978, 47: 379–391.CrossRefPubMed
31.
Zurück zum Zitat Regev L, Neufeld-Cohen A, Tsoory M, Kuperman Y, Getselter D, Gil S, et al. Prolonged and site-specific over-expression of corticotropin-releasing factor reveals differential roles for extended amygdala nuclei in emotional regulation. Mol Psychiatry 2011, 16: 714–728.CrossRefPubMed Regev L, Neufeld-Cohen A, Tsoory M, Kuperman Y, Getselter D, Gil S, et al. Prolonged and site-specific over-expression of corticotropin-releasing factor reveals differential roles for extended amygdala nuclei in emotional regulation. Mol Psychiatry 2011, 16: 714–728.CrossRefPubMed
32.
Zurück zum Zitat Wang XD, Chen Y, Wolf M, Wagner KV, Liebl C, Scharf SH, et al. Forebrain CRHR1 deficiency attenuates chronic stress-induced cognitive deficits and dendritic remodeling. Neurobiol Dis 2011, 42: 300–310.CrossRefPubMedPubMedCentral Wang XD, Chen Y, Wolf M, Wagner KV, Liebl C, Scharf SH, et al. Forebrain CRHR1 deficiency attenuates chronic stress-induced cognitive deficits and dendritic remodeling. Neurobiol Dis 2011, 42: 300–310.CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Berton O, Nestler EJ. New approaches to antidepressant drug discovery: beyond monoamines. Nat Rev Neurosci 2006, 7: 137–151.CrossRefPubMed Berton O, Nestler EJ. New approaches to antidepressant drug discovery: beyond monoamines. Nat Rev Neurosci 2006, 7: 137–151.CrossRefPubMed
34.
Zurück zum Zitat Hashimoto K, Shimizu E, Iyo M. Critical role of brain-derived neurotrophic factor in mood disorders. Brain Res Brain Res Rev 2004, 45: 104–114.CrossRefPubMed Hashimoto K, Shimizu E, Iyo M. Critical role of brain-derived neurotrophic factor in mood disorders. Brain Res Brain Res Rev 2004, 45: 104–114.CrossRefPubMed
35.
Zurück zum Zitat Zhou WJ, Xu N, Kong L, Sun SC, Xu XF, Jia MZ, et al. The antidepressant roles of Wnt2 and Wnt3 in stress-induced depression-like behaviors. Transl Psychiatry 2016, 6: e892.CrossRefPubMedPubMedCentral Zhou WJ, Xu N, Kong L, Sun SC, Xu XF, Jia MZ, et al. The antidepressant roles of Wnt2 and Wnt3 in stress-induced depression-like behaviors. Transl Psychiatry 2016, 6: e892.CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Griebel G, Simiand J, Steinberg R, Jung M, Gully D, Roger P, et al. 4-(2-Chloro-4-methoxy-5-methylphenyl)-N-[(1S)-2-cyclopropyl-1-(3-fluoro-4-methylp henyl)ethyl]5-methyl-N-(2-propynyl)-1, 3-thiazol-2-amine hydrochloride (SSR125543A), a potent and selective corticotrophin-releasing factor(1) receptor antagonist. II. Characterization in rodent models of stress-related disorders. J Pharmacol Exp Ther 2002, 301: 333–345.CrossRefPubMed Griebel G, Simiand J, Steinberg R, Jung M, Gully D, Roger P, et al. 4-(2-Chloro-4-methoxy-5-methylphenyl)-N-[(1S)-2-cyclopropyl-1-(3-fluoro-4-methylp henyl)ethyl]5-methyl-N-(2-propynyl)-1, 3-thiazol-2-amine hydrochloride (SSR125543A), a potent and selective corticotrophin-releasing factor(1) receptor antagonist. II. Characterization in rodent models of stress-related disorders. J Pharmacol Exp Ther 2002, 301: 333–345.CrossRefPubMed
37.
Zurück zum Zitat Macedo IC, Rozisky JR, Oliveira C, Oliveira CM, Laste G, Nonose Y, et al. Chronic stress associated with hypercaloric diet changes the hippocampal BDNF levels in male Wistar rats. Neuropeptides 2015, 51: 75–81.CrossRefPubMed Macedo IC, Rozisky JR, Oliveira C, Oliveira CM, Laste G, Nonose Y, et al. Chronic stress associated with hypercaloric diet changes the hippocampal BDNF levels in male Wistar rats. Neuropeptides 2015, 51: 75–81.CrossRefPubMed
38.
Zurück zum Zitat Valles A, Marti O, Garcia A, Armario A. Single exposure to stressors causes long-lasting, stress-dependent reduction of food intake in rats. Am J Physiol Regul Integr Comp Physiol 2000, 279: R1138–R1144.CrossRefPubMed Valles A, Marti O, Garcia A, Armario A. Single exposure to stressors causes long-lasting, stress-dependent reduction of food intake in rats. Am J Physiol Regul Integr Comp Physiol 2000, 279: R1138–R1144.CrossRefPubMed
39.
Zurück zum Zitat Di Liberto V, Frinchi M, Verdi V, Vitale A, Plescia F, Cannizzaro C, et al. Anxiolytic effects of muscarinic acetylcholine receptors agonist oxotremorine in chronically stressed rats and related changes in BDNF and FGF2 levels in the hippocampus and prefrontal cortex. Psychopharmacology (Berl) 2017, 234: 559–573.CrossRef Di Liberto V, Frinchi M, Verdi V, Vitale A, Plescia F, Cannizzaro C, et al. Anxiolytic effects of muscarinic acetylcholine receptors agonist oxotremorine in chronically stressed rats and related changes in BDNF and FGF2 levels in the hippocampus and prefrontal cortex. Psychopharmacology (Berl) 2017, 234: 559–573.CrossRef
40.
Zurück zum Zitat McEwen BS, Morrison JH. The brain on stress: vulnerability and plasticity of the prefrontal cortex over the life course. Neuron 2013, 79: 16–29.CrossRefPubMedPubMedCentral McEwen BS, Morrison JH. The brain on stress: vulnerability and plasticity of the prefrontal cortex over the life course. Neuron 2013, 79: 16–29.CrossRefPubMedPubMedCentral
41.
Zurück zum Zitat Dulawa SC, Holick KA, Gundersen B, Hen R. Effects of chronic fluoxetine in animal models of anxiety and depression. Neuropsychopharmacology 2004, 29: 1321–1330.CrossRefPubMed Dulawa SC, Holick KA, Gundersen B, Hen R. Effects of chronic fluoxetine in animal models of anxiety and depression. Neuropsychopharmacology 2004, 29: 1321–1330.CrossRefPubMed
42.
Zurück zum Zitat Wernicke JF. Safety and side effect profile of fluoxetine. Expert Opin Drug Saf 2004, 3: 495–504.CrossRefPubMed Wernicke JF. Safety and side effect profile of fluoxetine. Expert Opin Drug Saf 2004, 3: 495–504.CrossRefPubMed
43.
Zurück zum Zitat Souza LC, Filho CB, Fabbro LD, de Gomes MG, Goes AT, Jesse CR. Depressive-like behaviour induced by an intracerebroventricular injection of streptozotocin in mice: the protective effect of fluoxetine, antitumour necrosis factor-alpha and thalidomide therapies. Behav Pharmacol 2013, 24: 79–86.CrossRefPubMed Souza LC, Filho CB, Fabbro LD, de Gomes MG, Goes AT, Jesse CR. Depressive-like behaviour induced by an intracerebroventricular injection of streptozotocin in mice: the protective effect of fluoxetine, antitumour necrosis factor-alpha and thalidomide therapies. Behav Pharmacol 2013, 24: 79–86.CrossRefPubMed
44.
Zurück zum Zitat Samuels BA, Anacker C, Hu A, Levinstein MR, Pickenhagen A, Tsetsenis T, et al. 5-HT1A receptors on mature dentate gyrus granule cells are critical for the antidepressant response. Nat Neurosci 2015, 18: 1606–1616.CrossRefPubMedPubMedCentral Samuels BA, Anacker C, Hu A, Levinstein MR, Pickenhagen A, Tsetsenis T, et al. 5-HT1A receptors on mature dentate gyrus granule cells are critical for the antidepressant response. Nat Neurosci 2015, 18: 1606–1616.CrossRefPubMedPubMedCentral
45.
Zurück zum Zitat Carman JS, Post RM, Buswell R, Goodwin FK. Negative effects of melatonin on depression. Am J Psychiatry 1976, 133: 1181–1186.CrossRefPubMed Carman JS, Post RM, Buswell R, Goodwin FK. Negative effects of melatonin on depression. Am J Psychiatry 1976, 133: 1181–1186.CrossRefPubMed
46.
Zurück zum Zitat Tao W, Dong Y, Su Q, Wang H, Chen Y, Xue W, et al. Liquiritigenin reverses depression-like behavior in unpredictable chronic mild stress-induced mice by regulating PI3K/Akt/mTOR mediated BDNF/TrkB pathway. Behav Brain Res 2016, 308: 177–186.CrossRefPubMed Tao W, Dong Y, Su Q, Wang H, Chen Y, Xue W, et al. Liquiritigenin reverses depression-like behavior in unpredictable chronic mild stress-induced mice by regulating PI3K/Akt/mTOR mediated BDNF/TrkB pathway. Behav Brain Res 2016, 308: 177–186.CrossRefPubMed
47.
Zurück zum Zitat Hoijman E, Rocha Viegas L, Keller Sarmiento MI, Rosenstein RE, Pecci A. Involvement of Bax protein in the prevention of glucocorticoid-induced thymocytes apoptosis by melatonin. Endocrinology 2004, 145: 418–425.CrossRefPubMed Hoijman E, Rocha Viegas L, Keller Sarmiento MI, Rosenstein RE, Pecci A. Involvement of Bax protein in the prevention of glucocorticoid-induced thymocytes apoptosis by melatonin. Endocrinology 2004, 145: 418–425.CrossRefPubMed
48.
Zurück zum Zitat Martinowich K, Manji H, Lu B. New insights into BDNF function in depression and anxiety. Nat Neurosci 2007, 10: 1089–1093.CrossRefPubMed Martinowich K, Manji H, Lu B. New insights into BDNF function in depression and anxiety. Nat Neurosci 2007, 10: 1089–1093.CrossRefPubMed
Metadaten
Titel
Melatonin Augments the Effects of Fluoxetine on Depression-Like Behavior and Hippocampal BDNF–TrkB Signaling
verfasst von
Kun Li
Si Shen
Yu-Tian Ji
Xu-Yun Li
Li-San Zhang
Xiao-Dong Wang
Publikationsdatum
01.04.2018
Verlag
Springer Singapore
Erschienen in
Neuroscience Bulletin / Ausgabe 2/2018
Print ISSN: 1673-7067
Elektronische ISSN: 1995-8218
DOI
https://doi.org/10.1007/s12264-017-0189-z

Weitere Artikel der Ausgabe 2/2018

Neuroscience Bulletin 2/2018 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.