Skip to main content
Erschienen in: Journal of Cardiovascular Translational Research 2/2010

01.04.2010

Gender Dimorphisms in Progenitor and Stem Cell Function in Cardiovascular Disease

verfasst von: Jeremy L. Herrmann, Aaron M. Abarbanell, Brent R. Weil, Mariuxi C. Manukyan, Jeffrey A. Poynter, Yue Wang, Arthur C. Coffey, Daniel R. Meldrum

Erschienen in: Journal of Cardiovascular Translational Research | Ausgabe 2/2010

Einloggen, um Zugang zu erhalten

Abstract

Differences in cardiovascular disease outcomes between men and women have long been recognized and attributed, in part, to gender and sex steroids. Gender dimorphisms also exist with respect to the roles of progenitor and stem cells in post-ischemic myocardial and endothelial repair and regeneration. Understanding how these cells are influenced by donor gender and the recipient hormonal milieu may enable researchers to further account for the gender-related disparities in clinical outcomes as well as utilize the beneficial effects of these hormones to optimize transplanted cell function and survival. This review discusses (1) the cardiovascular effects of sex steroids (specifically estradiol and testosterone); (2) the therapeutic potentials of endothelial progenitor cells, mesenchymal stem cells, and embryonic stem cells; and (3) the direct effect of sex steroids on these cell types.
Literatur
1.
Zurück zum Zitat Kher, A., Meldrum, K. K., Wang, M., Tsai, B. M., Pitcher, J. M., & Meldrum, D. R. (2005). Cellular and molecular mechanisms of sex differences in renal ischemia–reperfusion injury. Cardiovascular Research, 67, 594–603.PubMedCrossRef Kher, A., Meldrum, K. K., Wang, M., Tsai, B. M., Pitcher, J. M., & Meldrum, D. R. (2005). Cellular and molecular mechanisms of sex differences in renal ischemia–reperfusion injury. Cardiovascular Research, 67, 594–603.PubMedCrossRef
2.
Zurück zum Zitat Choudhry, M. A., Schwacha, M. G., Hubbard, W. J., Kerby, J. D., Rue, L. W., Bland, K. I., et al. (2005). Gender differences in acute response to trauma–hemorrhage. Shock, 24(Suppl 1), 101–106.PubMedCrossRef Choudhry, M. A., Schwacha, M. G., Hubbard, W. J., Kerby, J. D., Rue, L. W., Bland, K. I., et al. (2005). Gender differences in acute response to trauma–hemorrhage. Shock, 24(Suppl 1), 101–106.PubMedCrossRef
3.
Zurück zum Zitat Choudhry, M. A., Bland, K. I., & Chaudry, I. H. (2006). Gender and susceptibility to sepsis following trauma. Endocr Metab Immune Disord Drug Targets, 6, 127–135.PubMed Choudhry, M. A., Bland, K. I., & Chaudry, I. H. (2006). Gender and susceptibility to sepsis following trauma. Endocr Metab Immune Disord Drug Targets, 6, 127–135.PubMed
4.
Zurück zum Zitat Stampfer, M. J., Colditz, G. A., Willett, W. C., Manson, J. E., Rosner, B., Speizer, F. E., et al. (1991). Postmenopausal estrogen therapy and cardiovascular disease. Ten-year follow-up from the nurses’ health study. New England Journal of Medicine, 325, 756–762.PubMed Stampfer, M. J., Colditz, G. A., Willett, W. C., Manson, J. E., Rosner, B., Speizer, F. E., et al. (1991). Postmenopausal estrogen therapy and cardiovascular disease. Ten-year follow-up from the nurses’ health study. New England Journal of Medicine, 325, 756–762.PubMed
5.
Zurück zum Zitat Kher, A., Wang, M., Tsai, B. M., Pitcher, J. M., Greenbaum, E. S., Nagy, R. D., et al. (2005). Sex differences in the myocardial inflammatory response to acute injury. Shock, 23, 1–10.PubMedCrossRef Kher, A., Wang, M., Tsai, B. M., Pitcher, J. M., Greenbaum, E. S., Nagy, R. D., et al. (2005). Sex differences in the myocardial inflammatory response to acute injury. Shock, 23, 1–10.PubMedCrossRef
6.
Zurück zum Zitat Grady, D., Rubin, S. M., Petitti, D. B., Fox, C. S., Black, D., Ettinger, B., et al. (1992). Hormone therapy to prevent disease and prolong life in postmenopausal women. Annals of Internal Medicine, 117, 1016–1037.PubMed Grady, D., Rubin, S. M., Petitti, D. B., Fox, C. S., Black, D., Ettinger, B., et al. (1992). Hormone therapy to prevent disease and prolong life in postmenopausal women. Annals of Internal Medicine, 117, 1016–1037.PubMed
7.
Zurück zum Zitat Urbich, C. & Dimmeler, S. (2004). Endothelial progenitor cells: Characterization and role in vascular biology. Circulation Research, 95, 343–353.PubMedCrossRef Urbich, C. & Dimmeler, S. (2004). Endothelial progenitor cells: Characterization and role in vascular biology. Circulation Research, 95, 343–353.PubMedCrossRef
8.
Zurück zum Zitat Crisostomo, P. R., Wang, M., Markel, T. A., Lahm, T., Abarbanell, A. M., Herrmann, J. L., et al. (2007). Stem cell mechanisms and paracrine effects: Potential in cardiac surgery. Shock, 28, 375–383.PubMedCrossRef Crisostomo, P. R., Wang, M., Markel, T. A., Lahm, T., Abarbanell, A. M., Herrmann, J. L., et al. (2007). Stem cell mechanisms and paracrine effects: Potential in cardiac surgery. Shock, 28, 375–383.PubMedCrossRef
9.
Zurück zum Zitat Crisostomo, P. R., Abarbanell, A. M., Wang, M., Lahm, T., Wang, Y., & Meldrum, D. R. (2008). Embryonic stem cells attenuate myocardial dysfunction and inflammation after surgical global ischemia via paracrine actions. American Journal of Physiology. Heart and Circulatory Physiology, 295, H1726–H1735.PubMedCrossRef Crisostomo, P. R., Abarbanell, A. M., Wang, M., Lahm, T., Wang, Y., & Meldrum, D. R. (2008). Embryonic stem cells attenuate myocardial dysfunction and inflammation after surgical global ischemia via paracrine actions. American Journal of Physiology. Heart and Circulatory Physiology, 295, H1726–H1735.PubMedCrossRef
10.
Zurück zum Zitat Farhat, M. Y., Lavigne, M. C., & Ramwell, P. W. (1996). The vascular protective effects of estrogen. FASEB Journal, 10, 615–624.PubMed Farhat, M. Y., Lavigne, M. C., & Ramwell, P. W. (1996). The vascular protective effects of estrogen. FASEB Journal, 10, 615–624.PubMed
11.
Zurück zum Zitat Mosselman, S., Polman, J., & Dijkema, R. (1996). ER beta: Identification and characterization of a novel human estrogen receptor. FEBS Letters, 392, 49–53.PubMedCrossRef Mosselman, S., Polman, J., & Dijkema, R. (1996). ER beta: Identification and characterization of a novel human estrogen receptor. FEBS Letters, 392, 49–53.PubMedCrossRef
12.
Zurück zum Zitat Villablanca, A. C., Tenwolde, A., Lee, M., Huck, M., Mumenthaler, S., & Rutledge, J. C. (2009). 17beta-estradiol prevents early-stage atherosclerosis in estrogen receptor-alpha deficient female mice. J Cardiovasc Transl Res, 2, 289–299.PubMedCrossRef Villablanca, A. C., Tenwolde, A., Lee, M., Huck, M., Mumenthaler, S., & Rutledge, J. C. (2009). 17beta-estradiol prevents early-stage atherosclerosis in estrogen receptor-alpha deficient female mice. J Cardiovasc Transl Res, 2, 289–299.PubMedCrossRef
13.
Zurück zum Zitat Nilsson, S., Makela, S., Treuter, E., Tujague, M., Thomsen, J., Andersson, G., et al. (2001). Mechanisms of estrogen action. Physiological Reviews, 81, 1535–1565.PubMed Nilsson, S., Makela, S., Treuter, E., Tujague, M., Thomsen, J., Andersson, G., et al. (2001). Mechanisms of estrogen action. Physiological Reviews, 81, 1535–1565.PubMed
14.
Zurück zum Zitat Liu, H., Liu, K., & Bodenner, D. L. (2005). Estrogen receptor inhibits interleukin-6 gene expression by disruption of nuclear factor kappaB transactivation. Cytokine, 31, 251–257.PubMedCrossRef Liu, H., Liu, K., & Bodenner, D. L. (2005). Estrogen receptor inhibits interleukin-6 gene expression by disruption of nuclear factor kappaB transactivation. Cytokine, 31, 251–257.PubMedCrossRef
15.
Zurück zum Zitat Hamada, H., Kim, M. K., Iwakura, A., Ii, M., Thorne, T., Qin, G., et al. (2006). Estrogen receptors alpha and beta mediate contribution of bone marrow-derived endothelial progenitor cells to functional recovery after myocardial infarction. Circulation, 114, 2261–2270.PubMedCrossRef Hamada, H., Kim, M. K., Iwakura, A., Ii, M., Thorne, T., Qin, G., et al. (2006). Estrogen receptors alpha and beta mediate contribution of bone marrow-derived endothelial progenitor cells to functional recovery after myocardial infarction. Circulation, 114, 2261–2270.PubMedCrossRef
16.
Zurück zum Zitat Shao, R., Egecioglu, E., Weijdegard, B., Kopchick, J. J., Fernandez-Rodriguez, J., Andersson, N., et al. (2007). Dynamic regulation of estrogen receptor-alpha isoform expression in the mouse fallopian tube: Mechanistic insight into estrogen-dependent production and secretion of insulin-like growth factors. Am J Physiol Endocrinol Metab, 293, E1430–E1442.PubMedCrossRef Shao, R., Egecioglu, E., Weijdegard, B., Kopchick, J. J., Fernandez-Rodriguez, J., Andersson, N., et al. (2007). Dynamic regulation of estrogen receptor-alpha isoform expression in the mouse fallopian tube: Mechanistic insight into estrogen-dependent production and secretion of insulin-like growth factors. Am J Physiol Endocrinol Metab, 293, E1430–E1442.PubMedCrossRef
17.
Zurück zum Zitat Matthews, J., Almlof, T., Kietz, S., Leers, J., & Gustafsson, J. A. (2005). Estrogen receptor-alpha regulates SOCS-3 expression in human breast cancer cells. Biochemical and Biophysical Research Communications, 335, 168–174.PubMedCrossRef Matthews, J., Almlof, T., Kietz, S., Leers, J., & Gustafsson, J. A. (2005). Estrogen receptor-alpha regulates SOCS-3 expression in human breast cancer cells. Biochemical and Biophysical Research Communications, 335, 168–174.PubMedCrossRef
18.
Zurück zum Zitat Roggia, C., Gao, Y., Cenci, S., Weitzmann, M. N., Toraldo, G., Isaia, G., et al. (2001). Up-regulation of TNF-producing T cells in the bone marrow: A key mechanism by which estrogen deficiency induces bone loss in vivo. Proceedings of the National Academy of Sciences of the United States of America, 98, 13960–13965.PubMedCrossRef Roggia, C., Gao, Y., Cenci, S., Weitzmann, M. N., Toraldo, G., Isaia, G., et al. (2001). Up-regulation of TNF-producing T cells in the bone marrow: A key mechanism by which estrogen deficiency induces bone loss in vivo. Proceedings of the National Academy of Sciences of the United States of America, 98, 13960–13965.PubMedCrossRef
19.
Zurück zum Zitat Leung, S. W., Teoh, H., Keung, W., & Man, R. Y. (2007). Non-genomic vascular actions of female sex hormones: Physiological implications and signalling pathways. Clinical and Experimental Pharmacology and Physiology, 34, 822–826.PubMedCrossRef Leung, S. W., Teoh, H., Keung, W., & Man, R. Y. (2007). Non-genomic vascular actions of female sex hormones: Physiological implications and signalling pathways. Clinical and Experimental Pharmacology and Physiology, 34, 822–826.PubMedCrossRef
20.
Zurück zum Zitat Kim, K. H., Moriarty, K., & Bender, J. R. (2008). Vascular cell signaling by membrane estrogen receptors. Steroids, 73, 864–869.PubMedCrossRef Kim, K. H., Moriarty, K., & Bender, J. R. (2008). Vascular cell signaling by membrane estrogen receptors. Steroids, 73, 864–869.PubMedCrossRef
21.
Zurück zum Zitat Krasinski, K., Spyridopoulos, I., Asahara, T., van der Zee, R., Isner, J. M., & Losordo, D. W. (1997). Estradiol accelerates functional endothelial recovery after arterial injury. Circulation, 95, 1768–1772.PubMed Krasinski, K., Spyridopoulos, I., Asahara, T., van der Zee, R., Isner, J. M., & Losordo, D. W. (1997). Estradiol accelerates functional endothelial recovery after arterial injury. Circulation, 95, 1768–1772.PubMed
22.
Zurück zum Zitat Brouchet, L., Krust, A., Dupont, S., Chambon, P., Bayard, F., & Arnal, J. F. (2001). Estradiol accelerates reendothelialization in mouse carotid artery through estrogen receptor-alpha but not estrogen receptor-beta. Circulation, 103, 423–428.PubMed Brouchet, L., Krust, A., Dupont, S., Chambon, P., Bayard, F., & Arnal, J. F. (2001). Estradiol accelerates reendothelialization in mouse carotid artery through estrogen receptor-alpha but not estrogen receptor-beta. Circulation, 103, 423–428.PubMed
23.
Zurück zum Zitat Toutain, C. E., Filipe, C., Billon, A., Fontaine, C., Brouchet, L., Guery, J. C., et al. (2009). Estrogen receptor alpha expression in both endothelium and hematopoietic cells is required for the accelerative effect of estradiol on reendothelialization. Arteriosclerosis, Thrombosis and Vascular Biology, 29, 1543–1550.CrossRef Toutain, C. E., Filipe, C., Billon, A., Fontaine, C., Brouchet, L., Guery, J. C., et al. (2009). Estrogen receptor alpha expression in both endothelium and hematopoietic cells is required for the accelerative effect of estradiol on reendothelialization. Arteriosclerosis, Thrombosis and Vascular Biology, 29, 1543–1550.CrossRef
24.
Zurück zum Zitat Makela, S., Savolainen, H., Aavik, E., Myllarniemi, M., Strauss, L., Taskinen, E., et al. (1999). Differentiation between vasculoprotective and uterotrophic effects of ligands with different binding affinities to estrogen receptors alpha and beta. Proceedings of the National Academy of Sciences of the United States of America, 96, 7077–7082.PubMedCrossRef Makela, S., Savolainen, H., Aavik, E., Myllarniemi, M., Strauss, L., Taskinen, E., et al. (1999). Differentiation between vasculoprotective and uterotrophic effects of ligands with different binding affinities to estrogen receptors alpha and beta. Proceedings of the National Academy of Sciences of the United States of America, 96, 7077–7082.PubMedCrossRef
25.
Zurück zum Zitat Wang, M., Wang, Y., Weil, B., Abarbanell, A., Herrmann, J., Tan, J., et al. (2009). Estrogen receptor beta mediates increased activation of PI3K/Akt signaling and improved myocardial function in female hearts following acute ischemia. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 296, R972–R978.PubMed Wang, M., Wang, Y., Weil, B., Abarbanell, A., Herrmann, J., Tan, J., et al. (2009). Estrogen receptor beta mediates increased activation of PI3K/Akt signaling and improved myocardial function in female hearts following acute ischemia. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 296, R972–R978.PubMed
26.
Zurück zum Zitat Iafrati, M. D., Karas, R. H., Aronovitz, M., Kim, S., Sullivan, T. R., Jr., Lubahn, D. B., et al. (1997). Estrogen inhibits the vascular injury response in estrogen receptor alpha-deficient mice. Nature Medicine, 3, 545–548.PubMedCrossRef Iafrati, M. D., Karas, R. H., Aronovitz, M., Kim, S., Sullivan, T. R., Jr., Lubahn, D. B., et al. (1997). Estrogen inhibits the vascular injury response in estrogen receptor alpha-deficient mice. Nature Medicine, 3, 545–548.PubMedCrossRef
27.
Zurück zum Zitat Karas, R. H., Hodgin, J. B., Kwoun, M., Krege, J. H., Aronovitz, M., Mackey, W., et al. (1999). Estrogen inhibits the vascular injury response in estrogen receptor beta-deficient female mice. Proceedings of the National Academy of Sciences of the United States of America, 96, 15133–15136.PubMedCrossRef Karas, R. H., Hodgin, J. B., Kwoun, M., Krege, J. H., Aronovitz, M., Mackey, W., et al. (1999). Estrogen inhibits the vascular injury response in estrogen receptor beta-deficient female mice. Proceedings of the National Academy of Sciences of the United States of America, 96, 15133–15136.PubMedCrossRef
28.
Zurück zum Zitat Hulley, S., Grady, D., Bush, T., Furberg, C., Herrington, D., Riggs, B., et al. (1998). Randomized trial of estrogen plus progestin for secondary prevention of coronary heart disease in postmenopausal women. Heart and Estrogen/Progestin Replacement Study (HERS) Research Group. JAMA, 280, 605–613.PubMedCrossRef Hulley, S., Grady, D., Bush, T., Furberg, C., Herrington, D., Riggs, B., et al. (1998). Randomized trial of estrogen plus progestin for secondary prevention of coronary heart disease in postmenopausal women. Heart and Estrogen/Progestin Replacement Study (HERS) Research Group. JAMA, 280, 605–613.PubMedCrossRef
29.
Zurück zum Zitat Grady, D., Herrington, D., Bittner, V., Blumenthal, R., Davidson, M., Hlatky, M., et al. (2002). Cardiovascular disease outcomes during 6.8 years of hormone therapy: Heart and Estrogen/Progestin Replacement Study follow-up (HERS II). JAMA, 288, 49–57.PubMedCrossRef Grady, D., Herrington, D., Bittner, V., Blumenthal, R., Davidson, M., Hlatky, M., et al. (2002). Cardiovascular disease outcomes during 6.8 years of hormone therapy: Heart and Estrogen/Progestin Replacement Study follow-up (HERS II). JAMA, 288, 49–57.PubMedCrossRef
30.
Zurück zum Zitat Rossouw, J. E., Anderson, G. L., Prentice, R. L., LaCroix, A. Z., Kooperberg, C., Stefanick, M. L., et al. (2002). Risks and benefits of estrogen plus progestin in healthy postmenopausal women: Principal results From the Women’s Health Initiative randomized controlled trial. JAMA, 288, 321–333.PubMedCrossRef Rossouw, J. E., Anderson, G. L., Prentice, R. L., LaCroix, A. Z., Kooperberg, C., Stefanick, M. L., et al. (2002). Risks and benefits of estrogen plus progestin in healthy postmenopausal women: Principal results From the Women’s Health Initiative randomized controlled trial. JAMA, 288, 321–333.PubMedCrossRef
31.
Zurück zum Zitat Anderson, G. L., Limacher, M., Assaf, A. R., Bassford, T., Beresford, S. A., Black, H., et al. (2004). Effects of conjugated equine estrogen in postmenopausal women with hysterectomy: The Women’s Health Initiative randomized controlled trial. JAMA, 291, 1701–1712.PubMedCrossRef Anderson, G. L., Limacher, M., Assaf, A. R., Bassford, T., Beresford, S. A., Black, H., et al. (2004). Effects of conjugated equine estrogen in postmenopausal women with hysterectomy: The Women’s Health Initiative randomized controlled trial. JAMA, 291, 1701–1712.PubMedCrossRef
32.
Zurück zum Zitat Wang, M., Wang, Y., Abarbanell, A., Tan, J., Weil, B., Herrmann, J., et al. (2009). Both endogenous and exogenous testosterone decrease myocardial STAT3 activation and SOCS3 expression after acute ischemia and reperfusion. Surgery, 146, 138–144.PubMedCrossRef Wang, M., Wang, Y., Abarbanell, A., Tan, J., Weil, B., Herrmann, J., et al. (2009). Both endogenous and exogenous testosterone decrease myocardial STAT3 activation and SOCS3 expression after acute ischemia and reperfusion. Surgery, 146, 138–144.PubMedCrossRef
33.
Zurück zum Zitat Alexandersen, P., Haarbo, J., Byrjalsen, I., Lawaetz, H., & Christiansen, C. (1999). Natural androgens inhibit male atherosclerosis: A study in castrated, cholesterol-fed rabbits. Circulation Research, 84, 813–819.PubMed Alexandersen, P., Haarbo, J., Byrjalsen, I., Lawaetz, H., & Christiansen, C. (1999). Natural androgens inhibit male atherosclerosis: A study in castrated, cholesterol-fed rabbits. Circulation Research, 84, 813–819.PubMed
34.
Zurück zum Zitat Dockery, F., Bulpitt, C. J., Donaldson, M., Fernandez, S., & Rajkumar, C. (2003). The relationship between androgens and arterial stiffness in older men. Journal of the American Geriatrics Society, 51, 1627–1632.PubMedCrossRef Dockery, F., Bulpitt, C. J., Donaldson, M., Fernandez, S., & Rajkumar, C. (2003). The relationship between androgens and arterial stiffness in older men. Journal of the American Geriatrics Society, 51, 1627–1632.PubMedCrossRef
35.
Zurück zum Zitat Hougaku, H., Fleg, J. L., Najjar, S. S., Lakatta, E. G., Harman, S. M., Blackman, M. R., et al. (2006). Relationship between androgenic hormones and arterial stiffness, based on longitudinal hormone measurements. Am J Physiol Endocrinol Metab, 290, E234–E242.PubMedCrossRef Hougaku, H., Fleg, J. L., Najjar, S. S., Lakatta, E. G., Harman, S. M., Blackman, M. R., et al. (2006). Relationship between androgenic hormones and arterial stiffness, based on longitudinal hormone measurements. Am J Physiol Endocrinol Metab, 290, E234–E242.PubMedCrossRef
36.
Zurück zum Zitat Kang, S. M., Jang, Y., Kim, J. Y., Chung, N., Cho, S. Y., Chae, J. S., et al. (2002). Effect of oral administration of testosterone on brachial arterial vasoreactivity in men with coronary artery disease. American Journal of Cardiology, 89, 862–864.PubMedCrossRef Kang, S. M., Jang, Y., Kim, J. Y., Chung, N., Cho, S. Y., Chae, J. S., et al. (2002). Effect of oral administration of testosterone on brachial arterial vasoreactivity in men with coronary artery disease. American Journal of Cardiology, 89, 862–864.PubMedCrossRef
37.
Zurück zum Zitat Rosano, G. M., Leonardo, F., Pagnotta, P., Pelliccia, F., Panina, G., Cerquetani, E., et al. (1999). Acute anti-ischemic effect of testosterone in men with coronary artery disease. Circulation, 99, 1666–1670.PubMed Rosano, G. M., Leonardo, F., Pagnotta, P., Pelliccia, F., Panina, G., Cerquetani, E., et al. (1999). Acute anti-ischemic effect of testosterone in men with coronary artery disease. Circulation, 99, 1666–1670.PubMed
38.
Zurück zum Zitat Asahara, T., Murohara, T., Sullivan, A., Silver, M., van der Zee, R., Li, T., et al. (1997). Isolation of putative progenitor endothelial cells for angiogenesis. Science, 275, 964–967.PubMedCrossRef Asahara, T., Murohara, T., Sullivan, A., Silver, M., van der Zee, R., Li, T., et al. (1997). Isolation of putative progenitor endothelial cells for angiogenesis. Science, 275, 964–967.PubMedCrossRef
39.
Zurück zum Zitat Kocher, A. A., Schuster, M. D., Szabolcs, M. J., Takuma, S., Burkhoff, D., Wang, J., et al. (2001). Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nature Medicine, 7, 430–436.PubMedCrossRef Kocher, A. A., Schuster, M. D., Szabolcs, M. J., Takuma, S., Burkhoff, D., Wang, J., et al. (2001). Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nature Medicine, 7, 430–436.PubMedCrossRef
40.
Zurück zum Zitat Takahashi, T., Kalka, C., Masuda, H., Chen, D., Silver, M., Kearney, M., et al. (1999). Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nature Medicine, 5, 434–438.PubMedCrossRef Takahashi, T., Kalka, C., Masuda, H., Chen, D., Silver, M., Kearney, M., et al. (1999). Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nature Medicine, 5, 434–438.PubMedCrossRef
41.
Zurück zum Zitat Ceradini, D. J., Kulkarni, A. R., Callaghan, M. J., Tepper, O. M., Bastidas, N., Kleinman, M. E., et al. (2004). Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nature Medicine, 10, 858–864.PubMedCrossRef Ceradini, D. J., Kulkarni, A. R., Callaghan, M. J., Tepper, O. M., Bastidas, N., Kleinman, M. E., et al. (2004). Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nature Medicine, 10, 858–864.PubMedCrossRef
42.
Zurück zum Zitat Elmadbouh, I., Haider, H., Jiang, S., Idris, N. M., Lu, G., & Ashraf, M. (2007). Ex vivo delivered stromal cell-derived factor-1alpha promotes stem cell homing and induces angiomyogenesis in the infarcted myocardium. Journal of Molecular and Cellular Cardiology, 42, 792–803.PubMedCrossRef Elmadbouh, I., Haider, H., Jiang, S., Idris, N. M., Lu, G., & Ashraf, M. (2007). Ex vivo delivered stromal cell-derived factor-1alpha promotes stem cell homing and induces angiomyogenesis in the infarcted myocardium. Journal of Molecular and Cellular Cardiology, 42, 792–803.PubMedCrossRef
43.
Zurück zum Zitat Li, B., Sharpe, E. E., Maupin, A. B., Teleron, A. A., Pyle, A. L., Carmeliet, P., et al. (2006). VEGF and PlGF promote adult vasculogenesis by enhancing EPC recruitment and vessel formation at the site of tumor neovascularization. FASEB Journal, 20, 1495–1497.PubMedCrossRef Li, B., Sharpe, E. E., Maupin, A. B., Teleron, A. A., Pyle, A. L., Carmeliet, P., et al. (2006). VEGF and PlGF promote adult vasculogenesis by enhancing EPC recruitment and vessel formation at the site of tumor neovascularization. FASEB Journal, 20, 1495–1497.PubMedCrossRef
44.
Zurück zum Zitat Aicher, A., Heeschen, C., Mildner-Rihm, C., Urbich, C., Ihling, C., Technau-Ihling, K., et al. (2003). Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells. Nature Medicine, 9, 1370–1376.PubMedCrossRef Aicher, A., Heeschen, C., Mildner-Rihm, C., Urbich, C., Ihling, C., Technau-Ihling, K., et al. (2003). Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells. Nature Medicine, 9, 1370–1376.PubMedCrossRef
45.
Zurück zum Zitat Shintani, S., Murohara, T., Ikeda, H., Ueno, T., Honma, T., Katoh, A., et al. (2001). Mobilization of endothelial progenitor cells in patients with acute myocardial infarction. Circulation, 103, 2776–2779.PubMedCrossRef Shintani, S., Murohara, T., Ikeda, H., Ueno, T., Honma, T., Katoh, A., et al. (2001). Mobilization of endothelial progenitor cells in patients with acute myocardial infarction. Circulation, 103, 2776–2779.PubMedCrossRef
46.
Zurück zum Zitat Gill, M., Dias, S., Hattori, K., Rivera, M. L., Hicklin, D., Witte, L., et al. (2001). Vascular trauma induces rapid but transient mobilization of VEGFR2(+)AC133(+) endothelial precursor cells. Circulation Research, 88, 167–174.PubMed Gill, M., Dias, S., Hattori, K., Rivera, M. L., Hicklin, D., Witte, L., et al. (2001). Vascular trauma induces rapid but transient mobilization of VEGFR2(+)AC133(+) endothelial precursor cells. Circulation Research, 88, 167–174.PubMed
47.
Zurück zum Zitat Asahara, T., Takahashi, T., Masuda, H., Kalka, C., Chen, D., Iwaguro, H., et al. (1999). VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO Journal, 18, 3964–3972.PubMedCrossRef Asahara, T., Takahashi, T., Masuda, H., Kalka, C., Chen, D., Iwaguro, H., et al. (1999). VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO Journal, 18, 3964–3972.PubMedCrossRef
48.
Zurück zum Zitat Kalka, C., Masuda, H., Takahashi, T., Kalka-Moll, W. M., Silver, M., Kearney, M., et al. (2000). Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proceedings of the National Academy of Sciences of the United States of America, 97, 3422–3427.PubMedCrossRef Kalka, C., Masuda, H., Takahashi, T., Kalka-Moll, W. M., Silver, M., Kearney, M., et al. (2000). Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proceedings of the National Academy of Sciences of the United States of America, 97, 3422–3427.PubMedCrossRef
49.
Zurück zum Zitat Kawamoto, A., Gwon, H. C., Iwaguro, H., Yamaguchi, J. I., Uchida, S., Masuda, H., et al. (2001). Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation, 103, 634–637.PubMed Kawamoto, A., Gwon, H. C., Iwaguro, H., Yamaguchi, J. I., Uchida, S., Masuda, H., et al. (2001). Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation, 103, 634–637.PubMed
50.
Zurück zum Zitat Jujo, K., Ii, M., & Losordo, D. W. (2008). Endothelial progenitor cells in neovascularization of infarcted myocardium. Journal of Molecular and Cellular Cardiology, 45, 530–544.PubMedCrossRef Jujo, K., Ii, M., & Losordo, D. W. (2008). Endothelial progenitor cells in neovascularization of infarcted myocardium. Journal of Molecular and Cellular Cardiology, 45, 530–544.PubMedCrossRef
51.
Zurück zum Zitat Kang, H. J., Kim, H. S., Zhang, S. Y., Park, K. W., Cho, H. J., Koo, B. K., et al. (2004). Effects of intracoronary infusion of peripheral blood stem-cells mobilised with granulocyte-colony stimulating factor on left ventricular systolic function and restenosis after coronary stenting in myocardial infarction: The MAGIC cell randomised clinical trial. Lancet, 363, 751–756.PubMedCrossRef Kang, H. J., Kim, H. S., Zhang, S. Y., Park, K. W., Cho, H. J., Koo, B. K., et al. (2004). Effects of intracoronary infusion of peripheral blood stem-cells mobilised with granulocyte-colony stimulating factor on left ventricular systolic function and restenosis after coronary stenting in myocardial infarction: The MAGIC cell randomised clinical trial. Lancet, 363, 751–756.PubMedCrossRef
52.
Zurück zum Zitat Hill, J. M., Zalos, G., Halcox, J. P., Schenke, W. H., Waclawiw, M. A., Quyyumi, A. A., et al. (2003). Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. New England Journal of Medicine, 348, 593–600.PubMedCrossRef Hill, J. M., Zalos, G., Halcox, J. P., Schenke, W. H., Waclawiw, M. A., Quyyumi, A. A., et al. (2003). Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. New England Journal of Medicine, 348, 593–600.PubMedCrossRef
53.
Zurück zum Zitat Werner, N., Kosiol, S., Schiegl, T., Ahlers, P., Walenta, K., Link, A., et al. (2005). Circulating endothelial progenitor cells and cardiovascular outcomes. New England Journal of Medicine, 353, 999–1007.PubMedCrossRef Werner, N., Kosiol, S., Schiegl, T., Ahlers, P., Walenta, K., Link, A., et al. (2005). Circulating endothelial progenitor cells and cardiovascular outcomes. New England Journal of Medicine, 353, 999–1007.PubMedCrossRef
54.
Zurück zum Zitat Scheubel, R. J., Zorn, H., Silber, R. E., Kuss, O., Morawietz, H., Holtz, J., et al. (2003). Age-dependent depression in circulating endothelial progenitor cells in patients undergoing coronary artery bypass grafting. Journal of the American College of Cardiology, 42, 2073–2080.PubMedCrossRef Scheubel, R. J., Zorn, H., Silber, R. E., Kuss, O., Morawietz, H., Holtz, J., et al. (2003). Age-dependent depression in circulating endothelial progenitor cells in patients undergoing coronary artery bypass grafting. Journal of the American College of Cardiology, 42, 2073–2080.PubMedCrossRef
55.
Zurück zum Zitat Tepper, O. M., Galiano, R. D., Capla, J. M., Kalka, C., Gagne, P. J., Jacobowitz, G. R., et al. (2002). Human endothelial progenitor cells from type II diabetics exhibit impaired proliferation, adhesion, and incorporation into vascular structures. Circulation, 106, 2781–2786.PubMedCrossRef Tepper, O. M., Galiano, R. D., Capla, J. M., Kalka, C., Gagne, P. J., Jacobowitz, G. R., et al. (2002). Human endothelial progenitor cells from type II diabetics exhibit impaired proliferation, adhesion, and incorporation into vascular structures. Circulation, 106, 2781–2786.PubMedCrossRef
56.
Zurück zum Zitat Loomans, C. J., de Koning, E. J., Staal, F. J., Rookmaaker, M. B., Verseyden, C., de Boer, H. C., et al. (2004). Endothelial progenitor cell dysfunction: A novel concept in the pathogenesis of vascular complications of type 1 diabetes. Diabetes, 53, 195–199.PubMedCrossRef Loomans, C. J., de Koning, E. J., Staal, F. J., Rookmaaker, M. B., Verseyden, C., de Boer, H. C., et al. (2004). Endothelial progenitor cell dysfunction: A novel concept in the pathogenesis of vascular complications of type 1 diabetes. Diabetes, 53, 195–199.PubMedCrossRef
57.
Zurück zum Zitat Simper, D., Wang, S., Deb, A., Holmes, D., McGregor, C., Frantz, R., et al. (2003). Endothelial progenitor cells are decreased in blood of cardiac allograft patients with vasculopathy and endothelial cells of noncardiac origin are enriched in transplant atherosclerosis. Circulation, 108, 143–149.PubMedCrossRef Simper, D., Wang, S., Deb, A., Holmes, D., McGregor, C., Frantz, R., et al. (2003). Endothelial progenitor cells are decreased in blood of cardiac allograft patients with vasculopathy and endothelial cells of noncardiac origin are enriched in transplant atherosclerosis. Circulation, 108, 143–149.PubMedCrossRef
58.
Zurück zum Zitat George, J., Goldstein, E., Abashidze, S., Deutsch, V., Shmilovich, H., Finkelstein, A., et al. (2004). Circulating endothelial progenitor cells in patients with unstable angina: Association with systemic inflammation. European Heart Journal, 25, 1003–1008.PubMedCrossRef George, J., Goldstein, E., Abashidze, S., Deutsch, V., Shmilovich, H., Finkelstein, A., et al. (2004). Circulating endothelial progenitor cells in patients with unstable angina: Association with systemic inflammation. European Heart Journal, 25, 1003–1008.PubMedCrossRef
59.
Zurück zum Zitat Choi, J. H., Kim, K. L., Huh, W., Kim, B., Byun, J., Suh, W., et al. (2004). Decreased number and impaired angiogenic function of endothelial progenitor cells in patients with chronic renal failure. Arteriosclerosis, Thrombosis, and Vascular Biology, 24, 1246–1252.PubMedCrossRef Choi, J. H., Kim, K. L., Huh, W., Kim, B., Byun, J., Suh, W., et al. (2004). Decreased number and impaired angiogenic function of endothelial progenitor cells in patients with chronic renal failure. Arteriosclerosis, Thrombosis, and Vascular Biology, 24, 1246–1252.PubMedCrossRef
60.
Zurück zum Zitat Imanishi, T., Moriwaki, C., Hano, T., & Nishio, I. (2005). Endothelial progenitor cell senescence is accelerated in both experimental hypertensive rats and patients with essential hypertension. Journal of Hypertension, 23, 1831–1837.PubMedCrossRef Imanishi, T., Moriwaki, C., Hano, T., & Nishio, I. (2005). Endothelial progenitor cell senescence is accelerated in both experimental hypertensive rats and patients with essential hypertension. Journal of Hypertension, 23, 1831–1837.PubMedCrossRef
61.
Zurück zum Zitat Ghani, U., Shuaib, A., Salam, A., Nasir, A., Shuaib, U., Jeerakathil, T., et al. (2005). Endothelial progenitor cells during cerebrovascular disease. Stroke, 36, 151–153.PubMedCrossRef Ghani, U., Shuaib, A., Salam, A., Nasir, A., Shuaib, U., Jeerakathil, T., et al. (2005). Endothelial progenitor cells during cerebrovascular disease. Stroke, 36, 151–153.PubMedCrossRef
62.
Zurück zum Zitat Iwakura, A., Luedemann, C., Shastry, S., Hanley, A., Kearney, M., Aikawa, R., et al. (2003). Estrogen-mediated, endothelial nitric oxide synthase-dependent mobilization of bone marrow-derived endothelial progenitor cells contributes to reendothelialization after arterial injury. Circulation, 108, 3115–3121.PubMedCrossRef Iwakura, A., Luedemann, C., Shastry, S., Hanley, A., Kearney, M., Aikawa, R., et al. (2003). Estrogen-mediated, endothelial nitric oxide synthase-dependent mobilization of bone marrow-derived endothelial progenitor cells contributes to reendothelialization after arterial injury. Circulation, 108, 3115–3121.PubMedCrossRef
63.
Zurück zum Zitat Strehlow, K., Werner, N., Berweiler, J., Link, A., Dirnagl, U., Priller, J., et al. (2003). Estrogen increases bone marrow-derived endothelial progenitor cell production and diminishes neointima formation. Circulation, 107, 3059–3065.PubMedCrossRef Strehlow, K., Werner, N., Berweiler, J., Link, A., Dirnagl, U., Priller, J., et al. (2003). Estrogen increases bone marrow-derived endothelial progenitor cell production and diminishes neointima formation. Circulation, 107, 3059–3065.PubMedCrossRef
64.
Zurück zum Zitat Zhao, X., Huang, L., Yin, Y., Fang, Y., Zhao, J., & Chen, J. (2008). Estrogen induces endothelial progenitor cells proliferation and migration by estrogen receptors and PI3K-dependent pathways. Microvascular Research, 75, 45–52.PubMedCrossRef Zhao, X., Huang, L., Yin, Y., Fang, Y., Zhao, J., & Chen, J. (2008). Estrogen induces endothelial progenitor cells proliferation and migration by estrogen receptors and PI3K-dependent pathways. Microvascular Research, 75, 45–52.PubMedCrossRef
65.
Zurück zum Zitat Iwakura, A., Shastry, S., Luedemann, C., Hamada, H., Kawamoto, A., Kishore, R., et al. (2006). Estradiol enhances recovery after myocardial infarction by augmenting incorporation of bone marrow-derived endothelial progenitor cells into sites of ischemia-induced neovascularization via endothelial nitric oxide synthase-mediated activation of matrix metalloproteinase-9. Circulation, 113, 1605–1614.PubMedCrossRef Iwakura, A., Shastry, S., Luedemann, C., Hamada, H., Kawamoto, A., Kishore, R., et al. (2006). Estradiol enhances recovery after myocardial infarction by augmenting incorporation of bone marrow-derived endothelial progenitor cells into sites of ischemia-induced neovascularization via endothelial nitric oxide synthase-mediated activation of matrix metalloproteinase-9. Circulation, 113, 1605–1614.PubMedCrossRef
66.
Zurück zum Zitat Fontaine, V., Filipe, C., Werner, N., Gourdy, P., Billon, A., Garmy-Susini, B., et al. (2006). Essential role of bone marrow fibroblast growth factor-2 in the effect of estradiol on reendothelialization and endothelial progenitor cell mobilization. American Journal of Pathology, 169, 1855–1862.PubMedCrossRef Fontaine, V., Filipe, C., Werner, N., Gourdy, P., Billon, A., Garmy-Susini, B., et al. (2006). Essential role of bone marrow fibroblast growth factor-2 in the effect of estradiol on reendothelialization and endothelial progenitor cell mobilization. American Journal of Pathology, 169, 1855–1862.PubMedCrossRef
67.
Zurück zum Zitat Rousseau, A., Ayoubi, F., Deveaux, C., Charbit, B., Delmau, C., Christin-Maitre, S., et al. (2009). Impact of age and gender interaction on circulating endothelial progenitor cells in healthy subjects. Fertility and Sterility (in press). Rousseau, A., Ayoubi, F., Deveaux, C., Charbit, B., Delmau, C., Christin-Maitre, S., et al. (2009). Impact of age and gender interaction on circulating endothelial progenitor cells in healthy subjects. Fertility and Sterility (in press).
68.
Zurück zum Zitat Lemieux, C., Cloutier, I., & Tanguay, J. F. (2009). Menstrual cycle influences endothelial progenitor cell regulation: A link to gender differences in vascular protection? International Journal of Cardiology, 136, 200–210.PubMedCrossRef Lemieux, C., Cloutier, I., & Tanguay, J. F. (2009). Menstrual cycle influences endothelial progenitor cell regulation: A link to gender differences in vascular protection? International Journal of Cardiology, 136, 200–210.PubMedCrossRef
69.
Zurück zum Zitat Fadini, G. P., de Kreutzenberg, S., Albiero, M., Coracina, A., Pagnin, E., Baesso, I., et al. (2008). Gender differences in endothelial progenitor cells and cardiovascular risk profile: The role of female estrogens. Arteriosclerosis, Thrombosis, and Vascular Biology, 28, 997–1004.PubMedCrossRef Fadini, G. P., de Kreutzenberg, S., Albiero, M., Coracina, A., Pagnin, E., Baesso, I., et al. (2008). Gender differences in endothelial progenitor cells and cardiovascular risk profile: The role of female estrogens. Arteriosclerosis, Thrombosis, and Vascular Biology, 28, 997–1004.PubMedCrossRef
70.
Zurück zum Zitat Hoetzer, G. L., MacEneaney, O. J., Irmiger, H. M., Keith, R., Van Guilder, G. P., Stauffer, B. L., et al. (2007). Gender differences in circulating endothelial progenitor cell colony-forming capacity and migratory activity in middle-aged adults. American Journal of Cardiology, 99, 46–48.PubMedCrossRef Hoetzer, G. L., MacEneaney, O. J., Irmiger, H. M., Keith, R., Van Guilder, G. P., Stauffer, B. L., et al. (2007). Gender differences in circulating endothelial progenitor cell colony-forming capacity and migratory activity in middle-aged adults. American Journal of Cardiology, 99, 46–48.PubMedCrossRef
71.
Zurück zum Zitat Foresta, C., Caretta, N., Lana, A., De Toni, L., Biagioli, A., Ferlin, A., et al. (2006). Reduced number of circulating endothelial progenitor cells in hypogonadal men. Journal of Clinical Endocrinology and Metabolism, 91, 4599–4602.PubMedCrossRef Foresta, C., Caretta, N., Lana, A., De Toni, L., Biagioli, A., Ferlin, A., et al. (2006). Reduced number of circulating endothelial progenitor cells in hypogonadal men. Journal of Clinical Endocrinology and Metabolism, 91, 4599–4602.PubMedCrossRef
72.
Zurück zum Zitat Foresta, C., Zuccarello, D., De Toni, L., Garolla, A., Caretta, N., & Ferlin, A. (2008). Androgens stimulate endothelial progenitor cells through an androgen receptor-mediated pathway. Clinical Endocrinology (Oxford), 68, 284–289. Foresta, C., Zuccarello, D., De Toni, L., Garolla, A., Caretta, N., & Ferlin, A. (2008). Androgens stimulate endothelial progenitor cells through an androgen receptor-mediated pathway. Clinical Endocrinology (Oxford), 68, 284–289.
73.
Zurück zum Zitat Fadini, G. P., Albiero, M., Cignarella, A., Bolego, C., Pinna, C., Boscaro, E., et al. (2009). Effects of androgens on endothelial progenitor cells in vitro and in vivo. Clinical Science (London), 117, 355–364.CrossRef Fadini, G. P., Albiero, M., Cignarella, A., Bolego, C., Pinna, C., Boscaro, E., et al. (2009). Effects of androgens on endothelial progenitor cells in vitro and in vivo. Clinical Science (London), 117, 355–364.CrossRef
74.
Zurück zum Zitat Kim, S. W., Hwang, J. H., Cheon, J. M., Park, N. S., Park, S. E., Park, S. J., et al. (2005). Direct and indirect effects of androgens on survival of hematopoietic progenitor cells in vitro. Journal of Korean Medical Science, 20, 409–416.PubMedCrossRef Kim, S. W., Hwang, J. H., Cheon, J. M., Park, N. S., Park, S. E., Park, S. J., et al. (2005). Direct and indirect effects of androgens on survival of hematopoietic progenitor cells in vitro. Journal of Korean Medical Science, 20, 409–416.PubMedCrossRef
75.
Zurück zum Zitat Garolla, A., D’Inca, R., Checchin, D., Biagioli, A., De Toni, L., Nicoletti, V., et al. (2009). Reduced endothelial progenitor cell number and function in inflammatory bowel disease: A possible link to the pathogenesis. American Journal of Gastroenterology, 104, 2500–2507.PubMedCrossRef Garolla, A., D’Inca, R., Checchin, D., Biagioli, A., De Toni, L., Nicoletti, V., et al. (2009). Reduced endothelial progenitor cell number and function in inflammatory bowel disease: A possible link to the pathogenesis. American Journal of Gastroenterology, 104, 2500–2507.PubMedCrossRef
76.
Zurück zum Zitat Conget, P. A., & Minguell, J. J. (1999). Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells. Journal of Cellular Physiology, 181, 67–73.PubMedCrossRef Conget, P. A., & Minguell, J. J. (1999). Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells. Journal of Cellular Physiology, 181, 67–73.PubMedCrossRef
77.
Zurück zum Zitat Toma, C., Pittenger, M. F., Cahill, K. S., Byrne, B. J., & Kessler, P. D. (2002). Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation, 105, 93–98.PubMedCrossRef Toma, C., Pittenger, M. F., Cahill, K. S., Byrne, B. J., & Kessler, P. D. (2002). Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation, 105, 93–98.PubMedCrossRef
78.
Zurück zum Zitat Crisostomo, P. R., Markel, T. A., Wang, Y., & Meldrum, D. R. (2008). Surgically relevant aspects of stem cell paracrine effects. Surgery, 143, 577–581.PubMedCrossRef Crisostomo, P. R., Markel, T. A., Wang, Y., & Meldrum, D. R. (2008). Surgically relevant aspects of stem cell paracrine effects. Surgery, 143, 577–581.PubMedCrossRef
79.
Zurück zum Zitat Di Nicola, M., Carlo-Stella, C., Magni, M., Milanesi, M., Longoni, P. D., Matteucci, P., et al. (2002). Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood, 99, 3838–3843.PubMedCrossRef Di Nicola, M., Carlo-Stella, C., Magni, M., Milanesi, M., Longoni, P. D., Matteucci, P., et al. (2002). Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood, 99, 3838–3843.PubMedCrossRef
80.
Zurück zum Zitat Abdel-Latif, A., Bolli, R., Tleyjeh, I. M., Montori, V. M., Perin, E. C., Hornung, C. A., et al. (2007). Adult bone marrow-derived cells for cardiac repair: A systematic review and meta-analysis. Archives of Internal Medicine, 167, 989–997.PubMedCrossRef Abdel-Latif, A., Bolli, R., Tleyjeh, I. M., Montori, V. M., Perin, E. C., Hornung, C. A., et al. (2007). Adult bone marrow-derived cells for cardiac repair: A systematic review and meta-analysis. Archives of Internal Medicine, 167, 989–997.PubMedCrossRef
81.
Zurück zum Zitat Lipinski, M. J., Biondi-Zoccai, G. G., Abbate, A., Khianey, R., Sheiban, I., Bartunek, J., et al. (2007). Impact of intracoronary cell therapy on left ventricular function in the setting of acute myocardial infarction: A collaborative systematic review and meta-analysis of controlled clinical trials. Journal of the American College of Cardiology, 50, 1761–1767.PubMedCrossRef Lipinski, M. J., Biondi-Zoccai, G. G., Abbate, A., Khianey, R., Sheiban, I., Bartunek, J., et al. (2007). Impact of intracoronary cell therapy on left ventricular function in the setting of acute myocardial infarction: A collaborative systematic review and meta-analysis of controlled clinical trials. Journal of the American College of Cardiology, 50, 1761–1767.PubMedCrossRef
82.
Zurück zum Zitat Crisostomo, P. R., Wang, M., Herring, C. M., Morrell, E. D., Seshadri, P., Meldrum, K. K., et al. (2006). Sex dimorphisms in activated mesenchymal stem cell function. Shock, 26, 571–574.PubMedCrossRef Crisostomo, P. R., Wang, M., Herring, C. M., Morrell, E. D., Seshadri, P., Meldrum, K. K., et al. (2006). Sex dimorphisms in activated mesenchymal stem cell function. Shock, 26, 571–574.PubMedCrossRef
83.
Zurück zum Zitat Hiasa, K., Egashira, K., Kitamoto, S., Ishibashi, M., Inoue, S., Ni, W., et al. (2004). Bone marrow mononuclear cell therapy limits myocardial infarct size through vascular endothelial growth factor. Basic Research in Cardiology, 99, 165–172.PubMedCrossRef Hiasa, K., Egashira, K., Kitamoto, S., Ishibashi, M., Inoue, S., Ni, W., et al. (2004). Bone marrow mononuclear cell therapy limits myocardial infarct size through vascular endothelial growth factor. Basic Research in Cardiology, 99, 165–172.PubMedCrossRef
84.
Zurück zum Zitat Meldrum, D. R. (1998). Tumor necrosis factor in the heart. American Journal of Physiology, 274, R577–R595.PubMed Meldrum, D. R. (1998). Tumor necrosis factor in the heart. American Journal of Physiology, 274, R577–R595.PubMed
85.
Zurück zum Zitat Crisostomo, P. R., Markel, T. A., Wang, M., Lahm, T., Lillemoe, K. D., & Meldrum, D. R. (2007). In the adult mesenchymal stem cell population, source gender is a biologically relevant aspect of protective power. Surgery, 142, 215–221.PubMedCrossRef Crisostomo, P. R., Markel, T. A., Wang, M., Lahm, T., Lillemoe, K. D., & Meldrum, D. R. (2007). In the adult mesenchymal stem cell population, source gender is a biologically relevant aspect of protective power. Surgery, 142, 215–221.PubMedCrossRef
86.
Zurück zum Zitat Erwin, G. S., Crisostomo, P. R., Wang, Y., Wang, M., Markel, T. A., Guzman, M., et al. (2009). Estradiol-treated mesenchymal stem cells improve myocardial recovery after ischemia. Journal of Surgical Research, 152, 319–324.PubMedCrossRef Erwin, G. S., Crisostomo, P. R., Wang, Y., Wang, M., Markel, T. A., Guzman, M., et al. (2009). Estradiol-treated mesenchymal stem cells improve myocardial recovery after ischemia. Journal of Surgical Research, 152, 319–324.PubMedCrossRef
87.
Zurück zum Zitat Wang, M., Tan, J., Coffey, A., Fehrenbacher, J., Weil, B. R., & Meldrum, D. R. (2009). Signal transducer and activator of transcription 3-stimulated hypoxia inducible factor-1alpha mediates estrogen receptor-alpha-induced mesenchymal stem cell vascular endothelial growth factor production. Journal of Thoracic and Cardiovascular Surgery, 138, 163–171, 171 e161.PubMedCrossRef Wang, M., Tan, J., Coffey, A., Fehrenbacher, J., Weil, B. R., & Meldrum, D. R. (2009). Signal transducer and activator of transcription 3-stimulated hypoxia inducible factor-1alpha mediates estrogen receptor-alpha-induced mesenchymal stem cell vascular endothelial growth factor production. Journal of Thoracic and Cardiovascular Surgery, 138, 163–171, 171 e161.PubMedCrossRef
88.
Zurück zum Zitat Forsythe, J. A., Jiang, B. H., Iyer, N. V., Agani, F., Leung, S. W., Koos, R. D., et al. (1996). Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Molecular and Cellular Biology, 16, 4604–4613.PubMed Forsythe, J. A., Jiang, B. H., Iyer, N. V., Agani, F., Leung, S. W., Koos, R. D., et al. (1996). Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Molecular and Cellular Biology, 16, 4604–4613.PubMed
89.
Zurück zum Zitat Wang, M., Zhang, W., Crisostomo, P., Markel, T., Meldrum, K. K., Fu, X. Y., et al. (2007). STAT3 mediates bone marrow mesenchymal stem cell VEGF production. Journal of Molecular and Cellular Cardiology, 42, 1009–1015.PubMedCrossRef Wang, M., Zhang, W., Crisostomo, P., Markel, T., Meldrum, K. K., Fu, X. Y., et al. (2007). STAT3 mediates bone marrow mesenchymal stem cell VEGF production. Journal of Molecular and Cellular Cardiology, 42, 1009–1015.PubMedCrossRef
90.
Zurück zum Zitat Niu, G., Wright, K. L., Huang, M., Song, L., Haura, E., Turkson, J., et al. (2002). Constitutive Stat3 activity up-regulates VEGF expression and tumor angiogenesis. Oncogene, 21, 2000–2008.PubMedCrossRef Niu, G., Wright, K. L., Huang, M., Song, L., Haura, E., Turkson, J., et al. (2002). Constitutive Stat3 activity up-regulates VEGF expression and tumor angiogenesis. Oncogene, 21, 2000–2008.PubMedCrossRef
91.
Zurück zum Zitat Platt, D. H., Bartoli, M., El-Remessy, A. B., Al-Shabrawey, M., Lemtalsi, T., Fulton, D., et al. (2005). Peroxynitrite increases VEGF expression in vascular endothelial cells via STAT3. Free Radical Biology and Medicine, 39, 1353–1361.PubMedCrossRef Platt, D. H., Bartoli, M., El-Remessy, A. B., Al-Shabrawey, M., Lemtalsi, T., Fulton, D., et al. (2005). Peroxynitrite increases VEGF expression in vascular endothelial cells via STAT3. Free Radical Biology and Medicine, 39, 1353–1361.PubMedCrossRef
92.
Zurück zum Zitat Xu, Q., Briggs, J., Park, S., Niu, G., Kortylewski, M., Zhang, S., et al. (2005). Targeting Stat3 blocks both HIF-1 and VEGF expression induced by multiple oncogenic growth signaling pathways. Oncogene, 24, 5552–5560.PubMedCrossRef Xu, Q., Briggs, J., Park, S., Niu, G., Kortylewski, M., Zhang, S., et al. (2005). Targeting Stat3 blocks both HIF-1 and VEGF expression induced by multiple oncogenic growth signaling pathways. Oncogene, 24, 5552–5560.PubMedCrossRef
93.
Zurück zum Zitat Gao, H., Bryzgalova, G., Hedman, E., Khan, A., Efendic, S., Gustafsson, J. A., et al. (2006). Long-term administration of estradiol decreases expression of hepatic lipogenic genes and improves insulin sensitivity in ob/ob mice: A possible mechanism is through direct regulation of signal transducer and activator of transcription 3. Molecular Endocrinology, 20, 1287–1299.PubMedCrossRef Gao, H., Bryzgalova, G., Hedman, E., Khan, A., Efendic, S., Gustafsson, J. A., et al. (2006). Long-term administration of estradiol decreases expression of hepatic lipogenic genes and improves insulin sensitivity in ob/ob mice: A possible mechanism is through direct regulation of signal transducer and activator of transcription 3. Molecular Endocrinology, 20, 1287–1299.PubMedCrossRef
94.
Zurück zum Zitat Yun, S. P., Lee, M. Y., Ryu, J. M., Song, C. H., & Han, H. J. (2009). Role of HIF-1alpha and VEGF in human mesenchymal stem cell proliferation by 17beta-estradiol: Involvement of PKC, PI3K/Akt, and MAPKs. American Journal of Physiology. Cell Physiology, 296, C317–C326.PubMedCrossRef Yun, S. P., Lee, M. Y., Ryu, J. M., Song, C. H., & Han, H. J. (2009). Role of HIF-1alpha and VEGF in human mesenchymal stem cell proliferation by 17beta-estradiol: Involvement of PKC, PI3K/Akt, and MAPKs. American Journal of Physiology. Cell Physiology, 296, C317–C326.PubMedCrossRef
95.
Zurück zum Zitat Zhou, S., Turgeman, G., Harris, S. E., Leitman, D. C., Komm, B. S., Bodine, P. V., et al. (2003). Estrogens activate bone morphogenetic protein-2 gene transcription in mouse mesenchymal stem cells. Molecular Endocrinology, 17, 56–66.PubMedCrossRef Zhou, S., Turgeman, G., Harris, S. E., Leitman, D. C., Komm, B. S., Bodine, P. V., et al. (2003). Estrogens activate bone morphogenetic protein-2 gene transcription in mouse mesenchymal stem cells. Molecular Endocrinology, 17, 56–66.PubMedCrossRef
96.
Zurück zum Zitat Wang, M., Tsai, B. M., Crisostomo, P. R., & Meldrum, D. R. (2006). Tumor necrosis factor receptor 1 signaling resistance in the female myocardium during ischemia. Circulation, 114, I282–I289.PubMedCrossRef Wang, M., Tsai, B. M., Crisostomo, P. R., & Meldrum, D. R. (2006). Tumor necrosis factor receptor 1 signaling resistance in the female myocardium during ischemia. Circulation, 114, I282–I289.PubMedCrossRef
97.
Zurück zum Zitat Crisostomo, P. R., Wang, M., Herring, C. M., Markel, T. A., Meldrum, K. K., Lillemoe, K. D., et al. (2007). Gender differences in injury induced mesenchymal stem cell apoptosis and VEGF, TNF, IL-6 expression: Role of the 55 kDa TNF receptor (TNFR1). Journal of Molecular and Cellular Cardiology, 42, 142–149.PubMedCrossRef Crisostomo, P. R., Wang, M., Herring, C. M., Markel, T. A., Meldrum, K. K., Lillemoe, K. D., et al. (2007). Gender differences in injury induced mesenchymal stem cell apoptosis and VEGF, TNF, IL-6 expression: Role of the 55 kDa TNF receptor (TNFR1). Journal of Molecular and Cellular Cardiology, 42, 142–149.PubMedCrossRef
98.
Zurück zum Zitat Markel, T. A., Crisostomo, P. R., Wang, M., Wang, Y., Lahm, T., Novotny, N. M., et al. (2008). TNFR1 signaling resistance associated with female stem cell cytokine production is independent of TNFR2-mediated pathways. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 295, R1124–R1130.PubMed Markel, T. A., Crisostomo, P. R., Wang, M., Wang, Y., Lahm, T., Novotny, N. M., et al. (2008). TNFR1 signaling resistance associated with female stem cell cytokine production is independent of TNFR2-mediated pathways. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 295, R1124–R1130.PubMed
99.
Zurück zum Zitat DiSilvio, L., Jameson, J., Gamie, Z., Giannoudis, P. V., & Tsiridis, E. (2006). In vitro evaluation of the direct effect of estradiol on human osteoblasts (HOB) and human mesenchymal stem cells (h-MSCs). Injury, 37(Suppl 3), S33–S42.PubMedCrossRef DiSilvio, L., Jameson, J., Gamie, Z., Giannoudis, P. V., & Tsiridis, E. (2006). In vitro evaluation of the direct effect of estradiol on human osteoblasts (HOB) and human mesenchymal stem cells (h-MSCs). Injury, 37(Suppl 3), S33–S42.PubMedCrossRef
100.
Zurück zum Zitat Hong, L., Colpan, A., & Peptan, I. A. (2006). Modulations of 17-beta estradiol on osteogenic and adipogenic differentiations of human mesenchymal stem cells. Tissue Engineering, 12, 2747–2753.PubMedCrossRef Hong, L., Colpan, A., & Peptan, I. A. (2006). Modulations of 17-beta estradiol on osteogenic and adipogenic differentiations of human mesenchymal stem cells. Tissue Engineering, 12, 2747–2753.PubMedCrossRef
101.
Zurück zum Zitat Zhou, S., Zilberman, Y., Wassermann, K., Bain, S. D., Sadovsky, Y., & Gazit, D. (2001). Estrogen modulates estrogen receptor alpha and beta expression, osteogenic activity, and apoptosis in mesenchymal stem cells (MSCs) of osteoporotic mice. Journal of Cellular Biochemistry. Supplement, Suppl 36, 144–155.PubMedCrossRef Zhou, S., Zilberman, Y., Wassermann, K., Bain, S. D., Sadovsky, Y., & Gazit, D. (2001). Estrogen modulates estrogen receptor alpha and beta expression, osteogenic activity, and apoptosis in mesenchymal stem cells (MSCs) of osteoporotic mice. Journal of Cellular Biochemistry. Supplement, Suppl 36, 144–155.PubMedCrossRef
102.
Zurück zum Zitat Cha, Y., Kwon, S. J., Seol, W., & Park, K. S. (2008). Estrogen receptor-alpha mediates the effects of estradiol on telomerase activity in human mesenchymal stem cells. Molecules and Cells, 26, 454–458.PubMed Cha, Y., Kwon, S. J., Seol, W., & Park, K. S. (2008). Estrogen receptor-alpha mediates the effects of estradiol on telomerase activity in human mesenchymal stem cells. Molecules and Cells, 26, 454–458.PubMed
103.
Zurück zum Zitat Ray, R., Herring, C. M., Markel, T. A., Crisostomo, P. R., Wang, M., Weil, B., et al. (2008). Deleterious effects of endogenous and exogenous testosterone on mesenchymal stem cell VEGF production. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 294, R1498–R1503.PubMed Ray, R., Herring, C. M., Markel, T. A., Crisostomo, P. R., Wang, M., Weil, B., et al. (2008). Deleterious effects of endogenous and exogenous testosterone on mesenchymal stem cell VEGF production. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 294, R1498–R1503.PubMed
104.
Zurück zum Zitat Min, J. Y., Yang, Y., Sullivan, M. F., Ke, Q., Converso, K. L., Chen, Y., et al. (2003). Long-term improvement of cardiac function in rats after infarction by transplantation of embryonic stem cells. Journal of Thoracic and Cardiovascular Surgery, 125, 361–369.PubMedCrossRef Min, J. Y., Yang, Y., Sullivan, M. F., Ke, Q., Converso, K. L., Chen, Y., et al. (2003). Long-term improvement of cardiac function in rats after infarction by transplantation of embryonic stem cells. Journal of Thoracic and Cardiovascular Surgery, 125, 361–369.PubMedCrossRef
105.
Zurück zum Zitat Leor, J., Gerecht, S., Cohen, S., Miller, L., Holbova, R., Ziskind, A., et al. (2007). Human embryonic stem cell transplantation to repair the infarcted myocardium. Heart, 93, 1278–1284.PubMedCrossRef Leor, J., Gerecht, S., Cohen, S., Miller, L., Holbova, R., Ziskind, A., et al. (2007). Human embryonic stem cell transplantation to repair the infarcted myocardium. Heart, 93, 1278–1284.PubMedCrossRef
106.
Zurück zum Zitat Nussbaum, J., Minami, E., Laflamme, M. A., Virag, J. A., Ware, C. B., Masino, A., et al. (2007). Transplantation of undifferentiated murine embryonic stem cells in the heart: Teratoma formation and immune response. FASEB Journal, 21, 1345–1357.PubMedCrossRef Nussbaum, J., Minami, E., Laflamme, M. A., Virag, J. A., Ware, C. B., Masino, A., et al. (2007). Transplantation of undifferentiated murine embryonic stem cells in the heart: Teratoma formation and immune response. FASEB Journal, 21, 1345–1357.PubMedCrossRef
107.
Zurück zum Zitat Behfar, A., Zingman, L. V., Hodgson, D. M., Rauzier, J. M., Kane, G. C., Terzic, A., et al. (2002). Stem cell differentiation requires a paracrine pathway in the heart. FASEB Journal, 16, 1558–1566.PubMedCrossRef Behfar, A., Zingman, L. V., Hodgson, D. M., Rauzier, J. M., Kane, G. C., Terzic, A., et al. (2002). Stem cell differentiation requires a paracrine pathway in the heart. FASEB Journal, 16, 1558–1566.PubMedCrossRef
108.
Zurück zum Zitat Behfar, A., Perez-Terzic, C., Faustino, R. S., Arrell, D. K., Hodgson, D. M., Yamada, S., et al. (2007). Cardiopoietic programming of embryonic stem cells for tumor-free heart repair. Journal of Experimental Medicine, 204, 405–420.PubMedCrossRef Behfar, A., Perez-Terzic, C., Faustino, R. S., Arrell, D. K., Hodgson, D. M., Yamada, S., et al. (2007). Cardiopoietic programming of embryonic stem cells for tumor-free heart repair. Journal of Experimental Medicine, 204, 405–420.PubMedCrossRef
109.
Zurück zum Zitat Laflamme, M. A., Chen, K. Y., Naumova, A. V., Muskheli, V., Fugate, J. A., Dupras, S. K., et al. (2007). Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nature Biotechnology, 25, 1015–1024.PubMedCrossRef Laflamme, M. A., Chen, K. Y., Naumova, A. V., Muskheli, V., Fugate, J. A., Dupras, S. K., et al. (2007). Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nature Biotechnology, 25, 1015–1024.PubMedCrossRef
110.
Zurück zum Zitat Caspi, O., Huber, I., Kehat, I., Habib, M., Arbel, G., Gepstein, A., et al. (2007). Transplantation of human embryonic stem cell-derived cardiomyocytes improves myocardial performance in infarcted rat hearts. Journal of the American College of Cardiology, 50, 1884–1893.PubMedCrossRef Caspi, O., Huber, I., Kehat, I., Habib, M., Arbel, G., Gepstein, A., et al. (2007). Transplantation of human embryonic stem cell-derived cardiomyocytes improves myocardial performance in infarcted rat hearts. Journal of the American College of Cardiology, 50, 1884–1893.PubMedCrossRef
111.
Zurück zum Zitat Nelson, T. J., Martinez-Fernandez, A., Yamada, S., Perez-Terzic, C., Ikeda, Y., & Terzic, A. (2009). Repair of acute myocardial infarction by human stemness factors induced pluripotent stem cells. Circulation, 120, 408–416.PubMedCrossRef Nelson, T. J., Martinez-Fernandez, A., Yamada, S., Perez-Terzic, C., Ikeda, Y., & Terzic, A. (2009). Repair of acute myocardial infarction by human stemness factors induced pluripotent stem cells. Circulation, 120, 408–416.PubMedCrossRef
112.
Zurück zum Zitat Hong, S. H., Nah, H. Y., Lee, Y. J., Lee, J. W., Park, J. H., Kim, S. J., et al. (2004). Expression of estrogen receptor-alpha and -beta, glucocorticoid receptor, and progesterone receptor genes in human embryonic stem cells and embryoid bodies. Molecules and Cells, 18, 320–325.PubMed Hong, S. H., Nah, H. Y., Lee, Y. J., Lee, J. W., Park, J. H., Kim, S. J., et al. (2004). Expression of estrogen receptor-alpha and -beta, glucocorticoid receptor, and progesterone receptor genes in human embryonic stem cells and embryoid bodies. Molecules and Cells, 18, 320–325.PubMed
113.
Zurück zum Zitat Han, H. J., Heo, J. S., & Lee, Y. J. (2006). Estradiol-17beta stimulates proliferation of mouse embryonic stem cells: Involvement of MAPKs and CDKs as well as protooncogenes. American Journal of Physiology. Cell Physiology, 290, C1067–C1075.PubMedCrossRef Han, H. J., Heo, J. S., & Lee, Y. J. (2006). Estradiol-17beta stimulates proliferation of mouse embryonic stem cells: Involvement of MAPKs and CDKs as well as protooncogenes. American Journal of Physiology. Cell Physiology, 290, C1067–C1075.PubMedCrossRef
114.
Zurück zum Zitat Chang, C. Y., Hsuuw, Y. D., Huang, F. J., Shyr, C. R., Chang, S. Y., Huang, C. K., et al. (2006). Androgenic and antiandrogenic effects and expression of androgen receptor in mouse embryonic stem cells. Fertility and Sterility, 85(Suppl 1), 1195–1203.PubMedCrossRef Chang, C. Y., Hsuuw, Y. D., Huang, F. J., Shyr, C. R., Chang, S. Y., Huang, C. K., et al. (2006). Androgenic and antiandrogenic effects and expression of androgen receptor in mouse embryonic stem cells. Fertility and Sterility, 85(Suppl 1), 1195–1203.PubMedCrossRef
115.
Zurück zum Zitat Goldman-Johnson, D. R., de Kretser, D. M., & Morrison, J. R. (2008). Evidence that androgens regulate early developmental events, prior to sexual differentiation. Endocrinology, 149, 5–14.PubMedCrossRef Goldman-Johnson, D. R., de Kretser, D. M., & Morrison, J. R. (2008). Evidence that androgens regulate early developmental events, prior to sexual differentiation. Endocrinology, 149, 5–14.PubMedCrossRef
116.
Zurück zum Zitat Arrell, D. K., Niederlander, N. J., Faustino, R. S., Behfar, A., & Terzic, A. (2008). Cardioinductive network guiding stem cell differentiation revealed by proteomic cartography of tumor necrosis factor alpha-primed endodermal secretome. Stem Cells, 26, 387–400.PubMedCrossRef Arrell, D. K., Niederlander, N. J., Faustino, R. S., Behfar, A., & Terzic, A. (2008). Cardioinductive network guiding stem cell differentiation revealed by proteomic cartography of tumor necrosis factor alpha-primed endodermal secretome. Stem Cells, 26, 387–400.PubMedCrossRef
117.
Zurück zum Zitat Nelson, T. J., Faustino, R. S., Chiriac, A., Crespo-Diaz, R., Behfar, A., & Terzic, A. (2008). CXCR4+/FLK-1+ biomarkers select a cardiopoietic lineage from embryonic stem cells. Stem Cells, 26, 1464–1473.PubMedCrossRef Nelson, T. J., Faustino, R. S., Chiriac, A., Crespo-Diaz, R., Behfar, A., & Terzic, A. (2008). CXCR4+/FLK-1+ biomarkers select a cardiopoietic lineage from embryonic stem cells. Stem Cells, 26, 1464–1473.PubMedCrossRef
118.
Zurück zum Zitat Keaney, J. F., Jr., Shwaery, G. T., Xu, A., Nicolosi, R. J., Loscalzo, J., Foxall, T. L., et al. (1994). 17beta-estradiol preserves endothelial vasodilator function and limits low-density lipoprotein oxidation in hypercholesterolemic swine. Circulation, 89, 2251–2259.PubMed Keaney, J. F., Jr., Shwaery, G. T., Xu, A., Nicolosi, R. J., Loscalzo, J., Foxall, T. L., et al. (1994). 17beta-estradiol preserves endothelial vasodilator function and limits low-density lipoprotein oxidation in hypercholesterolemic swine. Circulation, 89, 2251–2259.PubMed
119.
Zurück zum Zitat Moskowitz, M. S., Moskowitz, A. A., Bradford, W. L., Jr., & Wissler, R. W. (1956). Changes in serum lipids and coronary arteries of the rat in response to estrogens. AMA Archives of Pathology, 61, 245–263. Moskowitz, M. S., Moskowitz, A. A., Bradford, W. L., Jr., & Wissler, R. W. (1956). Changes in serum lipids and coronary arteries of the rat in response to estrogens. AMA Archives of Pathology, 61, 245–263.
120.
Zurück zum Zitat Adams, M. R., Kaplan, J. R., Manuck, S. B., Koritnik, D. R., Parks, J. S., Wolfe, M. S., et al. (1990). Inhibition of coronary artery atherosclerosis by 17-beta estradiol in ovariectomized monkeys: Lack of an effect of added progesterone. Arteriosclerosis, 10, 1051–1057.PubMed Adams, M. R., Kaplan, J. R., Manuck, S. B., Koritnik, D. R., Parks, J. S., Wolfe, M. S., et al. (1990). Inhibition of coronary artery atherosclerosis by 17-beta estradiol in ovariectomized monkeys: Lack of an effect of added progesterone. Arteriosclerosis, 10, 1051–1057.PubMed
121.
Zurück zum Zitat Palmer, R. M., Ferrige, A. G., & Moncada, S. (1987). Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature, 327, 524–526.PubMedCrossRef Palmer, R. M., Ferrige, A. G., & Moncada, S. (1987). Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature, 327, 524–526.PubMedCrossRef
122.
Zurück zum Zitat Bath, P. M., Hassall, D. G., Gladwin, A. M., Palmer, R. M., & Martin, J. F. (1991). Nitric oxide and prostacyclin. Divergence of inhibitory effects on monocyte chemotaxis and adhesion to endothelium in vitro. Arteriosclerosis and Thrombosis, 11, 254–260.PubMed Bath, P. M., Hassall, D. G., Gladwin, A. M., Palmer, R. M., & Martin, J. F. (1991). Nitric oxide and prostacyclin. Divergence of inhibitory effects on monocyte chemotaxis and adhesion to endothelium in vitro. Arteriosclerosis and Thrombosis, 11, 254–260.PubMed
123.
Zurück zum Zitat Radomski, M. W., Palmer, R. M., & Moncada, S. (1987). Endogenous nitric oxide inhibits human platelet adhesion to vascular endothelium. Lancet, 2, 1057–1058.PubMedCrossRef Radomski, M. W., Palmer, R. M., & Moncada, S. (1987). Endogenous nitric oxide inhibits human platelet adhesion to vascular endothelium. Lancet, 2, 1057–1058.PubMedCrossRef
124.
Zurück zum Zitat Lahm, T., Patel, K. M., Crisostomo, P. R., Markel, T. A., Wang, M., Herring, C., et al. (2007). Endogenous estrogen attenuates pulmonary artery vasoreactivity and acute hypoxic pulmonary vasoconstriction: The effects of sex and menstrual cycle. Am J Physiol Endocrinol Metab, 293, E865–E871.PubMedCrossRef Lahm, T., Patel, K. M., Crisostomo, P. R., Markel, T. A., Wang, M., Herring, C., et al. (2007). Endogenous estrogen attenuates pulmonary artery vasoreactivity and acute hypoxic pulmonary vasoconstriction: The effects of sex and menstrual cycle. Am J Physiol Endocrinol Metab, 293, E865–E871.PubMedCrossRef
Metadaten
Titel
Gender Dimorphisms in Progenitor and Stem Cell Function in Cardiovascular Disease
verfasst von
Jeremy L. Herrmann
Aaron M. Abarbanell
Brent R. Weil
Mariuxi C. Manukyan
Jeffrey A. Poynter
Yue Wang
Arthur C. Coffey
Daniel R. Meldrum
Publikationsdatum
01.04.2010
Verlag
Springer US
Erschienen in
Journal of Cardiovascular Translational Research / Ausgabe 2/2010
Print ISSN: 1937-5387
Elektronische ISSN: 1937-5395
DOI
https://doi.org/10.1007/s12265-009-9149-y

Weitere Artikel der Ausgabe 2/2010

Journal of Cardiovascular Translational Research 2/2010 Zur Ausgabe

OriginalPaper

Stem Cell Biobanks

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.