Skip to main content
Erschienen in: Journal of Cardiovascular Translational Research 2/2011

01.04.2011

Heterogeneity of Human Monocytes: An Optimized Four-Color Flow Cytometry Protocol for Analysis of Monocyte Subsets

verfasst von: Tiziano Tallone, Giovanna Turconi, Gianni Soldati, Giovanni Pedrazzini, Tiziano Moccetti, Giuseppe Vassalli

Erschienen in: Journal of Cardiovascular Translational Research | Ausgabe 2/2011

Einloggen, um Zugang zu erhalten

Abstract

Monocytes are central mediators in the development of atherosclerotic plaques. They circulate in blood and eventually migrate into tissue including the vessel wall where they give rise to macrophages and dendritic cells. The existence of monocyte subsets with distinct roles in homeostasis and inflammation suggests specialization of function. These subsets are identified based on expression of the CD14 and CD16 markers. Routinely applicable protocols remain elusive, however. Here, we present an optimized four-color flow cytometry protocol for analysis of human blood monocyte subsets using a specific PE-Cy5–conjugated monoclonal antibody (mAb) to HLA-DR, a PE-Cy7-conjugated mAb to CD14, a FITC-conjugated mAb to CD16, and PE-conjugated mAbs to additional markers relevant to monocyte function. Classical CD14+CD16 monocytes (here termed “Mo1” subset) expressed high CCR2, CD36, CD64, and CD62L, but low CX3CR1, whereas “nonclassical” CD14loCD16+ monocytes (Mo3) essentially showed the inverse expression pattern. CD14+CD16+ monocytes (Mo2) expressed high HLA-DR, CD36, and CD64. In patients with stable coronary artery disease (n = 13), classical monocytes were decreased, whereas “nonclassical” monocytes were increased 90% compared with healthy subjects with angiographically normal coronary arteries (n = 14). Classical monocytes from CAD patients expressed higher CX3CR1 and CCR2 than controls. Thus, stable CAD is associated with expansion of the nonclassical monocyte subset and increased expression of inflammatory markers on monocytes. Flow cytometric analysis of monocyte subsets and marker expression may provide valuable information on vascular inflammation. This may translate into the identification of monocyte subsets as selective therapeutic targets, thus avoiding adverse events associated with indiscriminate monocyte inhibition.
Literatur
1.
Zurück zum Zitat Auffray, C., Sieweke, M. H., & Geissmann, F. (2009). Blood monocytes: development, heterogeneity, and relationship with dendritic cells. Annual Reviews in Immunology, 27, 669.CrossRef Auffray, C., Sieweke, M. H., & Geissmann, F. (2009). Blood monocytes: development, heterogeneity, and relationship with dendritic cells. Annual Reviews in Immunology, 27, 669.CrossRef
2.
Zurück zum Zitat Gerrity, R. G. (1981). The role of the monocyte in atherogenesis: I. transition of blood-borne monocytes into foam cells in fatty lesions. American Journal of Pathology, 103, 181.PubMed Gerrity, R. G. (1981). The role of the monocyte in atherogenesis: I. transition of blood-borne monocytes into foam cells in fatty lesions. American Journal of Pathology, 103, 181.PubMed
3.
Zurück zum Zitat Geissmann, F., & Woollard, K. J. (2010). Monocytes in atherosclerosis: subsets and functions. Nature Reviews Cardiology, 7, 77.PubMedCrossRef Geissmann, F., & Woollard, K. J. (2010). Monocytes in atherosclerosis: subsets and functions. Nature Reviews Cardiology, 7, 77.PubMedCrossRef
4.
Zurück zum Zitat Ziegler-Heitbrock, H. W., Strobel, M., Kieper, D., Fingerle, G., Schlunck, T., Petersmann, I., et al. (1992). Differential expression of cytokines in human blood monocyte subpopulations. Blood, 79, 503.PubMed Ziegler-Heitbrock, H. W., Strobel, M., Kieper, D., Fingerle, G., Schlunck, T., Petersmann, I., et al. (1992). Differential expression of cytokines in human blood monocyte subpopulations. Blood, 79, 503.PubMed
5.
Zurück zum Zitat Geissmann, F., Jung, S., & Littman, D. R. (2003). Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity, 19, 71.PubMedCrossRef Geissmann, F., Jung, S., & Littman, D. R. (2003). Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity, 19, 71.PubMedCrossRef
6.
Zurück zum Zitat Ziegler-Heitbrock, L., Ancuta, P., Crowe, S., Dalod, M., Grau, V., Hart, D. N., et al. (2010). Nomenclature of monocytes and dendritic cells in blood. Blood, 116(16), e74–e80.PubMedCrossRef Ziegler-Heitbrock, L., Ancuta, P., Crowe, S., Dalod, M., Grau, V., Hart, D. N., et al. (2010). Nomenclature of monocytes and dendritic cells in blood. Blood, 116(16), e74–e80.PubMedCrossRef
7.
Zurück zum Zitat Swirski, F. K., Libby, P., Aikawa, E., Alcaide, P., Luscinskas, F. W., Weissleder, R., et al. (2007). Ly-6 C hi monocytes dominate hypercholesterolemiaassociated monocytosis and give rise to macrophages in atheromata. The Journal of Clinical Investigation, 117, 195.PubMedCrossRef Swirski, F. K., Libby, P., Aikawa, E., Alcaide, P., Luscinskas, F. W., Weissleder, R., et al. (2007). Ly-6 C hi monocytes dominate hypercholesterolemiaassociated monocytosis and give rise to macrophages in atheromata. The Journal of Clinical Investigation, 117, 195.PubMedCrossRef
8.
Zurück zum Zitat Nahrendorf, M., Swirski, F. K., Aikawa, E., Stangenberg, L., Wurdinger, T., Figueiredo, J. L., et al. (2007). The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. The Journal of Experimental Medicine, 204, 3037.PubMedCrossRef Nahrendorf, M., Swirski, F. K., Aikawa, E., Stangenberg, L., Wurdinger, T., Figueiredo, J. L., et al. (2007). The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. The Journal of Experimental Medicine, 204, 3037.PubMedCrossRef
9.
Zurück zum Zitat Grage-Griebenow, E., Lorenzen, D., Fetting, R., Flad, H.-D., & Ernst, M. (1993). Phenotypical and functional characterization of Fcy receptor I (CD64)-negative monocytes, a minor human monocyte subpopulation with high accessory and antiviral activity. European Journal of Immunology, 23, 3126.PubMedCrossRef Grage-Griebenow, E., Lorenzen, D., Fetting, R., Flad, H.-D., & Ernst, M. (1993). Phenotypical and functional characterization of Fcy receptor I (CD64)-negative monocytes, a minor human monocyte subpopulation with high accessory and antiviral activity. European Journal of Immunology, 23, 3126.PubMedCrossRef
10.
Zurück zum Zitat Passlick, B., Flieger, D., & Ziegler-Heitbrock, H. W. L. (1989). Identification and characterization of a novel monocyte subpopulation in human peripheral blood. Blood, 74, 2527.PubMed Passlick, B., Flieger, D., & Ziegler-Heitbrock, H. W. L. (1989). Identification and characterization of a novel monocyte subpopulation in human peripheral blood. Blood, 74, 2527.PubMed
11.
Zurück zum Zitat Fingerle, G., Pforte, A., Passlick, B., Blumenstein, M., Ströbel, M., & Ziegler-Heitbrock, H. W. (1993). The novel subset of CD14+/CD16+ blood monocytes is expanded in sepsis patients. Blood, 82, 3170.PubMed Fingerle, G., Pforte, A., Passlick, B., Blumenstein, M., Ströbel, M., & Ziegler-Heitbrock, H. W. (1993). The novel subset of CD14+/CD16+ blood monocytes is expanded in sepsis patients. Blood, 82, 3170.PubMed
12.
Zurück zum Zitat Belge, K. U., Dayyani, F., Horelt, A., Siedlar, M., Frankenberger, M., Frankenberger, B., et al. (2002). The proinflammatory CD14 + CD16 + DR++ monocytes are a major source of TNF. Journal of Immunology, 168, 3536. Belge, K. U., Dayyani, F., Horelt, A., Siedlar, M., Frankenberger, M., Frankenberger, B., et al. (2002). The proinflammatory CD14 + CD16 + DR++ monocytes are a major source of TNF. Journal of Immunology, 168, 3536.
13.
Zurück zum Zitat Strauss-Ayali, D., Conrad, S. M., & Mosser, D. M. (2007). Monocyte subpopulations and their differentiation patterns during infection. Journal of Leukocyte Biology, 82, 244.PubMedCrossRef Strauss-Ayali, D., Conrad, S. M., & Mosser, D. M. (2007). Monocyte subpopulations and their differentiation patterns during infection. Journal of Leukocyte Biology, 82, 244.PubMedCrossRef
14.
Zurück zum Zitat Grage-Griebenow, E., Zawatzky, R., Kahlert, H., Brade, L., Flad, H., & Ernst, M. (2001). Identification of a novel dendritic cell-like subset of CD64(+)/CD16(+) blood monocytes. European Journal of Immunology, 31, 48.PubMedCrossRef Grage-Griebenow, E., Zawatzky, R., Kahlert, H., Brade, L., Flad, H., & Ernst, M. (2001). Identification of a novel dendritic cell-like subset of CD64(+)/CD16(+) blood monocytes. European Journal of Immunology, 31, 48.PubMedCrossRef
15.
Zurück zum Zitat Heron, M., Grutters, J. C., van Velzen-Blad, H., Veltkamp, M., Claessen, A. M., & van den Bosch, J. M. (2008). Increased expression of CD16, CD69, and very late antigen-1 on blood monocytes in active sarcoidosis. Chest, 134, 1001.PubMedCrossRef Heron, M., Grutters, J. C., van Velzen-Blad, H., Veltkamp, M., Claessen, A. M., & van den Bosch, J. M. (2008). Increased expression of CD16, CD69, and very late antigen-1 on blood monocytes in active sarcoidosis. Chest, 134, 1001.PubMedCrossRef
16.
Zurück zum Zitat Weiner, L. M., Li, W., Holmes, M., Catalano, R. B., Dovnarsky, M., Padavic, K., et al. (1994). Phase I trial of recombinant macrophage colony-stimulating factor and recombinant gamma-interferon: toxicity, monocytosis, and clinical effects. Cancer Research, 54, 4084.PubMed Weiner, L. M., Li, W., Holmes, M., Catalano, R. B., Dovnarsky, M., Padavic, K., et al. (1994). Phase I trial of recombinant macrophage colony-stimulating factor and recombinant gamma-interferon: toxicity, monocytosis, and clinical effects. Cancer Research, 54, 4084.PubMed
17.
Zurück zum Zitat Hristov, M., Schmitz, S., Schuhmann, C., Leyendecker, T., von Hundelshausen, P., Krötz, F., et al. (2009). An optimized flow cytometry protocol for analysis of angiogenic monocytes and endothelial progenitor cells in peripheral blood. Cytometry. Part A, 75A, 848.CrossRef Hristov, M., Schmitz, S., Schuhmann, C., Leyendecker, T., von Hundelshausen, P., Krötz, F., et al. (2009). An optimized flow cytometry protocol for analysis of angiogenic monocytes and endothelial progenitor cells in peripheral blood. Cytometry. Part A, 75A, 848.CrossRef
18.
Zurück zum Zitat Ziegler-Heitbrock, L. (2007). The CD14+ CD16+ blood monocytes: their role in infection and inflammation. Journal of Leukocyte Biology, 81, 584.PubMedCrossRef Ziegler-Heitbrock, L. (2007). The CD14+ CD16+ blood monocytes: their role in infection and inflammation. Journal of Leukocyte Biology, 81, 584.PubMedCrossRef
19.
Zurück zum Zitat Ancuta, P., Rao, R., Moses, A., Mehle, A., Shaw, S. K., Luscinskas, F. W., et al. (2003). Fractalkine preferentially mediates arrest and migration of CD16+ monocytes. The Journal of Experimental Medicine, 197, 1701.PubMedCrossRef Ancuta, P., Rao, R., Moses, A., Mehle, A., Shaw, S. K., Luscinskas, F. W., et al. (2003). Fractalkine preferentially mediates arrest and migration of CD16+ monocytes. The Journal of Experimental Medicine, 197, 1701.PubMedCrossRef
20.
Zurück zum Zitat Thomas, R., Davis, L. S., & Lipsky, P. E. (1993). Isolation and characterization of human peripheral blood dendritic cells. Journal of Immunology, 150, 821. Thomas, R., Davis, L. S., & Lipsky, P. E. (1993). Isolation and characterization of human peripheral blood dendritic cells. Journal of Immunology, 150, 821.
21.
Zurück zum Zitat Randolph, G. J., Beaulieu, S., Lebecque, S., Steinman, R. M., & Muller, W. A. (1998). Differentiation of monocytes into dendritic cells in a model of transendothelial trafficking. Science, 282, 480.PubMedCrossRef Randolph, G. J., Beaulieu, S., Lebecque, S., Steinman, R. M., & Muller, W. A. (1998). Differentiation of monocytes into dendritic cells in a model of transendothelial trafficking. Science, 282, 480.PubMedCrossRef
22.
Zurück zum Zitat Wildgruber, M., Lee, H., Chudnovskiy, A., Yoon, T.-J., Etzrodt, M., Pittet, M. J., et al. (2009). Monocyte subset dynamics in human atherosclerosis can be profiled with magnetic nano-sensors. PLoS ONE, 4, e5663.PubMedCrossRef Wildgruber, M., Lee, H., Chudnovskiy, A., Yoon, T.-J., Etzrodt, M., Pittet, M. J., et al. (2009). Monocyte subset dynamics in human atherosclerosis can be profiled with magnetic nano-sensors. PLoS ONE, 4, e5663.PubMedCrossRef
23.
Zurück zum Zitat Steppich, B., Dayyani, F., Gruber, R., Lorenz, R., Mack, M., & Ziegler-Heitbrock, H. W. L. (2000). Selective mobilization of CD14 + CD16+ monocytes by exercise. American Journal of Physiology. Cell Physiology, 279, C578.PubMed Steppich, B., Dayyani, F., Gruber, R., Lorenz, R., Mack, M., & Ziegler-Heitbrock, H. W. L. (2000). Selective mobilization of CD14 + CD16+ monocytes by exercise. American Journal of Physiology. Cell Physiology, 279, C578.PubMed
24.
Zurück zum Zitat Auffray, C., Fogg, D., Garfa, M., Elain, G., Join-Lambert, O., Kayal, S., et al. (2007). Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science, 317, 666.PubMedCrossRef Auffray, C., Fogg, D., Garfa, M., Elain, G., Join-Lambert, O., Kayal, S., et al. (2007). Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science, 317, 666.PubMedCrossRef
25.
Zurück zum Zitat Jakubzick, C., Tacke, F., Ginhoux, F., Wagers, A. J., van Rooijen, N., Mack, M., et al. (2008). Blood monocyte subsets differentially give rise to CD103+ and CD103– pulmonary dendritic cell populations. Journal of Immunology, 180, 3019. Jakubzick, C., Tacke, F., Ginhoux, F., Wagers, A. J., van Rooijen, N., Mack, M., et al. (2008). Blood monocyte subsets differentially give rise to CD103+ and CD103 pulmonary dendritic cell populations. Journal of Immunology, 180, 3019.
26.
Zurück zum Zitat Combadiere, C., Potteaux, S., Rodero, M., Simon, T., Pezard, A., Esposito, B., et al. (2008). Combined inhibition of CCL2, CX3CR1, and CCR5 abrogates Ly6C(hi) and Ly6C(lo) monocytosis and almost abolishes atherosclerosis in hypercholesterolemic mice. Circulation, 117, 1649.PubMedCrossRef Combadiere, C., Potteaux, S., Rodero, M., Simon, T., Pezard, A., Esposito, B., et al. (2008). Combined inhibition of CCL2, CX3CR1, and CCR5 abrogates Ly6C(hi) and Ly6C(lo) monocytosis and almost abolishes atherosclerosis in hypercholesterolemic mice. Circulation, 117, 1649.PubMedCrossRef
27.
Zurück zum Zitat Saederup, N., Chan, L., Lira, S. A., & Charo, I. F. (2008). Fractalkine deficiency markedly reduces macrophage accumulation and atherosclerotic lesion formation in CCR2–/– mice: evidence for independent chemokine functions in atherogenesis. Circulation, 117, 1642.PubMedCrossRef Saederup, N., Chan, L., Lira, S. A., & Charo, I. F. (2008). Fractalkine deficiency markedly reduces macrophage accumulation and atherosclerotic lesion formation in CCR2–/– mice: evidence for independent chemokine functions in atherogenesis. Circulation, 117, 1642.PubMedCrossRef
28.
Zurück zum Zitat Tacke, F., Alvarez, D., Kaplan, T. J., Jakubzick, C., Spanbroek, R., Llodra, J., et al. (2007). Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques. The Journal of Clinical Investigation, 117, 185.PubMedCrossRef Tacke, F., Alvarez, D., Kaplan, T. J., Jakubzick, C., Spanbroek, R., Llodra, J., et al. (2007). Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques. The Journal of Clinical Investigation, 117, 185.PubMedCrossRef
29.
Zurück zum Zitat Gautier, E. L., Jakubzick, C., & Randolph, G. J. (2009). Regulation of the migration and survival of monocyte subsets by chemokine receptors and its relevance to atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 29, 1412.PubMedCrossRef Gautier, E. L., Jakubzick, C., & Randolph, G. J. (2009). Regulation of the migration and survival of monocyte subsets by chemokine receptors and its relevance to atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 29, 1412.PubMedCrossRef
30.
Zurück zum Zitat An, G., Wang, H., Tang, R., Yago, T., McDaniel, J. M., McGee, S., et al. (2008). P-selectin glycoprotein ligand-1 is highly expressed on Ly-6Chi monocytes and a major determinant for Ly-6Chi monocyte recruitment to sites of atherosclerosis in mice. Circulation, 117, 3227.PubMedCrossRef An, G., Wang, H., Tang, R., Yago, T., McDaniel, J. M., McGee, S., et al. (2008). P-selectin glycoprotein ligand-1 is highly expressed on Ly-6Chi monocytes and a major determinant for Ly-6Chi monocyte recruitment to sites of atherosclerosis in mice. Circulation, 117, 3227.PubMedCrossRef
31.
Zurück zum Zitat Kashiwagi, M., Imanishi, T., Tsujioka, H., Ikejima, H., Kuroi, A., Ozaki, Y., et al. (2010). Association of monocyte subsets with vulnerability characteristics of coronary plaques as assessed by 64-slice multidetector computed tomography in patients with stable angina pectoris. Atherosclerosis, 212, 171.PubMedCrossRef Kashiwagi, M., Imanishi, T., Tsujioka, H., Ikejima, H., Kuroi, A., Ozaki, Y., et al. (2010). Association of monocyte subsets with vulnerability characteristics of coronary plaques as assessed by 64-slice multidetector computed tomography in patients with stable angina pectoris. Atherosclerosis, 212, 171.PubMedCrossRef
32.
Zurück zum Zitat Rogacev, K. S., Seiler, S., Zawada, A. M., Reichart, B., Herath, E., Roth, D., et al. (2011). CD14++CD16+ monocytes and cardiovascular outcome in patients with chronic kidney disease. European Heart Journal, 32, 84.PubMedCrossRef Rogacev, K. S., Seiler, S., Zawada, A. M., Reichart, B., Herath, E., Roth, D., et al. (2011). CD14++CD16+ monocytes and cardiovascular outcome in patients with chronic kidney disease. European Heart Journal, 32, 84.PubMedCrossRef
Metadaten
Titel
Heterogeneity of Human Monocytes: An Optimized Four-Color Flow Cytometry Protocol for Analysis of Monocyte Subsets
verfasst von
Tiziano Tallone
Giovanna Turconi
Gianni Soldati
Giovanni Pedrazzini
Tiziano Moccetti
Giuseppe Vassalli
Publikationsdatum
01.04.2011
Verlag
Springer US
Erschienen in
Journal of Cardiovascular Translational Research / Ausgabe 2/2011
Print ISSN: 1937-5387
Elektronische ISSN: 1937-5395
DOI
https://doi.org/10.1007/s12265-011-9256-4

Weitere Artikel der Ausgabe 2/2011

Journal of Cardiovascular Translational Research 2/2011 Zur Ausgabe

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.