Skip to main content
Erschienen in: Journal of Cardiovascular Translational Research 2/2012

01.04.2012

Electrical Remodeling in Dyssynchrony and Resynchronization

verfasst von: Takeshi Aiba, Gordon Tomaselli

Erschienen in: Journal of Cardiovascular Translational Research | Ausgabe 2/2012

Einloggen, um Zugang zu erhalten

Abstract

Heart failure (HF) is associated with anatomic and functional remodeling of cardiac tissues in both animal models and humans, which alters Ca2+ homeostasis, protein phosphorylation, excitation–contraction coupling, results in arrhythmias. Indeed, the electrophysiological hallmark of cells and tissues isolated from failing hearts is prolongation of action potential duration (APD) and conduction slowing. The changes in cellular and tissue function are regionally heterogenous particularly in the dyssynchronously contracting heart. Cardiac resynchronization therapy (CRT) is widely applied in patients with HF and dyssynchronous left ventricular (LV) contraction (DHF), but the electrophysiological consequences of CRT are not fully understood. We demonstrated the molecular and cellular basis of excitability, conduction, and electrical remodeling in DHF and its restoration by CRT using a canine tachypacing HF model. CRT partially reversed the DHF-induced downregulation of K+ current and improved Na+ channel gating and abbreviated persistent (late) Na+ current. CRT reduced Ca2+/calmodulin protein kinase II activity and restored transverse tubular system and spatial distribution of ryanodine receptor, thus it significantly improved Ca2+ homeostasis especially in myocytes from late-activated, lateral wall and restored the DHF-induced blunted β-adrenergic receptor responsiveness. CRT abbreviated DHF-induced prolongation of APD in the lateral wall myocytes and reduced the LV regional gradient of APD and suppressed the development of early afterdepolarizations. In conclusion, CRT partially restores the DHF-induced ion channel remodeling, abnormal Ca2+ homeostasis, blunted β-adrenergic response, and regional heterogeneity of APD, thus it may suppress ventricular arrhythmias and contribute to the mortality benefit of CRT as well as improve mechanical performance of the heart.
Literatur
1.
Zurück zum Zitat American Heart Association. (2002). Heart disease and stroke statistics—2003 update. Dallas, Texas. American Heart Association. (2002). Heart disease and stroke statistics—2003 update. Dallas, Texas.
2.
Zurück zum Zitat Tsuchihashi-Makaya, M., Hamaguchi, S., Kinugawa, S., et al. (2009). Characteristics and outcomes of hospitalized patients with heart failure and reduced vs preserved ejection fraction. Report from the Japanese Cardiac Registry of Heart Failure in Cardiology (JCARE-CARD). Circulation Journal, 73(10), 1893–1900.PubMedCrossRef Tsuchihashi-Makaya, M., Hamaguchi, S., Kinugawa, S., et al. (2009). Characteristics and outcomes of hospitalized patients with heart failure and reduced vs preserved ejection fraction. Report from the Japanese Cardiac Registry of Heart Failure in Cardiology (JCARE-CARD). Circulation Journal, 73(10), 1893–1900.PubMedCrossRef
3.
Zurück zum Zitat Cleland, J. G., Daubert, J. C., Erdmann, E., et al. (2005). The effect of cardiac resynchronization on morbidity and mortality in heart failure. The New England Journal of Medicine, 352(15), 1539–1549.PubMedCrossRef Cleland, J. G., Daubert, J. C., Erdmann, E., et al. (2005). The effect of cardiac resynchronization on morbidity and mortality in heart failure. The New England Journal of Medicine, 352(15), 1539–1549.PubMedCrossRef
4.
Zurück zum Zitat Medina-Ravell, V. A., Lankipalli, R. S., Yan, G. X., et al. (2003). Effect of epicardial or biventricular pacing to prolong QT interval and increase transmural dispersion of repolarization: Does resynchronization therapy pose a risk for patients predisposed to long QT or torsade de pointes? Circulation, 107(5), 740–746.PubMedCrossRef Medina-Ravell, V. A., Lankipalli, R. S., Yan, G. X., et al. (2003). Effect of epicardial or biventricular pacing to prolong QT interval and increase transmural dispersion of repolarization: Does resynchronization therapy pose a risk for patients predisposed to long QT or torsade de pointes? Circulation, 107(5), 740–746.PubMedCrossRef
5.
Zurück zum Zitat Harada, M., Osaka, T., Yokoyama, E., et al. (2006). Biventricular pacing has an advantage over left ventricular epicardial pacing alone to minimize proarrhythmic perturbation of repolarization. Journal of Cardiovascular Electrophysiology, 17(2), 151–156.PubMedCrossRef Harada, M., Osaka, T., Yokoyama, E., et al. (2006). Biventricular pacing has an advantage over left ventricular epicardial pacing alone to minimize proarrhythmic perturbation of repolarization. Journal of Cardiovascular Electrophysiology, 17(2), 151–156.PubMedCrossRef
6.
Zurück zum Zitat Fish, J. M., Di Diego, J. M., Nesterenko, V., et al. (2004). Epicardial activation of left ventricular wall prolongs QT interval and transmural dispersion of repolarization: Implications for biventricular pacing. Circulation, 109(17), 2136–2142.PubMedCrossRef Fish, J. M., Di Diego, J. M., Nesterenko, V., et al. (2004). Epicardial activation of left ventricular wall prolongs QT interval and transmural dispersion of repolarization: Implications for biventricular pacing. Circulation, 109(17), 2136–2142.PubMedCrossRef
7.
Zurück zum Zitat Chalil, S., Yousef, Z. R., Muyhaldeen, S. A., et al. (2006). Pacing-induced increase in QT dispersion predicts sudden cardiac death following cardiac resynchronization therapy. Journal of the American College of Cardiology, 47(12), 2486–2492.PubMedCrossRef Chalil, S., Yousef, Z. R., Muyhaldeen, S. A., et al. (2006). Pacing-induced increase in QT dispersion predicts sudden cardiac death following cardiac resynchronization therapy. Journal of the American College of Cardiology, 47(12), 2486–2492.PubMedCrossRef
8.
Zurück zum Zitat Young, J. B., Abraham, W. T., Smith, A. L., et al. (2003). Combined cardiac resynchronization and implantable cardioversion defibrillation in advanced chronic heart failure: The MIRACLE ICD Trial. Journal of the American Medical Association, 289(20), 2685–2694.PubMedCrossRef Young, J. B., Abraham, W. T., Smith, A. L., et al. (2003). Combined cardiac resynchronization and implantable cardioversion defibrillation in advanced chronic heart failure: The MIRACLE ICD Trial. Journal of the American Medical Association, 289(20), 2685–2694.PubMedCrossRef
9.
Zurück zum Zitat McSwain, R. L., Schwartz, R. A., DeLurgio, D. B., et al. (2005). The impact of cardiac resynchronization therapy on ventricular tachycardia/fibrillation: An analysis from the combined Contak-CD and InSync-ICD studies. Journal of Cardiovascular Electrophysiology, 16(11), 1168–1171.PubMedCrossRef McSwain, R. L., Schwartz, R. A., DeLurgio, D. B., et al. (2005). The impact of cardiac resynchronization therapy on ventricular tachycardia/fibrillation: An analysis from the combined Contak-CD and InSync-ICD studies. Journal of Cardiovascular Electrophysiology, 16(11), 1168–1171.PubMedCrossRef
10.
Zurück zum Zitat Bristow, M. R., Saxon, L. A., Boehmer, J., et al. (2004). Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. The New England Journal of Medicine, 350(21), 2140–2150.PubMedCrossRef Bristow, M. R., Saxon, L. A., Boehmer, J., et al. (2004). Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. The New England Journal of Medicine, 350(21), 2140–2150.PubMedCrossRef
11.
Zurück zum Zitat Arya, A., Haghjoo, M., Dehghani, M. R., et al. (2005). Effect of cardiac resynchronization therapy on the incidence of ventricular arrhythmias in patients with an implantable cardioverter-defibrillator. Heart Rhythm, 2(10), 1094–1098.PubMedCrossRef Arya, A., Haghjoo, M., Dehghani, M. R., et al. (2005). Effect of cardiac resynchronization therapy on the incidence of ventricular arrhythmias in patients with an implantable cardioverter-defibrillator. Heart Rhythm, 2(10), 1094–1098.PubMedCrossRef
12.
Zurück zum Zitat Moss, A. J., Hall, W. J., Cannom, D. S., et al. (2009). Cardiac-resynchronization therapy for the prevention of heart-failure events. The New England Journal of Medicine, 361(14), 1329–1338.PubMedCrossRef Moss, A. J., Hall, W. J., Cannom, D. S., et al. (2009). Cardiac-resynchronization therapy for the prevention of heart-failure events. The New England Journal of Medicine, 361(14), 1329–1338.PubMedCrossRef
13.
Zurück zum Zitat Yu, C. M., Chan, J. Y., Zhang, Q., et al. (2009). Biventricular pacing in patients with bradycardia and normal ejection fraction. The New England Journal of Medicine, 361(22), 2123–2134.PubMedCrossRef Yu, C. M., Chan, J. Y., Zhang, Q., et al. (2009). Biventricular pacing in patients with bradycardia and normal ejection fraction. The New England Journal of Medicine, 361(22), 2123–2134.PubMedCrossRef
14.
Zurück zum Zitat Bai, R., Di Biase, L., Elayi, C., et al. (2008). Mortality of heart failure patients after cardiac resynchronization therapy: Identification of predictors. Journal of Cardiovascular Electrophysiology, 19(12), 1259–1265.PubMedCrossRef Bai, R., Di Biase, L., Elayi, C., et al. (2008). Mortality of heart failure patients after cardiac resynchronization therapy: Identification of predictors. Journal of Cardiovascular Electrophysiology, 19(12), 1259–1265.PubMedCrossRef
15.
Zurück zum Zitat Higgins, S. L., Yong, P., Sheck, D., et al. (2000). Biventricular pacing diminishes the need for implantable cardioverter defibrillator therapy. Ventak CHF Investigators. J Am Coll Cardiol. Sep, 36(3), 824–827.CrossRef Higgins, S. L., Yong, P., Sheck, D., et al. (2000). Biventricular pacing diminishes the need for implantable cardioverter defibrillator therapy. Ventak CHF Investigators. J Am Coll Cardiol. Sep, 36(3), 824–827.CrossRef
16.
Zurück zum Zitat Di Biase, L., Gasparini, M., Lunati, M., et al. (2008). Antiarrhythmic effect of reverse ventricular remodeling induced by cardiac resynchronization therapy: The InSync ICD (Implantable Cardioverter-Defibrillator) Italian Registry. Journal of the American College of Cardiology, 52(18), 1442–1449.PubMedCrossRef Di Biase, L., Gasparini, M., Lunati, M., et al. (2008). Antiarrhythmic effect of reverse ventricular remodeling induced by cardiac resynchronization therapy: The InSync ICD (Implantable Cardioverter-Defibrillator) Italian Registry. Journal of the American College of Cardiology, 52(18), 1442–1449.PubMedCrossRef
17.
Zurück zum Zitat Markowitz, S. M., Lewen, J. M., Wiggenhorn, C. J., et al. (2009). Relationship of reverse anatomical remodeling and ventricular arrhythmias after cardiac resynchronization. Journal of Cardiovascular Electrophysiology, 20(3), 293–298.PubMedCrossRef Markowitz, S. M., Lewen, J. M., Wiggenhorn, C. J., et al. (2009). Relationship of reverse anatomical remodeling and ventricular arrhythmias after cardiac resynchronization. Journal of Cardiovascular Electrophysiology, 20(3), 293–298.PubMedCrossRef
18.
Zurück zum Zitat Kies, P., Bax, J. J., Molhoek, S. G., et al. (2005). Effect of cardiac resynchronization therapy on inducibility of ventricular tachyarrhythmias in cardiac arrest survivors with either ischemic or idiopathic dilated cardiomyopathy. The American Journal of Cardiology, 95(9), 1111–1114.PubMedCrossRef Kies, P., Bax, J. J., Molhoek, S. G., et al. (2005). Effect of cardiac resynchronization therapy on inducibility of ventricular tachyarrhythmias in cardiac arrest survivors with either ischemic or idiopathic dilated cardiomyopathy. The American Journal of Cardiology, 95(9), 1111–1114.PubMedCrossRef
19.
Zurück zum Zitat Cleland, J. G., Daubert, J. C., Erdmann, E., et al. (2006). Longer-term effects of cardiac resynchronization therapy on mortality in heart failure [the CArdiac REsynchronization-Heart Failure (CARE-HF) trial extension phase]. European Heart Journal, 27(16), 1928–1932.PubMedCrossRef Cleland, J. G., Daubert, J. C., Erdmann, E., et al. (2006). Longer-term effects of cardiac resynchronization therapy on mortality in heart failure [the CArdiac REsynchronization-Heart Failure (CARE-HF) trial extension phase]. European Heart Journal, 27(16), 1928–1932.PubMedCrossRef
20.
Zurück zum Zitat Rose, J., Armoundas, A. A., Tian, Y., et al. (2005). Molecular correlates of altered expression of potassium currents in failing rabbit myocardium. American Journal of Physiology. Heart and Circulatory Physiology, 288(5), H2077–H2087.PubMedCrossRef Rose, J., Armoundas, A. A., Tian, Y., et al. (2005). Molecular correlates of altered expression of potassium currents in failing rabbit myocardium. American Journal of Physiology. Heart and Circulatory Physiology, 288(5), H2077–H2087.PubMedCrossRef
21.
Zurück zum Zitat Beuckelmann, D. J., Nabauer, M., & Erdmann, E. (1993). Alterations of K+ currents in isolated human ventricular myocytes from patients with terminal heart failure. Circulation Research, 73(2), 379–385.PubMed Beuckelmann, D. J., Nabauer, M., & Erdmann, E. (1993). Alterations of K+ currents in isolated human ventricular myocytes from patients with terminal heart failure. Circulation Research, 73(2), 379–385.PubMed
22.
Zurück zum Zitat Akar, F. G., & Rosenbaum, D. S. (2003). Transmural electrophysiological heterogeneities underlying arrhythmogenesis in heart failure. Circulation Research, 93(7), 638–645.PubMedCrossRef Akar, F. G., & Rosenbaum, D. S. (2003). Transmural electrophysiological heterogeneities underlying arrhythmogenesis in heart failure. Circulation Research, 93(7), 638–645.PubMedCrossRef
23.
Zurück zum Zitat Kaab, S., Nuss, H. B., Chiamvimonvat, N., et al. (1996). Ionic mechanism of action potential prolongation in ventricular myocytes from dogs with pacing-induced heart failure. Circulation Research, 78(2), 262–273.PubMed Kaab, S., Nuss, H. B., Chiamvimonvat, N., et al. (1996). Ionic mechanism of action potential prolongation in ventricular myocytes from dogs with pacing-induced heart failure. Circulation Research, 78(2), 262–273.PubMed
24.
Zurück zum Zitat Kaab, S., Dixon, J., Duc, J., et al. (1998). Molecular basis of transient outward potassium current downregulation in human heart failure: A decrease in Kv4.3 mRNA correlates with a reduction in current density. Circulation, 98(14), 1383–1393.PubMed Kaab, S., Dixon, J., Duc, J., et al. (1998). Molecular basis of transient outward potassium current downregulation in human heart failure: A decrease in Kv4.3 mRNA correlates with a reduction in current density. Circulation, 98(14), 1383–1393.PubMed
25.
Zurück zum Zitat Tsuji, Y., Zicha, S., Qi, X. Y., et al. (2006). Potassium channel subunit remodeling in rabbits exposed to long-term bradycardia or tachycardia: Discrete arrhythmogenic consequences related to differential delayed-rectifier changes. Circulation, 113(3), 345–355.PubMedCrossRef Tsuji, Y., Zicha, S., Qi, X. Y., et al. (2006). Potassium channel subunit remodeling in rabbits exposed to long-term bradycardia or tachycardia: Discrete arrhythmogenic consequences related to differential delayed-rectifier changes. Circulation, 113(3), 345–355.PubMedCrossRef
26.
Zurück zum Zitat Nattel, S., Maguy, A., Le Bouter, S., et al. (2007). Arrhythmogenic ion-channel remodeling in the heart: Heart failure, myocardial infarction, and atrial fibrillation. Physiological Reviews, 87(2), 425–456.PubMedCrossRef Nattel, S., Maguy, A., Le Bouter, S., et al. (2007). Arrhythmogenic ion-channel remodeling in the heart: Heart failure, myocardial infarction, and atrial fibrillation. Physiological Reviews, 87(2), 425–456.PubMedCrossRef
27.
Zurück zum Zitat Li, G. R., Lau, C. P., Ducharme, A., et al. (2002). Transmural action potential and ionic current remodeling in ventricles of failing canine hearts. American Journal of Physiology. Heart and Circulatory Physiology, 283(3), H1031–H1041.PubMed Li, G. R., Lau, C. P., Ducharme, A., et al. (2002). Transmural action potential and ionic current remodeling in ventricles of failing canine hearts. American Journal of Physiology. Heart and Circulatory Physiology, 283(3), H1031–H1041.PubMed
28.
Zurück zum Zitat Aiba, T., Hesketh, G. G., Barth, A. S., et al. (2009). Electrophysiological consequences of dyssynchronous heart failure and its restoration by resynchronization therapy. Circulation, 119(9), 1220–1230.PubMedCrossRef Aiba, T., Hesketh, G. G., Barth, A. S., et al. (2009). Electrophysiological consequences of dyssynchronous heart failure and its restoration by resynchronization therapy. Circulation, 119(9), 1220–1230.PubMedCrossRef
29.
Zurück zum Zitat Nabauer, M., Beuckelmann, D. J., & Erdmann, E. (1993). Characteristics of transient outward current in human ventricular myocytes from patients with terminal heart failure. Circulation Research, 73(2), 386–394.PubMed Nabauer, M., Beuckelmann, D. J., & Erdmann, E. (1993). Characteristics of transient outward current in human ventricular myocytes from patients with terminal heart failure. Circulation Research, 73(2), 386–394.PubMed
30.
Zurück zum Zitat Zicha, S., Xiao, L., Stafford, S., et al. (2004). Transmural expression of transient outward potassium current subunits in normal and failing canine and human hearts. The Journal of Physiology, 561(Pt 3), 735–748.PubMedCrossRef Zicha, S., Xiao, L., Stafford, S., et al. (2004). Transmural expression of transient outward potassium current subunits in normal and failing canine and human hearts. The Journal of Physiology, 561(Pt 3), 735–748.PubMedCrossRef
31.
Zurück zum Zitat Akar, F. G., Wu, R. C., Juang, G. J., et al. (2005). Molecular mechanisms underlying K+ current downregulation in canine tachycardia-induced heart failure. American Journal of Physiology. Heart and Circulatory Physiology, 288(6), H2887–H2896.PubMedCrossRef Akar, F. G., Wu, R. C., Juang, G. J., et al. (2005). Molecular mechanisms underlying K+ current downregulation in canine tachycardia-induced heart failure. American Journal of Physiology. Heart and Circulatory Physiology, 288(6), H2887–H2896.PubMedCrossRef
32.
Zurück zum Zitat Xiao, L., Coutu, P., Villeneuve, L. R., et al. (2008). Mechanisms underlying rate-dependent remodeling of transient outward potassium current in canine ventricular myocytes. Circulation Research, 103, 733–742.PubMedCrossRef Xiao, L., Coutu, P., Villeneuve, L. R., et al. (2008). Mechanisms underlying rate-dependent remodeling of transient outward potassium current in canine ventricular myocytes. Circulation Research, 103, 733–742.PubMedCrossRef
33.
Zurück zum Zitat Nuss, H. B., Kaab, S., Kass, D. A., et al. (1999). Cellular basis of ventricular arrhythmias and abnormal automaticity in heart failure. American Journal of Physiology, 277(1 Pt 2), H80–H91.PubMed Nuss, H. B., Kaab, S., Kass, D. A., et al. (1999). Cellular basis of ventricular arrhythmias and abnormal automaticity in heart failure. American Journal of Physiology, 277(1 Pt 2), H80–H91.PubMed
34.
Zurück zum Zitat Pogwizd, S. M., Schlotthauer, K., Li, L., et al. (2001). Arrhythmogenesis and contractile dysfunction in heart failure: Roles of sodium-calcium exchange, inward rectifier potassium current, and residual beta-adrenergic responsiveness. Circulation Research, 88(11), 1159–1167.PubMedCrossRef Pogwizd, S. M., Schlotthauer, K., Li, L., et al. (2001). Arrhythmogenesis and contractile dysfunction in heart failure: Roles of sodium-calcium exchange, inward rectifier potassium current, and residual beta-adrenergic responsiveness. Circulation Research, 88(11), 1159–1167.PubMedCrossRef
35.
Zurück zum Zitat Rozanski, G. J., Xu, Z., Whitney, R. T., et al. (1997). Electrophysiology of rabbit ventricular myocytes following sustained rapid ventricular pacing. Journal of Molecular and Cellular Cardiology, 29(2), 721–732.PubMedCrossRef Rozanski, G. J., Xu, Z., Whitney, R. T., et al. (1997). Electrophysiology of rabbit ventricular myocytes following sustained rapid ventricular pacing. Journal of Molecular and Cellular Cardiology, 29(2), 721–732.PubMedCrossRef
36.
Zurück zum Zitat Zaritsky, J. J., Eckman, D. M., Wellman, G. C., et al. (2000). Targeted disruption of Kir2.1 and Kir2.2 genes reveals the essential role of the inwardly rectifying K(+) current in K(+)-mediated vasodilation. Circulation Research, 87(2), 160–166.PubMed Zaritsky, J. J., Eckman, D. M., Wellman, G. C., et al. (2000). Targeted disruption of Kir2.1 and Kir2.2 genes reveals the essential role of the inwardly rectifying K(+) current in K(+)-mediated vasodilation. Circulation Research, 87(2), 160–166.PubMed
37.
Zurück zum Zitat McLerie, M., & Lopatin, A. N. (2003). Dominant-negative suppression of I(K1) in the mouse heart leads to altered cardiac excitability. Journal of Molecular and Cellular Cardiology, 35(4), 367–378.PubMedCrossRef McLerie, M., & Lopatin, A. N. (2003). Dominant-negative suppression of I(K1) in the mouse heart leads to altered cardiac excitability. Journal of Molecular and Cellular Cardiology, 35(4), 367–378.PubMedCrossRef
38.
Zurück zum Zitat Liu, D. W., & Antzelevitch, C. (1995). Characteristics of the delayed rectifier current (IKr and IKs) in canine ventricular epicardial, midmyocardial, and endocardial myocytes. A weaker IKs contributes to the longer action potential of the M cell. Circ Res. Mar, 76(3), 351–365. Liu, D. W., & Antzelevitch, C. (1995). Characteristics of the delayed rectifier current (IKr and IKs) in canine ventricular epicardial, midmyocardial, and endocardial myocytes. A weaker IKs contributes to the longer action potential of the M cell. Circ Res. Mar, 76(3), 351–365.
39.
Zurück zum Zitat Furukawa, T., Bassett, A. L., Furukawa, N., et al. (1993). The ionic mechanism of reperfusion-induced early afterdepolarizations in feline left ventricular hypertrophy. The Journal of Clinical Investigation, 91(4), 1521–1531.PubMedCrossRef Furukawa, T., Bassett, A. L., Furukawa, N., et al. (1993). The ionic mechanism of reperfusion-induced early afterdepolarizations in feline left ventricular hypertrophy. The Journal of Clinical Investigation, 91(4), 1521–1531.PubMedCrossRef
40.
Zurück zum Zitat Pitt, G. S., Dun, W., & Boyden, P. A. (2006). Remodeled cardiac calcium channels. Journal of Molecular and Cellular Cardiology, 41(3), 373–388.PubMedCrossRef Pitt, G. S., Dun, W., & Boyden, P. A. (2006). Remodeled cardiac calcium channels. Journal of Molecular and Cellular Cardiology, 41(3), 373–388.PubMedCrossRef
41.
Zurück zum Zitat Chen, X., Piacentino, V., 3rd, Furukawa, S., et al. (2002). L-type Ca2+ channel density and regulation are altered in failing human ventricular myocytes and recover after support with mechanical assist devices. Circulation Research, 91(6), 517–524.PubMedCrossRef Chen, X., Piacentino, V., 3rd, Furukawa, S., et al. (2002). L-type Ca2+ channel density and regulation are altered in failing human ventricular myocytes and recover after support with mechanical assist devices. Circulation Research, 91(6), 517–524.PubMedCrossRef
42.
Zurück zum Zitat Schroder, F., Handrock, R., Beuckelmann, D. J., et al. (1998). Increased availability and open probability of single L-type calcium channels from failing compared with nonfailing human ventricle. Circulation, 98(10), 969–976.PubMed Schroder, F., Handrock, R., Beuckelmann, D. J., et al. (1998). Increased availability and open probability of single L-type calcium channels from failing compared with nonfailing human ventricle. Circulation, 98(10), 969–976.PubMed
43.
Zurück zum Zitat Takahashi, T., Allen, P. D., Lacro, R. V., et al. (1992). Expression of dihydropyridine receptor (Ca2+ channel) and calsequestrin genes in the myocardium of patients with end-stage heart failure. The Journal of Clinical Investigation, 90(3), 927–935.PubMedCrossRef Takahashi, T., Allen, P. D., Lacro, R. V., et al. (1992). Expression of dihydropyridine receptor (Ca2+ channel) and calsequestrin genes in the myocardium of patients with end-stage heart failure. The Journal of Clinical Investigation, 90(3), 927–935.PubMedCrossRef
44.
Zurück zum Zitat Yang, Y., Chen, X., Margulies, K., et al. (2000). L-type Ca2+ channel alpha 1c subunit isoform switching in failing human ventricular myocardium. Journal of Molecular and Cellular Cardiology, 32(6), 973–984.PubMedCrossRef Yang, Y., Chen, X., Margulies, K., et al. (2000). L-type Ca2+ channel alpha 1c subunit isoform switching in failing human ventricular myocardium. Journal of Molecular and Cellular Cardiology, 32(6), 973–984.PubMedCrossRef
45.
Zurück zum Zitat Hullin, R., Khan, I. F., Wirtz, S., et al. (2003). Cardiac L-type calcium channel beta-subunits expressed in human heart have differential effects on single channel characteristics. Journal of Biological Chemistry, 278(24), 21623–21630.PubMedCrossRef Hullin, R., Khan, I. F., Wirtz, S., et al. (2003). Cardiac L-type calcium channel beta-subunits expressed in human heart have differential effects on single channel characteristics. Journal of Biological Chemistry, 278(24), 21623–21630.PubMedCrossRef
46.
Zurück zum Zitat O’Rourke, B., Kass, D. A., Tomaselli, G. F., et al. (1999). Mechanisms of altered excitation-contraction coupling in canine tachycardia-induced heart failure, I: Experimental studies. Circulation Research, 84(5), 562–570.PubMed O’Rourke, B., Kass, D. A., Tomaselli, G. F., et al. (1999). Mechanisms of altered excitation-contraction coupling in canine tachycardia-induced heart failure, I: Experimental studies. Circulation Research, 84(5), 562–570.PubMed
47.
Zurück zum Zitat Hobai, I. A., & O’Rourke, B. (2000). Enhanced Ca(2+)-activated Na(+)-Ca(2+) exchange activity in canine pacing-induced heart failure. Circulation Research, 87(8), 690–698.PubMed Hobai, I. A., & O’Rourke, B. (2000). Enhanced Ca(2+)-activated Na(+)-Ca(2+) exchange activity in canine pacing-induced heart failure. Circulation Research, 87(8), 690–698.PubMed
48.
Zurück zum Zitat Hobai, I. A., & O’Rourke, B. (2001). Decreased sarcoplasmic reticulum calcium content is responsible for defective excitation-contraction coupling in canine heart failure. Circulation, 103(11), 1577–1584.PubMed Hobai, I. A., & O’Rourke, B. (2001). Decreased sarcoplasmic reticulum calcium content is responsible for defective excitation-contraction coupling in canine heart failure. Circulation, 103(11), 1577–1584.PubMed
49.
Zurück zum Zitat Armoundas, A. A., Hobai, I. A., Tomaselli, G. F., et al. (2003). Role of sodium-calcium exchanger in modulating the action potential of ventricular myocytes from normal and failing hearts. Circulation Research, 93(1), 46–53.PubMedCrossRef Armoundas, A. A., Hobai, I. A., Tomaselli, G. F., et al. (2003). Role of sodium-calcium exchanger in modulating the action potential of ventricular myocytes from normal and failing hearts. Circulation Research, 93(1), 46–53.PubMedCrossRef
50.
Zurück zum Zitat Reiken, S., Gaburjakova, M., Guatimosim, S., et al. (2003). Protein kinase A phosphorylation of the cardiac calcium release channel (ryanodine receptor) in normal and failing hearts. Role of phosphatases and response to isoproterenol. Journal of Biological Chemistry, 278(1), 444–453.PubMedCrossRef Reiken, S., Gaburjakova, M., Guatimosim, S., et al. (2003). Protein kinase A phosphorylation of the cardiac calcium release channel (ryanodine receptor) in normal and failing hearts. Role of phosphatases and response to isoproterenol. Journal of Biological Chemistry, 278(1), 444–453.PubMedCrossRef
51.
Zurück zum Zitat Marx, S. O., Reiken, S., Hisamatsu, Y., et al. (2000). PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): Defective regulation in failing hearts. Cell, 101(4), 365–376.PubMedCrossRef Marx, S. O., Reiken, S., Hisamatsu, Y., et al. (2000). PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): Defective regulation in failing hearts. Cell, 101(4), 365–376.PubMedCrossRef
52.
Zurück zum Zitat Curran, J., Hinton, M. J., Rios, E., et al. (2007). Beta-adrenergic enhancement of sarcoplasmic reticulum calcium leak in cardiac myocytes is mediated by calcium/calmodulin-dependent protein kinase. Circulation Research, 100(3), 391–398.PubMedCrossRef Curran, J., Hinton, M. J., Rios, E., et al. (2007). Beta-adrenergic enhancement of sarcoplasmic reticulum calcium leak in cardiac myocytes is mediated by calcium/calmodulin-dependent protein kinase. Circulation Research, 100(3), 391–398.PubMedCrossRef
53.
Zurück zum Zitat Jiang, M. T., Lokuta, A. J., Farrell, E. F., et al. (2002). Abnormal Ca2+ release, but normal ryanodine receptors, in canine and human heart failure. Circulation Research, 91(11), 1015–1022.PubMedCrossRef Jiang, M. T., Lokuta, A. J., Farrell, E. F., et al. (2002). Abnormal Ca2+ release, but normal ryanodine receptors, in canine and human heart failure. Circulation Research, 91(11), 1015–1022.PubMedCrossRef
54.
Zurück zum Zitat Xiao, B., Jiang, M. T., Zhao, M., et al. (2005). Characterization of a novel PKA phosphorylation site, serine-2030, reveals no PKA hyperphosphorylation of the cardiac ryanodine receptor in canine heart failure. Circulation Research, 96(8), 847–855.PubMedCrossRef Xiao, B., Jiang, M. T., Zhao, M., et al. (2005). Characterization of a novel PKA phosphorylation site, serine-2030, reveals no PKA hyperphosphorylation of the cardiac ryanodine receptor in canine heart failure. Circulation Research, 96(8), 847–855.PubMedCrossRef
55.
Zurück zum Zitat MacDonnell, S. M., Garcia-Rivas, G., Scherman, J. A., et al. (2008). Adrenergic regulation of cardiac contractility does not involve phosphorylation of the cardiac ryanodine receptor at serine 2808. Circulation Research, 102(8), e65–e72.PubMedCrossRef MacDonnell, S. M., Garcia-Rivas, G., Scherman, J. A., et al. (2008). Adrenergic regulation of cardiac contractility does not involve phosphorylation of the cardiac ryanodine receptor at serine 2808. Circulation Research, 102(8), e65–e72.PubMedCrossRef
56.
Zurück zum Zitat Harzheim, D., Movassagh, M., Foo, R. S., et al. (2009). Increased InsP3Rs in the junctional sarcoplasmic reticulum augment Ca2+ transients and arrhythmias associated with cardiac hypertrophy. Proceedings of the National Academy of Sciences of the United States of America, 106(27), 11406–11411.PubMedCrossRef Harzheim, D., Movassagh, M., Foo, R. S., et al. (2009). Increased InsP3Rs in the junctional sarcoplasmic reticulum augment Ca2+ transients and arrhythmias associated with cardiac hypertrophy. Proceedings of the National Academy of Sciences of the United States of America, 106(27), 11406–11411.PubMedCrossRef
57.
Zurück zum Zitat Ling, H., Zhang, T., Pereira, L., et al. (2009). Requirement for Ca2+/calmodulin-dependent kinase II in the transition from pressure overload-induced cardiac hypertrophy to heart failure in mice. The Journal of Clinical Investigation, 119(5), 1230–1240.PubMedCrossRef Ling, H., Zhang, T., Pereira, L., et al. (2009). Requirement for Ca2+/calmodulin-dependent kinase II in the transition from pressure overload-induced cardiac hypertrophy to heart failure in mice. The Journal of Clinical Investigation, 119(5), 1230–1240.PubMedCrossRef
58.
Zurück zum Zitat Terentyev, D., Gyorke, I., Belevych, A. E., et al. (2008). Redox modification of ryanodine receptors contributes to sarcoplasmic reticulum Ca2+ leak in chronic heart failure. Circulation Research, 103(12), 1466–1472.PubMedCrossRef Terentyev, D., Gyorke, I., Belevych, A. E., et al. (2008). Redox modification of ryanodine receptors contributes to sarcoplasmic reticulum Ca2+ leak in chronic heart failure. Circulation Research, 103(12), 1466–1472.PubMedCrossRef
59.
Zurück zum Zitat Plotnikov, A. N., Yu, H., Geller, J. C., et al. (2003). Role of L-type calcium channels in pacing-induced short-term and long-term cardiac memory in canine heart. Circulation, 107(22), 2844–2849.PubMedCrossRef Plotnikov, A. N., Yu, H., Geller, J. C., et al. (2003). Role of L-type calcium channels in pacing-induced short-term and long-term cardiac memory in canine heart. Circulation, 107(22), 2844–2849.PubMedCrossRef
60.
Zurück zum Zitat Ai, X., Curran, J. W., Shannon, T. R., et al. (2005). Ca2+/calmodulin-dependent protein kinase modulates cardiac ryanodine receptor phosphorylation and sarcoplasmic reticulum Ca2+ leak in heart failure. Circulation Research, 97(12), 1314–1322.PubMedCrossRef Ai, X., Curran, J. W., Shannon, T. R., et al. (2005). Ca2+/calmodulin-dependent protein kinase modulates cardiac ryanodine receptor phosphorylation and sarcoplasmic reticulum Ca2+ leak in heart failure. Circulation Research, 97(12), 1314–1322.PubMedCrossRef
61.
Zurück zum Zitat Kohlhaas, M., Zhang, T., Seidler, T., et al. (2006). Increased sarcoplasmic reticulum calcium leak but unaltered contractility by acute CaMKII overexpression in isolated rabbit cardiac myocytes. Circulation Research, 98(2), 235–244.PubMedCrossRef Kohlhaas, M., Zhang, T., Seidler, T., et al. (2006). Increased sarcoplasmic reticulum calcium leak but unaltered contractility by acute CaMKII overexpression in isolated rabbit cardiac myocytes. Circulation Research, 98(2), 235–244.PubMedCrossRef
62.
Zurück zum Zitat Maier, L. S., Zhang, T., Chen, L., et al. (2003). Transgenic CaMKIIdeltaC overexpression uniquely alters cardiac myocyte Ca2+ handling: Reduced SR Ca2+ load and activated SR Ca2+ release. Circulation Research, 92(8), 904–911.PubMedCrossRef Maier, L. S., Zhang, T., Chen, L., et al. (2003). Transgenic CaMKIIdeltaC overexpression uniquely alters cardiac myocyte Ca2+ handling: Reduced SR Ca2+ load and activated SR Ca2+ release. Circulation Research, 92(8), 904–911.PubMedCrossRef
63.
Zurück zum Zitat Chakir, K., Daya, S. K., Tunin, R. S., et al. (2008). Reversal of global apoptosis and regional stress kinase activation by cardiac resynchronization. Circulation, 117(11), 1369–1377.PubMedCrossRef Chakir, K., Daya, S. K., Tunin, R. S., et al. (2008). Reversal of global apoptosis and regional stress kinase activation by cardiac resynchronization. Circulation, 117(11), 1369–1377.PubMedCrossRef
64.
Zurück zum Zitat Aiba, T., Barth, A. S., Liu, T., et al. (2008). Cardiac resynchronization therapy restores beta-adrenergic reserve of ca2+ homeostasis in a canine model of dyssynchronous heart failure. Circulation, 118(Suppl), 523–524. Aiba, T., Barth, A. S., Liu, T., et al. (2008). Cardiac resynchronization therapy restores beta-adrenergic reserve of ca2+ homeostasis in a canine model of dyssynchronous heart failure. Circulation, 118(Suppl), 523–524.
65.
Zurück zum Zitat Chakir, K., Daya, S. K., Aiba, T., et al. (2009). Mechanisms of enhanced beta-adrenergic reserve from cardiac resynchronization therapy. Circulation, 119(9), 1231–1240.PubMedCrossRef Chakir, K., Daya, S. K., Aiba, T., et al. (2009). Mechanisms of enhanced beta-adrenergic reserve from cardiac resynchronization therapy. Circulation, 119(9), 1231–1240.PubMedCrossRef
66.
Zurück zum Zitat Shang, L. L., Pfahnl, A. E., Sanyal, S., et al. (2007). Human heart failure is associated with abnormal C-terminal splicing variants in the cardiac sodium channel. Circulation Research, 101(11), 1146–1154.PubMedCrossRef Shang, L. L., Pfahnl, A. E., Sanyal, S., et al. (2007). Human heart failure is associated with abnormal C-terminal splicing variants in the cardiac sodium channel. Circulation Research, 101(11), 1146–1154.PubMedCrossRef
67.
Zurück zum Zitat Pu, J., & Boyden, P. A. (1997). Alterations of Na + currents in myocytes from epicardial border zone of the infarcted heart. A possible ionic mechanism for reduced excitability and postrepolarization refractoriness. Circ Res. Jul, 81(1), 110–119. Pu, J., & Boyden, P. A. (1997). Alterations of Na + currents in myocytes from epicardial border zone of the infarcted heart. A possible ionic mechanism for reduced excitability and postrepolarization refractoriness. Circ Res. Jul, 81(1), 110–119.
68.
Zurück zum Zitat Undrovinas, A. I., Maltsev, V. A., & Sabbah, H. N. (1999). Repolarization abnormalities in cardiomyocytes of dogs with chronic heart failure: Role of sustained inward current. Cellular and Molecular Life Sciences, 55(3), 494–505.PubMedCrossRef Undrovinas, A. I., Maltsev, V. A., & Sabbah, H. N. (1999). Repolarization abnormalities in cardiomyocytes of dogs with chronic heart failure: Role of sustained inward current. Cellular and Molecular Life Sciences, 55(3), 494–505.PubMedCrossRef
69.
Zurück zum Zitat Valdivia, C. R., Chu, W. W., Pu, J., et al. (2005). Increased late sodium current in myocytes from a canine heart failure model and from failing human heart. Journal of Molecular and Cellular Cardiology, 38(3), 475–483.PubMedCrossRef Valdivia, C. R., Chu, W. W., Pu, J., et al. (2005). Increased late sodium current in myocytes from a canine heart failure model and from failing human heart. Journal of Molecular and Cellular Cardiology, 38(3), 475–483.PubMedCrossRef
70.
Zurück zum Zitat Aiba, T., Hashambhoy, Y., Barth, A., et al. (2009). Cardiac resynchronization therapy improves altered na channel gating in canine model of dyssynchronous heart failure. Circulation, 120, S627. Aiba, T., Hashambhoy, Y., Barth, A., et al. (2009). Cardiac resynchronization therapy improves altered na channel gating in canine model of dyssynchronous heart failure. Circulation, 120, S627.
71.
Zurück zum Zitat Fernandez-Velasco, M., Ruiz-Hurtado, G., Hurtado, O., et al. (2007). TNF-alpha downregulates transient outward potassium current in rat ventricular myocytes through iNOS overexpression and oxidant species generation. American Journal of Physiology. Heart and Circulatory Physiology, 293(1), H238–H245.PubMedCrossRef Fernandez-Velasco, M., Ruiz-Hurtado, G., Hurtado, O., et al. (2007). TNF-alpha downregulates transient outward potassium current in rat ventricular myocytes through iNOS overexpression and oxidant species generation. American Journal of Physiology. Heart and Circulatory Physiology, 293(1), H238–H245.PubMedCrossRef
72.
Zurück zum Zitat Xie, L. H., Chen, F., Karagueuzian, H. S., et al. (2009). Oxidative-stress-induced afterdepolarizations and calmodulin kinase II signaling. Circulation Research, 104(1), 79–86.PubMedCrossRef Xie, L. H., Chen, F., Karagueuzian, H. S., et al. (2009). Oxidative-stress-induced afterdepolarizations and calmodulin kinase II signaling. Circulation Research, 104(1), 79–86.PubMedCrossRef
73.
Zurück zum Zitat Maltsev, V. A., Reznikov, V., Undrovinas, N. A., et al. (2008). Modulation of late sodium current by Ca2+, calmodulin, and CaMKII in normal and failing dog cardiomyocytes: Similarities and differences. American Journal of Physiology. Heart and Circulatory Physiology, 294(4), H1597–H1608.PubMedCrossRef Maltsev, V. A., Reznikov, V., Undrovinas, N. A., et al. (2008). Modulation of late sodium current by Ca2+, calmodulin, and CaMKII in normal and failing dog cardiomyocytes: Similarities and differences. American Journal of Physiology. Heart and Circulatory Physiology, 294(4), H1597–H1608.PubMedCrossRef
74.
Zurück zum Zitat Wagner, S., Dybkova, N., Rasenack, E. C., et al. (2006). Ca2+/calmodulin-dependent protein kinase II regulates cardiac Na + channels. The Journal of Clinical Investigation, 116(12), 3127–3138.PubMedCrossRef Wagner, S., Dybkova, N., Rasenack, E. C., et al. (2006). Ca2+/calmodulin-dependent protein kinase II regulates cardiac Na + channels. The Journal of Clinical Investigation, 116(12), 3127–3138.PubMedCrossRef
75.
Zurück zum Zitat Aiba, T., Hesketh, G. G., Liu, T., et al. (2010). Na + channel regulation by Ca2+/calmodulin and Ca2+/calmodulin-dependent protein kinase II in guinea-pig ventricular myocytes. Cardiovascular Research, 85(3), 454–463.PubMedCrossRef Aiba, T., Hesketh, G. G., Liu, T., et al. (2010). Na + channel regulation by Ca2+/calmodulin and Ca2+/calmodulin-dependent protein kinase II in guinea-pig ventricular myocytes. Cardiovascular Research, 85(3), 454–463.PubMedCrossRef
76.
Zurück zum Zitat Wu, Y., Temple, J., Zhang, R., et al. (2002). Calmodulin kinase II and arrhythmias in a mouse model of cardiac hypertrophy. Circulation, 106(10), 1288–1293.PubMedCrossRef Wu, Y., Temple, J., Zhang, R., et al. (2002). Calmodulin kinase II and arrhythmias in a mouse model of cardiac hypertrophy. Circulation, 106(10), 1288–1293.PubMedCrossRef
77.
Zurück zum Zitat Wagner, S., Ruff, H. M., Weber, S. L., et al. (2011). Reactive oxygen species-activated Ca/calmodulin kinase IIdelta is required for late I(Na) augmentation leading to cellular Na and Ca overload. Circulation Research, 108(5), 555–565.PubMedCrossRef Wagner, S., Ruff, H. M., Weber, S. L., et al. (2011). Reactive oxygen species-activated Ca/calmodulin kinase IIdelta is required for late I(Na) augmentation leading to cellular Na and Ca overload. Circulation Research, 108(5), 555–565.PubMedCrossRef
Metadaten
Titel
Electrical Remodeling in Dyssynchrony and Resynchronization
verfasst von
Takeshi Aiba
Gordon Tomaselli
Publikationsdatum
01.04.2012
Verlag
Springer US
Erschienen in
Journal of Cardiovascular Translational Research / Ausgabe 2/2012
Print ISSN: 1937-5387
Elektronische ISSN: 1937-5395
DOI
https://doi.org/10.1007/s12265-012-9348-9

Weitere Artikel der Ausgabe 2/2012

Journal of Cardiovascular Translational Research 2/2012 Zur Ausgabe

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.