Skip to main content
Erschienen in: Journal of Cardiovascular Translational Research 6/2012

01.12.2012

The Dynamic Role of Cardiac Fibroblasts in Development and Disease

verfasst von: Jacquelyn D. Lajiness, Simon J. Conway

Erschienen in: Journal of Cardiovascular Translational Research | Ausgabe 6/2012

Einloggen, um Zugang zu erhalten

Abstract

Cardiac fibroblasts are the most abundant cell in the mammalian heart. While they have been historically overlooked in terms of functional contributions to development and physiology, cardiac fibroblasts are now front and center. They are currently recognized as key protagonists during both normal development and cardiomyopathy disease, and work together with cardiomyocytes through paracrine, structural, and potentially electrical interactions. However, the lack of specific biomarkers and fibroblast heterogeneous nature currently convolutes the study of this dynamic cell lineage; though, efforts to advance marker analysis and lineage mapping technologies are ongoing. These tools will help elucidate the functional significance of fibroblast–cardiomyocyte interactions in vivo and delineate the dynamic nature of normal and pathological cardiac fibroblasts. Since therapeutic promise lies in understanding the interface between developmental biology and the postnatal injury response, future studies to understand the divergent roles played by cardiac fibroblasts both in utero and following cardiac insult are essential.
Literatur
2.
Zurück zum Zitat Gittenberger-de Groot, A. C. V. P. M., Mentink, M. M. T., Gourdie, R. G., & Poelmann, R. E. (1998). Epicardium-derived cells contribute a novel population to the myocardial wall and the atrioventricular cushions. Circulation Research, 82, 1043–1052.PubMedCrossRef Gittenberger-de Groot, A. C. V. P. M., Mentink, M. M. T., Gourdie, R. G., & Poelmann, R. E. (1998). Epicardium-derived cells contribute a novel population to the myocardial wall and the atrioventricular cushions. Circulation Research, 82, 1043–1052.PubMedCrossRef
3.
Zurück zum Zitat Kolditz, D. P., Wijffels, M. C., Blom, N. A., van der Laarse, A., Hahurij, N. D., Lie-Venema, H., et al. (2008). Epicardium-derived cells in development of annulus fibrosis and persistence of accessory pathways. Circulation, 117(12), 1508–1517. doi:10.1161/CIRCULATIONAHA.107.726315.PubMedCrossRef Kolditz, D. P., Wijffels, M. C., Blom, N. A., van der Laarse, A., Hahurij, N. D., Lie-Venema, H., et al. (2008). Epicardium-derived cells in development of annulus fibrosis and persistence of accessory pathways. Circulation, 117(12), 1508–1517. doi:10.​1161/​CIRCULATIONAHA.​107.​726315.PubMedCrossRef
4.
Zurück zum Zitat Mikawa, T., & Gourdie, R. G. (1996). Pericardial mesoderm generates a population of coronary smooth muscle cells migrating into the heart along with ingrowth of the epicardial organ. Developmental Biology, 174(2), 221–232. doi:10.1006/dbio.1996.0068.PubMedCrossRef Mikawa, T., & Gourdie, R. G. (1996). Pericardial mesoderm generates a population of coronary smooth muscle cells migrating into the heart along with ingrowth of the epicardial organ. Developmental Biology, 174(2), 221–232. doi:10.​1006/​dbio.​1996.​0068.PubMedCrossRef
5.
Zurück zum Zitat Perez-Pomares, J. M., Carmona, R., Gonzalez-Iriarte, M., Atencia, G., Wessels, A., & Munoz-Chapuli, R. (2002). Origin of coronary endothelial cells from epicardial mesothelium in avian embryos. International Journal of Developmental Biology, 46(8), 1005–1013.PubMed Perez-Pomares, J. M., Carmona, R., Gonzalez-Iriarte, M., Atencia, G., Wessels, A., & Munoz-Chapuli, R. (2002). Origin of coronary endothelial cells from epicardial mesothelium in avian embryos. International Journal of Developmental Biology, 46(8), 1005–1013.PubMed
6.
Zurück zum Zitat Lie-Venema, H., van den Akker, N. M., Bax, N. A., Winter, E. M., Maas, S., Kekarainen, T., et al. (2007). Origin, fate, and function of epicardium-derived cells (EPDCs) in normal and abnormal cardiac development. Scientific World Journal, 7, 1777–1798. doi:10.1100/tsw.2007.294.PubMedCrossRef Lie-Venema, H., van den Akker, N. M., Bax, N. A., Winter, E. M., Maas, S., Kekarainen, T., et al. (2007). Origin, fate, and function of epicardium-derived cells (EPDCs) in normal and abnormal cardiac development. Scientific World Journal, 7, 1777–1798. doi:10.​1100/​tsw.​2007.​294.PubMedCrossRef
7.
Zurück zum Zitat Wessels, A., van den Hoff, M. J., Adamo, R. F., Phelps, A. L., Lockhart, M. M., Sauls, K., et al. Epicardially derived fibroblasts preferentially contribute to the parietal leaflets of the atrioventricular valves in the murine heart. Developmental Biology, 366(2), 111–124. doi:10.1016/j.ydbio.2012.04.020 Wessels, A., van den Hoff, M. J., Adamo, R. F., Phelps, A. L., Lockhart, M. M., Sauls, K., et al. Epicardially derived fibroblasts preferentially contribute to the parietal leaflets of the atrioventricular valves in the murine heart. Developmental Biology, 366(2), 111–124. doi:10.​1016/​j.​ydbio.​2012.​04.​020
8.
Zurück zum Zitat Norris, R. A., Borg, T. K., Butcher, J. T., Baudino, T. A., Banerjee, I., & Markwald, R. R. (2008). Neonatal and adult cardiovascular pathophysiological remodeling and repair: developmental role of periostin. Annals of the New York Academy of Sciences, 1123, 30–40. doi:10.1196/annals.1420.005.PubMedCrossRef Norris, R. A., Borg, T. K., Butcher, J. T., Baudino, T. A., Banerjee, I., & Markwald, R. R. (2008). Neonatal and adult cardiovascular pathophysiological remodeling and repair: developmental role of periostin. Annals of the New York Academy of Sciences, 1123, 30–40. doi:10.​1196/​annals.​1420.​005.PubMedCrossRef
11.
Zurück zum Zitat Zeisberg, E. M., Tarnavski, O., Zeisberg, M., Dorfman, A. L., McMullen, J. R., Gustafsson, E., et al. (2007). Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nature Medicine, 13(8), 952–961. doi:10.1038/nm1613.PubMedCrossRef Zeisberg, E. M., Tarnavski, O., Zeisberg, M., Dorfman, A. L., McMullen, J. R., Gustafsson, E., et al. (2007). Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nature Medicine, 13(8), 952–961. doi:10.​1038/​nm1613.PubMedCrossRef
12.
13.
Zurück zum Zitat Ebihara, Y., Masuya, M., Larue, A. C., Fleming, P. A., Visconti, R. P., Minamiguchi, H., et al. (2006). Hematopoietic origins of fibroblasts: II. In vitro studies of fibroblasts, CFU-F, and fibrocytes. Experimental Hematology, 34(2), 219–229. doi:10.1016/j.exphem.2005.10.008.PubMedCrossRef Ebihara, Y., Masuya, M., Larue, A. C., Fleming, P. A., Visconti, R. P., Minamiguchi, H., et al. (2006). Hematopoietic origins of fibroblasts: II. In vitro studies of fibroblasts, CFU-F, and fibrocytes. Experimental Hematology, 34(2), 219–229. doi:10.​1016/​j.​exphem.​2005.​10.​008.PubMedCrossRef
14.
15.
Zurück zum Zitat van Amerongen, M. J., Bou-Gharios, G., Popa, E., van Ark, J., Petersen, A. H., van Dam, G. M., et al. (2008). Bone marrow-derived myofibroblasts contribute functionally to scar formation after myocardial infarction. The Journal of Pathology, 214(3), 377–386. doi:10.1002/path.2281.PubMedCrossRef van Amerongen, M. J., Bou-Gharios, G., Popa, E., van Ark, J., Petersen, A. H., van Dam, G. M., et al. (2008). Bone marrow-derived myofibroblasts contribute functionally to scar formation after myocardial infarction. The Journal of Pathology, 214(3), 377–386. doi:10.​1002/​path.​2281.PubMedCrossRef
16.
17.
Zurück zum Zitat Haudek, S. B., Xia, Y., Huebener, P., Lee, J. M., Carlson, S., Crawford, J. R., et al. (2006). Bone marrow-derived fibroblast precursors mediate ischemic cardiomyopathy in mice. Proceedings of the National Academy of Sciences of the United States of America, 103(48), 18284–18289. doi:10.1073/pnas.0608799103.PubMedCrossRef Haudek, S. B., Xia, Y., Huebener, P., Lee, J. M., Carlson, S., Crawford, J. R., et al. (2006). Bone marrow-derived fibroblast precursors mediate ischemic cardiomyopathy in mice. Proceedings of the National Academy of Sciences of the United States of America, 103(48), 18284–18289. doi:10.​1073/​pnas.​0608799103.PubMedCrossRef
18.
Zurück zum Zitat Diaz-Flores, L., Gutierrez, R., Madrid, J. F., Varela, H., Valladares, F., Acosta, E., et al. (2009). Pericytes. Morphofunction, interactions and pathology in a quiescent and activated mesenchymal cell niche. Histology and Histopathology, 24(7), 909–969.PubMed Diaz-Flores, L., Gutierrez, R., Madrid, J. F., Varela, H., Valladares, F., Acosta, E., et al. (2009). Pericytes. Morphofunction, interactions and pathology in a quiescent and activated mesenchymal cell niche. Histology and Histopathology, 24(7), 909–969.PubMed
19.
Zurück zum Zitat Krenning, G., Zeisberg, E. M., & Kalluri, R. The origin of fibroblasts and mechanism of cardiac fibrosis. Journal of Cellular Physiology, 225(3), 631–637. doi:10.1002/jcp.22322 Krenning, G., Zeisberg, E. M., & Kalluri, R. The origin of fibroblasts and mechanism of cardiac fibrosis. Journal of Cellular Physiology, 225(3), 631–637. doi:10.​1002/​jcp.​22322
21.
Zurück zum Zitat Snider, P., Hinton, R. B., Moreno-Rodriguez, R. A., Wang, J., Rogers, R., Lindsley, A., et al. (2008). Periostin is required for maturation and extracellular matrix stabilization of noncardiomyocyte lineages of the heart. Circulation Research, 102(7), 752–760. doi:10.1161/CIRCRESAHA.107.159517.PubMedCrossRef Snider, P., Hinton, R. B., Moreno-Rodriguez, R. A., Wang, J., Rogers, R., Lindsley, A., et al. (2008). Periostin is required for maturation and extracellular matrix stabilization of noncardiomyocyte lineages of the heart. Circulation Research, 102(7), 752–760. doi:10.​1161/​CIRCRESAHA.​107.​159517.PubMedCrossRef
23.
Zurück zum Zitat Takeda, N., & Manabe I. Cellular interplay between cardiomyocytes and nonmyocytes in cardiac remodeling. International Journal of Inflammation, 2011:535241. doi:10.4061/2011/535241 Takeda, N., & Manabe I. Cellular interplay between cardiomyocytes and nonmyocytes in cardiac remodeling. International Journal of Inflammation, 2011:535241. doi:10.​4061/​2011/​535241
27.
Zurück zum Zitat Vasquez, C., Mohandas, P., Louie, K. L., Benamer, N., Bapat, A. C., & Morley, G. E. Enhanced fibroblast–myocyte interactions in response to cardiac injury. Circulation Research, 107(8), 1011–1020. doi:10.1161/CIRCRESAHA.110.227421 Vasquez, C., Mohandas, P., Louie, K. L., Benamer, N., Bapat, A. C., & Morley, G. E. Enhanced fibroblast–myocyte interactions in response to cardiac injury. Circulation Research, 107(8), 1011–1020. doi:10.​1161/​CIRCRESAHA.​110.​227421
28.
Zurück zum Zitat Zhang, Y., Kanter, E. M., & Yamada, K. A. Remodeling of cardiac fibroblasts following myocardial infarction results in increased gap junction intercellular communication. Cardiovascular Pathology, 19(6), e233–e240. doi:10.1016/j.carpath.2009.12.002 Zhang, Y., Kanter, E. M., & Yamada, K. A. Remodeling of cardiac fibroblasts following myocardial infarction results in increased gap junction intercellular communication. Cardiovascular Pathology, 19(6), e233–e240. doi:10.​1016/​j.​carpath.​2009.​12.​002
30.
Zurück zum Zitat Spach, M. S., & Boineau, J. P. (1997). Microfibrosis produces electrical load variations due to loss of side-to-side cell connections: a major mechanism of structural heart disease arrhythmias. Pacing and Clinical Electrophysiology, 20(2 Pt 2), 397–413.PubMedCrossRef Spach, M. S., & Boineau, J. P. (1997). Microfibrosis produces electrical load variations due to loss of side-to-side cell connections: a major mechanism of structural heart disease arrhythmias. Pacing and Clinical Electrophysiology, 20(2 Pt 2), 397–413.PubMedCrossRef
31.
33.
Zurück zum Zitat Chang, H. Y., Chi, J. T., Dudoit, S., Bondre, C., van de Rijn, M., Botstein, D., et al. (2002). Diversity, topographic differentiation, and positional memory in human fibroblasts. Proceedings of the National Academy of Sciences of the United States of America, 99(20), 12877–12882. doi:10.1073/pnas.162488599.PubMedCrossRef Chang, H. Y., Chi, J. T., Dudoit, S., Bondre, C., van de Rijn, M., Botstein, D., et al. (2002). Diversity, topographic differentiation, and positional memory in human fibroblasts. Proceedings of the National Academy of Sciences of the United States of America, 99(20), 12877–12882. doi:10.​1073/​pnas.​162488599.PubMedCrossRef
34.
Zurück zum Zitat Weber, K. T. (1997). Monitoring tissue repair and fibrosis from a distance. Circulation, 96(8), 2488–2492.PubMed Weber, K. T. (1997). Monitoring tissue repair and fibrosis from a distance. Circulation, 96(8), 2488–2492.PubMed
35.
Zurück zum Zitat Takeda, N., Manabe, I., Uchino, Y., Eguchi, K., Matsumoto, S., Nishimura, S., et al. (2010). Cardiac fibroblasts are essential for the adaptive response of the murine heart to pressure overload. Journal of Clinical Investigation, 120(1), 254–265. doi:10.1172/JCI40295 Takeda, N., Manabe, I., Uchino, Y., Eguchi, K., Matsumoto, S., Nishimura, S., et al. (2010). Cardiac fibroblasts are essential for the adaptive response of the murine heart to pressure overload. Journal of Clinical Investigation, 120(1), 254–265. doi:10.​1172/​JCI40295
36.
Zurück zum Zitat Qian, L., Huang, Y., Spencer, C. I., Foley, A., Vedantham, V., Liu, L., et al. In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature, doi:10.1038/nature11044 Qian, L., Huang, Y., Spencer, C. I., Foley, A., Vedantham, V., Liu, L., et al. In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature, doi:10.​1038/​nature11044
37.
Zurück zum Zitat Lindsley, A., Snider, P., Zhou, H., Rogers, R., Wang, J., Olaopa, M., et al. (2007). Identification and characterization of a novel Schwann and outflow tract endocardial cushion lineage-restricted periostin enhancer. Developmental Biology, 307(2), 340–355. doi:10.1016/j.ydbio.2007.04.041.PubMedCrossRef Lindsley, A., Snider, P., Zhou, H., Rogers, R., Wang, J., Olaopa, M., et al. (2007). Identification and characterization of a novel Schwann and outflow tract endocardial cushion lineage-restricted periostin enhancer. Developmental Biology, 307(2), 340–355. doi:10.​1016/​j.​ydbio.​2007.​04.​041.PubMedCrossRef
38.
Zurück zum Zitat Kruzynska-Frejtag, A., Machnicki, M., Rogers, R., Markwald, R. R., & Conway, S. J. (2001). Periostin (an osteoblast-specific factor) is expressed within the embryonic mouse heart during valve formation. Mechanisms of Development, 103(1–2), 183–188.PubMedCrossRef Kruzynska-Frejtag, A., Machnicki, M., Rogers, R., Markwald, R. R., & Conway, S. J. (2001). Periostin (an osteoblast-specific factor) is expressed within the embryonic mouse heart during valve formation. Mechanisms of Development, 103(1–2), 183–188.PubMedCrossRef
39.
Zurück zum Zitat Lie-Venema, H., Gittenberger-de Groot, A. C., van Empel, L. J., Boot, M. J., Kerkdijk, H., de Kant, E., et al. (2003). Ets-1 and Ets-2 transcription factors are essential for normal coronary and myocardial development in chicken embryos. Circulation Research, 92(7), 749–756. doi:10.1161/01.RES.0000066662.70010.DB.PubMedCrossRef Lie-Venema, H., Gittenberger-de Groot, A. C., van Empel, L. J., Boot, M. J., Kerkdijk, H., de Kant, E., et al. (2003). Ets-1 and Ets-2 transcription factors are essential for normal coronary and myocardial development in chicken embryos. Circulation Research, 92(7), 749–756. doi:10.​1161/​01.​RES.​0000066662.​70010.​DB.PubMedCrossRef
40.
Zurück zum Zitat Smith, C. L., Baek, S. T., Sung, C. Y., & Tallquist, M. D. Epicardial-derived cell epithelial-to-mesenchymal transition and fate specification require PDGF receptor signaling. Circulation Research, 108(12), e15–e26. doi:10.1161/CIRCRESAHA.110.235531 Smith, C. L., Baek, S. T., Sung, C. Y., & Tallquist, M. D. Epicardial-derived cell epithelial-to-mesenchymal transition and fate specification require PDGF receptor signaling. Circulation Research, 108(12), e15–e26. doi:10.​1161/​CIRCRESAHA.​110.​235531
41.
Zurück zum Zitat Vega-Hernandez, M., Kovacs, A., De Langhe, S., & Ornitz, D. M. FGF10/FGFR2b signaling is essential for cardiac fibroblast development and growth of the myocardium. Development, 138(15), 3331–3340. doi:10.1242/dev.064410 Vega-Hernandez, M., Kovacs, A., De Langhe, S., & Ornitz, D. M. FGF10/FGFR2b signaling is essential for cardiac fibroblast development and growth of the myocardium. Development, 138(15), 3331–3340. doi:10.​1242/​dev.​064410
42.
Zurück zum Zitat Horio, T., Maki, T., Kishimoto, I., Tokudome, T., Okumura, H., Yoshihara, F., et al. (2005). Production and autocrine/paracrine effects of endogenous insulin-like growth factor-1 in rat cardiac fibroblasts. Regulatory Peptides, 124(1–3), 65–72. doi:10.1016/j.regpep.2004.06.029.PubMedCrossRef Horio, T., Maki, T., Kishimoto, I., Tokudome, T., Okumura, H., Yoshihara, F., et al. (2005). Production and autocrine/paracrine effects of endogenous insulin-like growth factor-1 in rat cardiac fibroblasts. Regulatory Peptides, 124(1–3), 65–72. doi:10.​1016/​j.​regpep.​2004.​06.​029.PubMedCrossRef
43.
Zurück zum Zitat Borg, T. K., Ranson, W. F., Moslehy, F. A., & Caulfield, J. B. (1981). Structural basis of ventricular stiffness. Laboratory Investigation, 44(1), 49–54.PubMed Borg, T. K., Ranson, W. F., Moslehy, F. A., & Caulfield, J. B. (1981). Structural basis of ventricular stiffness. Laboratory Investigation, 44(1), 49–54.PubMed
44.
Zurück zum Zitat Borg, T. K., Rubin, K., Lundgren, E., Borg, K., & Obrink, B. (1984). Recognition of extracellular matrix components by neonatal and adult cardiac myocytes. Developmental Biology, 104(1), 86–96.PubMedCrossRef Borg, T. K., Rubin, K., Lundgren, E., Borg, K., & Obrink, B. (1984). Recognition of extracellular matrix components by neonatal and adult cardiac myocytes. Developmental Biology, 104(1), 86–96.PubMedCrossRef
45.
Zurück zum Zitat Soonpaa, M. H., Kim, K. K., Pajak, L., Franklin, M., & Field, L. J. (1996). Cardiomyocyte DNA synthesis and binucleation during murine development. American Journal of Physiology, 271(5 Pt 2), H2183–H2189.PubMed Soonpaa, M. H., Kim, K. K., Pajak, L., Franklin, M., & Field, L. J. (1996). Cardiomyocyte DNA synthesis and binucleation during murine development. American Journal of Physiology, 271(5 Pt 2), H2183–H2189.PubMed
46.
Zurück zum Zitat Porrello, E. R., Mahmoud, A. I., Simpson, E., Hill, J. A., Richardson, J. A., Olson, E. N., et al. Transient regenerative potential of the neonatal mouse heart. Science, 331(6020), 1078–1080. doi:10.1126/science.1200708 Porrello, E. R., Mahmoud, A. I., Simpson, E., Hill, J. A., Richardson, J. A., Olson, E. N., et al. Transient regenerative potential of the neonatal mouse heart. Science, 331(6020), 1078–1080. doi:10.​1126/​science.​1200708
47.
Zurück zum Zitat Ieda, M., Fu, J. D., Delgado-Olguin, P., Vedantham, V., Hayashi, Y., Bruneau, B. G., et al. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell, 142(3), 375–386. doi:10.1016/j.cell.2010.07.002 Ieda, M., Fu, J. D., Delgado-Olguin, P., Vedantham, V., Hayashi, Y., Bruneau, B. G., et al. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell, 142(3), 375–386. doi:10.​1016/​j.​cell.​2010.​07.​002
48.
Zurück zum Zitat Jayawardena, T. M., Egemnazarov, B., Finch, E. A., Zhang, L., Payne, J. A., Pandya, K., et al. MicroRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes. Circulation Research, doi:10.1161/CIRCRESAHA.112.269035 Jayawardena, T. M., Egemnazarov, B., Finch, E. A., Zhang, L., Payne, J. A., Pandya, K., et al. MicroRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes. Circulation Research, doi:10.​1161/​CIRCRESAHA.​112.​269035
49.
Zurück zum Zitat Kawaguchi, M., Takahashi, M., Hata, T., Kashima, Y., Usui, F., Morimoto, H., et al. Inflammasome activation of cardiac fibroblasts is essential for myocardial ischemia/reperfusion injury. Circulation, 123(6), 594–604. doi:10.1161/CIRCULATIONAHA.110.982777 Kawaguchi, M., Takahashi, M., Hata, T., Kashima, Y., Usui, F., Morimoto, H., et al. Inflammasome activation of cardiac fibroblasts is essential for myocardial ischemia/reperfusion injury. Circulation, 123(6), 594–604. doi:10.​1161/​CIRCULATIONAHA.​110.​982777
50.
Zurück zum Zitat Goldsmith, E. C., Hoffman, A., Morales, M. O., Potts, J. D., Price, R. L., McFadden, A., et al. (2004). Organization of fibroblasts in the heart. Developmental Dynamics, 230(4), 787–794. doi:10.1002/dvdy.20095.PubMedCrossRef Goldsmith, E. C., Hoffman, A., Morales, M. O., Potts, J. D., Price, R. L., McFadden, A., et al. (2004). Organization of fibroblasts in the heart. Developmental Dynamics, 230(4), 787–794. doi:10.​1002/​dvdy.​20095.PubMedCrossRef
51.
Zurück zum Zitat Matsusaka, T., Katori, H., Inagami, T., Fogo, A., & Ichikawa, I. (1999). Communication between myocytes and fibroblasts in cardiac remodeling in angiotensin chimeric mice. The Journal of Clinical Investigation, 103(10), 1451–1458. doi:10.1172/JCI5056.PubMedCrossRef Matsusaka, T., Katori, H., Inagami, T., Fogo, A., & Ichikawa, I. (1999). Communication between myocytes and fibroblasts in cardiac remodeling in angiotensin chimeric mice. The Journal of Clinical Investigation, 103(10), 1451–1458. doi:10.​1172/​JCI5056.PubMedCrossRef
52.
Zurück zum Zitat Molkentin, J. D., Lu, J. R., Antos, C. L., Markham, B., Richardson, J., Robbins, J., et al. (1998). A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell, 93(2), 215–228.PubMedCrossRef Molkentin, J. D., Lu, J. R., Antos, C. L., Markham, B., Richardson, J., Robbins, J., et al. (1998). A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell, 93(2), 215–228.PubMedCrossRef
53.
Zurück zum Zitat Litchenberg, W. H., Norman, L. W., Holwell, A. K., Martin, K. L., Hewett, K. W., & Gourdie, R. G. (2000). The rate and anisotropy of impulse propagation in the postnatal terminal crest are correlated with remodeling of Cx43 gap junction pattern. Cardiovascular Research, 45(2), 379–387.PubMedCrossRef Litchenberg, W. H., Norman, L. W., Holwell, A. K., Martin, K. L., Hewett, K. W., & Gourdie, R. G. (2000). The rate and anisotropy of impulse propagation in the postnatal terminal crest are correlated with remodeling of Cx43 gap junction pattern. Cardiovascular Research, 45(2), 379–387.PubMedCrossRef
54.
Zurück zum Zitat Zhang, Y., Kanter, E. M., Laing, J. G., Aprhys, C., Johns, D. C., Kardami, E., et al. (2008). Connexin43 expression levels influence intercellular coupling and cell proliferation of native murine cardiac fibroblasts. Cell Communication & Adhesion, 15(3), 289–303. doi:10.1080/15419060802198736.CrossRef Zhang, Y., Kanter, E. M., Laing, J. G., Aprhys, C., Johns, D. C., Kardami, E., et al. (2008). Connexin43 expression levels influence intercellular coupling and cell proliferation of native murine cardiac fibroblasts. Cell Communication & Adhesion, 15(3), 289–303. doi:10.​1080/​1541906080219873​6.CrossRef
55.
56.
Zurück zum Zitat Roell, W., Lewalter, T., Sasse, P., Tallini, Y. N., Choi, B. R., Breitbach, M., et al. (2007). Engraftment of connexin 43-expressing cells prevents post-infarct arrhythmia. Nature, 450(7171), 819–824. doi:10.1038/nature06321.PubMedCrossRef Roell, W., Lewalter, T., Sasse, P., Tallini, Y. N., Choi, B. R., Breitbach, M., et al. (2007). Engraftment of connexin 43-expressing cells prevents post-infarct arrhythmia. Nature, 450(7171), 819–824. doi:10.​1038/​nature06321.PubMedCrossRef
58.
Zurück zum Zitat Conway, S. J., Doetschman, T., & Azhar, M. (2011). The inter-relationship of periostin, TGF beta, and BMP in heart valve development and valvular heart diseases. ScientificWorldJournal, 11, 1509–1524. doi:10.1100/tsw.2011.132.PubMedCrossRef Conway, S. J., Doetschman, T., & Azhar, M. (2011). The inter-relationship of periostin, TGF beta, and BMP in heart valve development and valvular heart diseases. ScientificWorldJournal, 11, 1509–1524. doi:10.​1100/​tsw.​2011.​132.PubMedCrossRef
59.
Zurück zum Zitat Doetschman, T., Barnett, J. V., Runyan, R. B., Camenisch, T. D., Heimark, R. L., Granzier, H. L., et al. (2012). Transforming growth factor beta signaling in adult cardiovascular diseases and repair. Cell and Tissue Research, 347(1), 203–223. doi:10.1007/s00441-011-1241-3.PubMedCrossRef Doetschman, T., Barnett, J. V., Runyan, R. B., Camenisch, T. D., Heimark, R. L., Granzier, H. L., et al. (2012). Transforming growth factor beta signaling in adult cardiovascular diseases and repair. Cell and Tissue Research, 347(1), 203–223. doi:10.​1007/​s00441-011-1241-3.PubMedCrossRef
62.
Zurück zum Zitat Kudo, A. Periostin in fibrillogenesis for tissue regeneration: periostin actions inside and outside the cell. Cellular and Molecular Life Sciences, 68(19), 3201–3207. doi:10.1007/s00018-011-0784-5 Kudo, A. Periostin in fibrillogenesis for tissue regeneration: periostin actions inside and outside the cell. Cellular and Molecular Life Sciences, 68(19), 3201–3207. doi:10.​1007/​s00018-011-0784-5
63.
Zurück zum Zitat Stanton, L. W., Garrard, L. J., Damm, D., Garrick, B. L., Lam, A., Kapoun, A. M., et al. (2000). Altered patterns of gene expression in response to myocardial infarction. Circulation Research, 86(9), 939–945.PubMedCrossRef Stanton, L. W., Garrard, L. J., Damm, D., Garrick, B. L., Lam, A., Kapoun, A. M., et al. (2000). Altered patterns of gene expression in response to myocardial infarction. Circulation Research, 86(9), 939–945.PubMedCrossRef
65.
Zurück zum Zitat Norris, R. A., Moreno-Rodriguez, R., Hoffman, S., & Markwald, R. R. (2009). The many facets of the matricelluar protein periostin during cardiac development, remodeling, and pathophysiology. Journal of Cell Communication and Signaling, 3(3–4), 275–286. doi:10.1007/s12079-009-0063-5.PubMedCrossRef Norris, R. A., Moreno-Rodriguez, R., Hoffman, S., & Markwald, R. R. (2009). The many facets of the matricelluar protein periostin during cardiac development, remodeling, and pathophysiology. Journal of Cell Communication and Signaling, 3(3–4), 275–286. doi:10.​1007/​s12079-009-0063-5.PubMedCrossRef
66.
Zurück zum Zitat Bao, S., Ouyang, G., Bai, X., Huang, Z., Ma, C., Liu, M., et al. (2004). Periostin potently promotes metastatic growth of colon cancer by augmenting cell survival via the Akt/PKB pathway. Cancer Cell, 5(4), 329–339.PubMedCrossRef Bao, S., Ouyang, G., Bai, X., Huang, Z., Ma, C., Liu, M., et al. (2004). Periostin potently promotes metastatic growth of colon cancer by augmenting cell survival via the Akt/PKB pathway. Cancer Cell, 5(4), 329–339.PubMedCrossRef
67.
Zurück zum Zitat Gillan, L., Matei, D., Fishman, D. A., Gerbin, C. S., Karlan, B. Y., & Chang, D. D. (2002). Periostin secreted by epithelial ovarian carcinoma is a ligand for alpha(V)beta(3) and alpha(V)beta(5) integrins and promotes cell motility. Cancer Research, 62(18), 5358–5364.PubMed Gillan, L., Matei, D., Fishman, D. A., Gerbin, C. S., Karlan, B. Y., & Chang, D. D. (2002). Periostin secreted by epithelial ovarian carcinoma is a ligand for alpha(V)beta(3) and alpha(V)beta(5) integrins and promotes cell motility. Cancer Research, 62(18), 5358–5364.PubMed
68.
Zurück zum Zitat Kim, C. J., Yoshioka, N., Tambe, Y., Kushima, R., Okada, Y., & Inoue, H. (2005). Periostin is down-regulated in high grade human bladder cancers and suppresses in vitro cell invasiveness and in vivo metastasis of cancer cells. International Journal of Cancer, 117(1), 51–58. doi:10.1002/ijc.21120.CrossRef Kim, C. J., Yoshioka, N., Tambe, Y., Kushima, R., Okada, Y., & Inoue, H. (2005). Periostin is down-regulated in high grade human bladder cancers and suppresses in vitro cell invasiveness and in vivo metastasis of cancer cells. International Journal of Cancer, 117(1), 51–58. doi:10.​1002/​ijc.​21120.CrossRef
69.
Zurück zum Zitat Orlic, D., Kajstura, J., Chimenti, S., Bodine, D. M., Leri, A., & Anversa, P. (2001). Transplanted adult bone marrow cells repair myocardial infarcts in mice. Annals of the New York Academy of Sciences, 938, 221–229. discussion 229–230.PubMedCrossRef Orlic, D., Kajstura, J., Chimenti, S., Bodine, D. M., Leri, A., & Anversa, P. (2001). Transplanted adult bone marrow cells repair myocardial infarcts in mice. Annals of the New York Academy of Sciences, 938, 221–229. discussion 229–230.PubMedCrossRef
70.
Zurück zum Zitat Orlic, D., Kajstura, J., Chimenti, S., Jakoniuk, I., Anderson, S. M., Li, B., et al. (2001). Bone marrow cells regenerate infarcted myocardium. Nature, 410(6829), 701–705. doi:10.1038/35070587.PubMedCrossRef Orlic, D., Kajstura, J., Chimenti, S., Jakoniuk, I., Anderson, S. M., Li, B., et al. (2001). Bone marrow cells regenerate infarcted myocardium. Nature, 410(6829), 701–705. doi:10.​1038/​35070587.PubMedCrossRef
71.
Zurück zum Zitat Jackson, K. A., Majka, S. M., Wang, H., Pocius, J., Hartley, C. J., Majesky, M. W., et al. (2001). Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. The Journal of Clinical Investigation, 107(11), 1395–1402. doi:10.1172/JCI12150.PubMedCrossRef Jackson, K. A., Majka, S. M., Wang, H., Pocius, J., Hartley, C. J., Majesky, M. W., et al. (2001). Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. The Journal of Clinical Investigation, 107(11), 1395–1402. doi:10.​1172/​JCI12150.PubMedCrossRef
72.
Zurück zum Zitat Kocher, A. A., Schuster, M. D., Szabolcs, M. J., Takuma, S., Burkhoff, D., Wang, J., et al. (2001). Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nature Medicine, 7(4), 430–436. doi:10.1038/86498.PubMedCrossRef Kocher, A. A., Schuster, M. D., Szabolcs, M. J., Takuma, S., Burkhoff, D., Wang, J., et al. (2001). Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nature Medicine, 7(4), 430–436. doi:10.​1038/​86498.PubMedCrossRef
73.
Zurück zum Zitat Yeh, E. T., Zhang, S., Wu, H. D., Korbling, M., Willerson, J. T., & Estrov, Z. (2003). Transdifferentiation of human peripheral blood CD34+-enriched cell population into cardiomyocytes, endothelial cells, and smooth muscle cells in vivo. Circulation, 108(17), 2070–2073. doi:10.1161/01.CIR.0000099501.52718.70.PubMedCrossRef Yeh, E. T., Zhang, S., Wu, H. D., Korbling, M., Willerson, J. T., & Estrov, Z. (2003). Transdifferentiation of human peripheral blood CD34+-enriched cell population into cardiomyocytes, endothelial cells, and smooth muscle cells in vivo. Circulation, 108(17), 2070–2073. doi:10.​1161/​01.​CIR.​0000099501.​52718.​70.PubMedCrossRef
74.
Zurück zum Zitat Jiang, Y., Jahagirdar, B. N., Reinhardt, R. L., Schwartz, R. E., Keene, C. D., Ortiz-Gonzalez, X. R., et al. (2002). Pluripotency of mesenchymal stem cells derived from adult marrow. Nature, 418(6893), 41–49. doi:10.1038/nature00870.PubMedCrossRef Jiang, Y., Jahagirdar, B. N., Reinhardt, R. L., Schwartz, R. E., Keene, C. D., Ortiz-Gonzalez, X. R., et al. (2002). Pluripotency of mesenchymal stem cells derived from adult marrow. Nature, 418(6893), 41–49. doi:10.​1038/​nature00870.PubMedCrossRef
75.
Zurück zum Zitat Shimazaki, M., Nakamura, K., Kii, I., Kashima, T., Amizuka, N., Li, M., et al. (2008). Periostin is essential for cardiac healing after acute myocardial infarction. The Journal of Experimental Medicine, 205(2), 295–303. doi:10.1084/jem.20071297.PubMedCrossRef Shimazaki, M., Nakamura, K., Kii, I., Kashima, T., Amizuka, N., Li, M., et al. (2008). Periostin is essential for cardiac healing after acute myocardial infarction. The Journal of Experimental Medicine, 205(2), 295–303. doi:10.​1084/​jem.​20071297.PubMedCrossRef
76.
Zurück zum Zitat Fan, Y. H., Dong, H., Pan, Q., Cao, Y. J., Li, H., & Wang, H. C. Notch signaling may negatively regulate neonatal rat cardiac fibroblast–myofibroblast transformation. Physiological Research, 60(5), 739–748. Fan, Y. H., Dong, H., Pan, Q., Cao, Y. J., Li, H., & Wang, H. C. Notch signaling may negatively regulate neonatal rat cardiac fibroblast–myofibroblast transformation. Physiological Research, 60(5), 739–748.
79.
Zurück zum Zitat Wight, T. N., & Potter-Perigo, S. The extracellular matrix: an active or passive player in fibrosis? American Journal of Physiology Gastrointestinal and Liver Physiology, 301(6), G950–G955. doi:10.1152/ajpgi.00132.2011 Wight, T. N., & Potter-Perigo, S. The extracellular matrix: an active or passive player in fibrosis? American Journal of Physiology Gastrointestinal and Liver Physiology, 301(6), G950–G955. doi:10.​1152/​ajpgi.​00132.​2011
80.
Zurück zum Zitat Meyer, A., Wang, W., Qu, J., Croft, L., Degen, J. L., Coller, B. S., et al. (2012). Platelet TGF-beta1 contributions to plasma TGF-beta1, cardiac fibrosis, and systolic dysfunction in a mouse model of pressure overload. Blood, 119(4), 1064–1074. doi:10.1182/blood-2011-09-377648.PubMedCrossRef Meyer, A., Wang, W., Qu, J., Croft, L., Degen, J. L., Coller, B. S., et al. (2012). Platelet TGF-beta1 contributions to plasma TGF-beta1, cardiac fibrosis, and systolic dysfunction in a mouse model of pressure overload. Blood, 119(4), 1064–1074. doi:10.​1182/​blood-2011-09-377648.PubMedCrossRef
81.
Zurück zum Zitat Bai, D., Gao, Q., Li, C., Ge, L., Gao, Y., & Wang, H. A conserved TGFbeta1/HuR feedback circuit regulates the fibrogenic response in fibroblasts. Cellular Signalling, 24(7), 1426–1432. doi:10.1016/j.cellsig.2012.03.003 Bai, D., Gao, Q., Li, C., Ge, L., Gao, Y., & Wang, H. A conserved TGFbeta1/HuR feedback circuit regulates the fibrogenic response in fibroblasts. Cellular Signalling, 24(7), 1426–1432. doi:10.​1016/​j.​cellsig.​2012.​03.​003
82.
Zurück zum Zitat Azhar, M., Yin, M., Bommireddy, R., Duffy, J. J., Yang, J., Pawlowski, S. A., et al. (2009). Generation of mice with a conditional allele for transforming growth factor beta 1 gene. Genesis, 47(6), 423–431. doi:10.1002/dvg.20516.PubMedCrossRef Azhar, M., Yin, M., Bommireddy, R., Duffy, J. J., Yang, J., Pawlowski, S. A., et al. (2009). Generation of mice with a conditional allele for transforming growth factor beta 1 gene. Genesis, 47(6), 423–431. doi:10.​1002/​dvg.​20516.PubMedCrossRef
83.
Zurück zum Zitat Doetschman, T., Georgieva, T., Li, H., Reed, T. D., Grisham, C., Friel, J., et al. Generation of mice with a conditional allele for the transforming growth factor beta3 gene. Genesis, 50(1), 59–66. doi:10.1002/dvg.20789 Doetschman, T., Georgieva, T., Li, H., Reed, T. D., Grisham, C., Friel, J., et al. Generation of mice with a conditional allele for the transforming growth factor beta3 gene. Genesis, 50(1), 59–66. doi:10.​1002/​dvg.​20789
84.
Zurück zum Zitat Pelton, R. W., Saxena, B., Jones, M., Moses, H. L., & Gold, L. I. (1991). Immunohistochemical localization of TGF beta 1, TGF beta 2, and TGF beta 3 in the mouse embryo: expression patterns suggest multiple roles during embryonic development. The Journal of Cell Biology, 115(4), 1091–1105.PubMedCrossRef Pelton, R. W., Saxena, B., Jones, M., Moses, H. L., & Gold, L. I. (1991). Immunohistochemical localization of TGF beta 1, TGF beta 2, and TGF beta 3 in the mouse embryo: expression patterns suggest multiple roles during embryonic development. The Journal of Cell Biology, 115(4), 1091–1105.PubMedCrossRef
Metadaten
Titel
The Dynamic Role of Cardiac Fibroblasts in Development and Disease
verfasst von
Jacquelyn D. Lajiness
Simon J. Conway
Publikationsdatum
01.12.2012
Verlag
Springer US
Erschienen in
Journal of Cardiovascular Translational Research / Ausgabe 6/2012
Print ISSN: 1937-5387
Elektronische ISSN: 1937-5395
DOI
https://doi.org/10.1007/s12265-012-9394-3

Weitere Artikel der Ausgabe 6/2012

Journal of Cardiovascular Translational Research 6/2012 Zur Ausgabe

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.