Skip to main content
Erschienen in: Journal of Cardiovascular Translational Research 5/2013

01.10.2013

Role of Inflammation and Its Mediators in Acute Ischemic Stroke

verfasst von: Rong Jin, Lin Liu, Shihao Zhang, Anil Nanda, Guohong Li

Erschienen in: Journal of Cardiovascular Translational Research | Ausgabe 5/2013

Einloggen, um Zugang zu erhalten

Abstract

Inflammation plays an important role in the pathogenesis of ischemic stroke and other forms of ischemic brain injury. Increasing evidence suggests that inflammatory response is a double-edged sword, as it not only exacerbates secondary brain injury in the acute stage of stroke but also beneficially contributes to brain recovery after stroke. In this article, we provide an overview on the role of inflammation and its mediators in acute ischemic stroke. We discuss various pro-inflammatory and anti-inflammatory responses in different phases after ischemic stroke and the possible reasons for their failures in clinical trials. Undoubtedly, there is still much to be done in order to translate promising pre-clinical findings into clinical practice. A better understanding of the dynamic balance between pro- and anti-inflammatory responses and identifying the discrepancies between pre-clinical studies and clinical trials may serve as a basis for designing effective therapies.
Literatur
1.
Zurück zum Zitat Wang, X. (2005). Investigational anti-inflammatory agents for the treatment of ischemic brain injury. Expert Opinion on Investigational Drugs, 14, 393–409.PubMed Wang, X. (2005). Investigational anti-inflammatory agents for the treatment of ischemic brain injury. Expert Opinion on Investigational Drugs, 14, 393–409.PubMed
2.
Zurück zum Zitat Barone, F. C., & Feuerstein, G. Z. (1999). Inflammatory mediators and stroke: new opportunities for novel therapeutics. Journal of Cerebral Blood Flow and Metabolism, 19, 819–834.PubMed Barone, F. C., & Feuerstein, G. Z. (1999). Inflammatory mediators and stroke: new opportunities for novel therapeutics. Journal of Cerebral Blood Flow and Metabolism, 19, 819–834.PubMed
3.
Zurück zum Zitat Chamorro, A., & Hallenbeck, J. (2006). The harms and benefits of inflammatory and immune responses in vascular disease. Stroke, 37, 291–293.PubMed Chamorro, A., & Hallenbeck, J. (2006). The harms and benefits of inflammatory and immune responses in vascular disease. Stroke, 37, 291–293.PubMed
4.
Zurück zum Zitat Samson, Y., Lapergue, B., & Hosseini, H. (2005). Inflammation and ischaemic stroke: current status and future perspectives. Reviews Neurology (Paris), 161, 1177–1182. Samson, Y., Lapergue, B., & Hosseini, H. (2005). Inflammation and ischaemic stroke: current status and future perspectives. Reviews Neurology (Paris), 161, 1177–1182.
5.
Zurück zum Zitat Yilmaz, G., & Granger, D. N. (2008). Cell adhesion molecules and ischemic stroke. Neurological Research, 30, 783–793.PubMed Yilmaz, G., & Granger, D. N. (2008). Cell adhesion molecules and ischemic stroke. Neurological Research, 30, 783–793.PubMed
6.
Zurück zum Zitat Emsley, H. C., & Hopkins, S. J. (2008). Acute ischaemic stroke and infection: recent and emerging concepts. Lancet Neurology, 7, 341–353.PubMed Emsley, H. C., & Hopkins, S. J. (2008). Acute ischaemic stroke and infection: recent and emerging concepts. Lancet Neurology, 7, 341–353.PubMed
7.
Zurück zum Zitat McColl, B. W., Allan, S. M., & Rothwell, N. J. (2009). Systemic infection, inflammation and acute ischemic stroke. Neuroscience, 158, 1049–1061.PubMed McColl, B. W., Allan, S. M., & Rothwell, N. J. (2009). Systemic infection, inflammation and acute ischemic stroke. Neuroscience, 158, 1049–1061.PubMed
8.
Zurück zum Zitat Jin, R., Yang, G., & Li, G. (2010). Inflammatory mechanisms in ischemic stroke: role of inflammatory cells. Journal of Leukocyte Biology, 87, 779–89.PubMed Jin, R., Yang, G., & Li, G. (2010). Inflammatory mechanisms in ischemic stroke: role of inflammatory cells. Journal of Leukocyte Biology, 87, 779–89.PubMed
9.
Zurück zum Zitat Iadecola, C., & Anrather, J. (2011). The immunology of stroke: from mechanisms to translation. Nature Medicine, 17, 796–808.PubMed Iadecola, C., & Anrather, J. (2011). The immunology of stroke: from mechanisms to translation. Nature Medicine, 17, 796–808.PubMed
10.
Zurück zum Zitat Hallenbeck, J. M. (1996). Significance of the inflammatory response in brain ischemia. Acta Neurochirurgica. Supplement, 66, 27–31.PubMed Hallenbeck, J. M. (1996). Significance of the inflammatory response in brain ischemia. Acta Neurochirurgica. Supplement, 66, 27–31.PubMed
11.
Zurück zum Zitat Chopp, M., Li, Y., Jiang, N., Zhang, R. L., & Prostak, J. (1996). Antibodies against adhesion molecules reduce apoptosis after transient middle cerebral artery occlusion in rat brain. Journal of Cerebral Blood Flow and Metabolism, 16, 578–584.PubMed Chopp, M., Li, Y., Jiang, N., Zhang, R. L., & Prostak, J. (1996). Antibodies against adhesion molecules reduce apoptosis after transient middle cerebral artery occlusion in rat brain. Journal of Cerebral Blood Flow and Metabolism, 16, 578–584.PubMed
12.
Zurück zum Zitat Connolly, E. S., Jr., Winfree, C. J., Prestigiacomo, C. J., Kim, S. C., Choudhri, T. F., Hoh, B. L., et al. (1997). Exacerbation of cerebral injury in mice that express the P-selectin gene: identification of P-selectin blockade as a new target for the treatment of stroke. Circulation Research, 81, 304–310.PubMed Connolly, E. S., Jr., Winfree, C. J., Prestigiacomo, C. J., Kim, S. C., Choudhri, T. F., Hoh, B. L., et al. (1997). Exacerbation of cerebral injury in mice that express the P-selectin gene: identification of P-selectin blockade as a new target for the treatment of stroke. Circulation Research, 81, 304–310.PubMed
13.
Zurück zum Zitat Garau, A., Bertini, R., Colotta, F., Casilli, F., Bigini, P., Cagnotto, A., et al. (2005). Neuroprotection with the CXCL8 inhibitor repertaxin in transient brain ischemia. Cytokine, 30, 125–131.PubMed Garau, A., Bertini, R., Colotta, F., Casilli, F., Bigini, P., Cagnotto, A., et al. (2005). Neuroprotection with the CXCL8 inhibitor repertaxin in transient brain ischemia. Cytokine, 30, 125–131.PubMed
14.
Zurück zum Zitat Yenari, M. A., Kunis, D., Sun, G. H., Onley, D., Watson, L., Turner, S., et al. (1998). Hu23F2G, an antibody recognizing the leukocyte CD11/CD18 integrin, reduces injury in a rabbit model of transient focal cerebral ischemia. Experimental Neurology, 153, 223–233.PubMed Yenari, M. A., Kunis, D., Sun, G. H., Onley, D., Watson, L., Turner, S., et al. (1998). Hu23F2G, an antibody recognizing the leukocyte CD11/CD18 integrin, reduces injury in a rabbit model of transient focal cerebral ischemia. Experimental Neurology, 153, 223–233.PubMed
15.
Zurück zum Zitat Zheng, Z., & Yenari, M. A. (2004). Post-ischemic inflammation: molecular mechanisms and therapeutic implications. Neurological Research, 26, 884–892.PubMed Zheng, Z., & Yenari, M. A. (2004). Post-ischemic inflammation: molecular mechanisms and therapeutic implications. Neurological Research, 26, 884–892.PubMed
16.
Zurück zum Zitat Barone, F. C., Arvin, B., White, R. F., Miller, A., Webb, C. L., Lysko, P. G., et al. (1997). Tumor necrosis factor-α: a mediator of focal ischemic brain injury. Stroke, 28, 1233–1244.PubMed Barone, F. C., Arvin, B., White, R. F., Miller, A., Webb, C. L., Lysko, P. G., et al. (1997). Tumor necrosis factor-α: a mediator of focal ischemic brain injury. Stroke, 28, 1233–1244.PubMed
17.
Zurück zum Zitat Rothwell, N., Allan, S., & Toulmond, S. (1997). The role of interleukin 1 in acute neurodegeneration and stroke: pathophysiological and therapeutic implications. Journal of Clinical Investigation, 100, 2648–2652.PubMed Rothwell, N., Allan, S., & Toulmond, S. (1997). The role of interleukin 1 in acute neurodegeneration and stroke: pathophysiological and therapeutic implications. Journal of Clinical Investigation, 100, 2648–2652.PubMed
18.
Zurück zum Zitat Felger, J. C., Abe, T., Kaunzner, U. W., Gottfried-Blackmore, A., Gal-Toth, J., McEwen, B. S., et al. (2010). Brain dendritic cells in ischemic stroke: time course, activation state, and origin. Brain, Behavior, and Immunity, 24, 724–737.PubMed Felger, J. C., Abe, T., Kaunzner, U. W., Gottfried-Blackmore, A., Gal-Toth, J., McEwen, B. S., et al. (2010). Brain dendritic cells in ischemic stroke: time course, activation state, and origin. Brain, Behavior, and Immunity, 24, 724–737.PubMed
19.
Zurück zum Zitat Tanaka, R., Komine-Kobayashi, M., Mochizuki, H., Yamada, M., Furuya, T., Migita, M., et al. (2003). Migration of enhanced green fluorescent protein expressing bone marrow-derived microglia/macrophage into the mouse brain following permanent focal ischemia. Neuroscience, 117, 531–539.PubMed Tanaka, R., Komine-Kobayashi, M., Mochizuki, H., Yamada, M., Furuya, T., Migita, M., et al. (2003). Migration of enhanced green fluorescent protein expressing bone marrow-derived microglia/macrophage into the mouse brain following permanent focal ischemia. Neuroscience, 117, 531–539.PubMed
20.
Zurück zum Zitat Konsman, J. P., Drukarch, B., & Van Dam, A. M. (2007). (Peri)vascular production and action of pro-inflammatory cytokines in brain pathology. Clinical Science (London, England), 112, 1–25. Konsman, J. P., Drukarch, B., & Van Dam, A. M. (2007). (Peri)vascular production and action of pro-inflammatory cytokines in brain pathology. Clinical Science (London, England), 112, 1–25.
21.
Zurück zum Zitat Shigematsu, T., Wolf, R. E., & Granger, D. N. (2002). T-lymphocytes modulate the microvascular and inflammatory responses to intestinal ischemia–reperfusion. Microcirculation, 9, 99–109.PubMed Shigematsu, T., Wolf, R. E., & Granger, D. N. (2002). T-lymphocytes modulate the microvascular and inflammatory responses to intestinal ischemia–reperfusion. Microcirculation, 9, 99–109.PubMed
22.
Zurück zum Zitat Zwacka, R. M., Zhang, Y., Halldorson, J., Schlossberg, H., Dudus, L., & Engelhardt, J. F. (1997). CD4(+) T-lymphocytes mediate ischemia/reperfusion-induced inflammatory responses in mouse liver. Journal of Clinical Investigation, 100, 279–289.PubMed Zwacka, R. M., Zhang, Y., Halldorson, J., Schlossberg, H., Dudus, L., & Engelhardt, J. F. (1997). CD4(+) T-lymphocytes mediate ischemia/reperfusion-induced inflammatory responses in mouse liver. Journal of Clinical Investigation, 100, 279–289.PubMed
23.
Zurück zum Zitat Yilmaz, G., Arumugam, T. V., Stokes, K. Y., & Granger, D. N. (2006). Role of T lymphocytes and interferon-γ in ischemic stroke. Circulation, 113, 2105–2112.PubMed Yilmaz, G., Arumugam, T. V., Stokes, K. Y., & Granger, D. N. (2006). Role of T lymphocytes and interferon-γ in ischemic stroke. Circulation, 113, 2105–2112.PubMed
24.
Zurück zum Zitat Kreutzberg, G. W. (1996). Microglia: a sensor for pathological events in the CNS. Trends in Neurosciences, 19, 312–318.PubMed Kreutzberg, G. W. (1996). Microglia: a sensor for pathological events in the CNS. Trends in Neurosciences, 19, 312–318.PubMed
25.
Zurück zum Zitat Thomas, W. E. (1992). Brain macrophages: evaluation of microglia and their functions. Brain Research, 17, 61–74.PubMed Thomas, W. E. (1992). Brain macrophages: evaluation of microglia and their functions. Brain Research, 17, 61–74.PubMed
26.
Zurück zum Zitat Lalancette-Hébert, M., Gowing, G., Simard, A., Weng, Y. C., & Kriz, J. (2007). Selective ablation of proliferating microglial cells exacerbates ischemic injury in the brain. Journal of Neuroscience, 27, 2596–2605.PubMed Lalancette-Hébert, M., Gowing, G., Simard, A., Weng, Y. C., & Kriz, J. (2007). Selective ablation of proliferating microglial cells exacerbates ischemic injury in the brain. Journal of Neuroscience, 27, 2596–2605.PubMed
27.
Zurück zum Zitat Lai, A. Y., & Todd, K. G. (2006). Microglia in cerebral ischemia: molecular actions and interactions. Canadian Journal of Physiology and Pharmacology, 84, 49–59.PubMed Lai, A. Y., & Todd, K. G. (2006). Microglia in cerebral ischemia: molecular actions and interactions. Canadian Journal of Physiology and Pharmacology, 84, 49–59.PubMed
28.
Zurück zum Zitat Denes, A., Vidyasagar, R., Feng, J., Narvainen, J., McColl, B. W., Kauppi-nen, R. A., et al. (2007). Proliferating resident microglia after focal cerebral ischaemia in mice. Journal of Cerebral Blood Flow and Metabolism, 27, 1941–1953.PubMed Denes, A., Vidyasagar, R., Feng, J., Narvainen, J., McColl, B. W., Kauppi-nen, R. A., et al. (2007). Proliferating resident microglia after focal cerebral ischaemia in mice. Journal of Cerebral Blood Flow and Metabolism, 27, 1941–1953.PubMed
29.
Zurück zum Zitat George, B., Robin, E., White, Y. O., Lijun, X., & Giffard, G. R. (2011). Astrocytes: targets for neuroprotection in stroke. Central Nervous System Agents in Medicinal Chemistry, 11, 164–173. George, B., Robin, E., White, Y. O., Lijun, X., & Giffard, G. R. (2011). Astrocytes: targets for neuroprotection in stroke. Central Nervous System Agents in Medicinal Chemistry, 11, 164–173.
30.
Zurück zum Zitat Nowicka, D., Rogozinska, K., Aleksy, M., Witte, O. W., & Skangiel-Kramska, J. (2008). Spatiotemporal dynamics of astroglial and microglial responses after photothrombotic stroke in the rat brain. Acta Neurobiologiae Experimentalis (Wars), 68, 155–168. Nowicka, D., Rogozinska, K., Aleksy, M., Witte, O. W., & Skangiel-Kramska, J. (2008). Spatiotemporal dynamics of astroglial and microglial responses after photothrombotic stroke in the rat brain. Acta Neurobiologiae Experimentalis (Wars), 68, 155–168.
31.
Zurück zum Zitat Zhu, Y., Roth-Eichhorn, S., Braun, N., Culmsee, C., Rami, A., & Krieglstein, J. (2000). The expression of transforming growth factor-beta1 (TGF-beta1) in hippocampal neurons: a temporary upregulated protein level after transient forebrain ischemia in the rat. Brain Research, 866, 286–298.PubMed Zhu, Y., Roth-Eichhorn, S., Braun, N., Culmsee, C., Rami, A., & Krieglstein, J. (2000). The expression of transforming growth factor-beta1 (TGF-beta1) in hippocampal neurons: a temporary upregulated protein level after transient forebrain ischemia in the rat. Brain Research, 866, 286–298.PubMed
32.
Zurück zum Zitat Benveniste, E. N. (1998). Cytokine actions in the central nervous system. Cytokine & Growth Factor Reviews, 9, 259–275. Benveniste, E. N. (1998). Cytokine actions in the central nervous system. Cytokine & Growth Factor Reviews, 9, 259–275.
33.
Zurück zum Zitat Che, X., Ye, W., Panga, L., Wu, D. C., & Yang, G. Y. (2001). Monocyte chemoattractant protein-1 expressed in neurons and astrocytes during focal ischemia in mice. Brain Research, 902, 171–177.PubMed Che, X., Ye, W., Panga, L., Wu, D. C., & Yang, G. Y. (2001). Monocyte chemoattractant protein-1 expressed in neurons and astrocytes during focal ischemia in mice. Brain Research, 902, 171–177.PubMed
34.
Zurück zum Zitat Dong, Y., & Benveniste, E. N. (2001). Immune function of astrocytes. Glia, 36, 180–190.PubMed Dong, Y., & Benveniste, E. N. (2001). Immune function of astrocytes. Glia, 36, 180–190.PubMed
35.
Zurück zum Zitat Wang, W., Redecker, C., Yu, Z. Y., Xie, M. J., Tian, D. S., Zhang, L., et al. (2008). Rat focal cerebral ischemia induced astrocyte proliferation and delayed neuronal death are attenuated by cyclin-dependent kinase inhibition. Journal of Clinical Neuroscience, 15, 278–285.PubMed Wang, W., Redecker, C., Yu, Z. Y., Xie, M. J., Tian, D. S., Zhang, L., et al. (2008). Rat focal cerebral ischemia induced astrocyte proliferation and delayed neuronal death are attenuated by cyclin-dependent kinase inhibition. Journal of Clinical Neuroscience, 15, 278–285.PubMed
36.
Zurück zum Zitat Sharif, A., Legendre, P., Prevot, V., Allet, C., Romao, L., Studler, J. M., et al. (2007). Transforming growth factor alpha promotes sequential conversion of mature astrocytes into neural progenitors and stem cells. Oncogene, 26, 2695–2706.PubMed Sharif, A., Legendre, P., Prevot, V., Allet, C., Romao, L., Studler, J. M., et al. (2007). Transforming growth factor alpha promotes sequential conversion of mature astrocytes into neural progenitors and stem cells. Oncogene, 26, 2695–2706.PubMed
37.
Zurück zum Zitat Justicia, C., Perez-Asensio, F. J., Burguete, M. C., Salom, J. B., & Planas, A. M. (2001). Administration of transforming growth factor-alpha reduces infarct volume after transient focal cerebral ischemia in the rat. Journal of Cerebral Blood Flow and Metabolism, 21, 1097–1104.PubMed Justicia, C., Perez-Asensio, F. J., Burguete, M. C., Salom, J. B., & Planas, A. M. (2001). Administration of transforming growth factor-alpha reduces infarct volume after transient focal cerebral ischemia in the rat. Journal of Cerebral Blood Flow and Metabolism, 21, 1097–1104.PubMed
38.
Zurück zum Zitat Meistrell, M. E., 3rd, Botchkina, G. I., Wang, H., Di Santo, E., Cockroft, K. M., Bloom, O., et al. (1997). Tumor necrosis factor is a brain damaging cytokine in cerebral ischemia. Shock, 8, 341–348.PubMed Meistrell, M. E., 3rd, Botchkina, G. I., Wang, H., Di Santo, E., Cockroft, K. M., Bloom, O., et al. (1997). Tumor necrosis factor is a brain damaging cytokine in cerebral ischemia. Shock, 8, 341–348.PubMed
39.
Zurück zum Zitat Barger, S. W., Horster, D., Furukawa, K., Goodman, Y., Krieglstein, J., & Mattson, M. P. (1996). Tumor necrosis factors alpha and beta protect neurons against amyloid beta-peptide toxicity: evidence for involvement of a kappa B-binding factor and attenuation of peroxide and Ca2+ accumulation. Proceedings of the National Academy of Sciences of the United States of America, 92, 9328–9332. Barger, S. W., Horster, D., Furukawa, K., Goodman, Y., Krieglstein, J., & Mattson, M. P. (1996). Tumor necrosis factors alpha and beta protect neurons against amyloid beta-peptide toxicity: evidence for involvement of a kappa B-binding factor and attenuation of peroxide and Ca2+ accumulation. Proceedings of the National Academy of Sciences of the United States of America, 92, 9328–9332.
40.
Zurück zum Zitat Lambertsen, K. L., Clausen, B. H., Babcock, A. A., Gregersen, R., Fenger, C., Nielsen, H. H., et al. (2009). Microglia protect neurons against ischemia by synthesis of tumor necrosis factor. Journal of Neuroscience, 29, 1319–1330.PubMed Lambertsen, K. L., Clausen, B. H., Babcock, A. A., Gregersen, R., Fenger, C., Nielsen, H. H., et al. (2009). Microglia protect neurons against ischemia by synthesis of tumor necrosis factor. Journal of Neuroscience, 29, 1319–1330.PubMed
41.
Zurück zum Zitat Boutin, H., LeFeuvre, R. A., Horai, R., Asano, M., Iwakura, Y., & Rothwell, N. J. (2001). Role of IL-1alpha and IL-1beta in ischemic brain damage. Journal of Neuroscience, 21, 5528–5534.PubMed Boutin, H., LeFeuvre, R. A., Horai, R., Asano, M., Iwakura, Y., & Rothwell, N. J. (2001). Role of IL-1alpha and IL-1beta in ischemic brain damage. Journal of Neuroscience, 21, 5528–5534.PubMed
42.
Zurück zum Zitat Yamasaki, Y., Matsuura, N., Shozuhara, H., Onodera, H., Itoyama, Y., & Kogure, K. (1995). Interleukin-1 as a pathogenetic mediator of ischemic brain damage in rats. Stroke, 26, 676–680.PubMed Yamasaki, Y., Matsuura, N., Shozuhara, H., Onodera, H., Itoyama, Y., & Kogure, K. (1995). Interleukin-1 as a pathogenetic mediator of ischemic brain damage in rats. Stroke, 26, 676–680.PubMed
43.
Zurück zum Zitat Loddick, S. A., Turnbull, A. V., & Rothwell, N. J. (1998). Cerebral interleukin-6 is neuroprotective during permanent focal cerebral ischemia in the rat. Journal of Cerebral Blood Flow and Metabolism, 18, 176–179.PubMed Loddick, S. A., Turnbull, A. V., & Rothwell, N. J. (1998). Cerebral interleukin-6 is neuroprotective during permanent focal cerebral ischemia in the rat. Journal of Cerebral Blood Flow and Metabolism, 18, 176–179.PubMed
44.
Zurück zum Zitat Stamatovic, S. M., Shakui, P., Keep, R. F., Moore, B. B., Kunkel, S. L., Van, R. N., et al. (2005). Monocyte chemoattractant protein-1 regulation of blood–brain barrier permeability. Journal of Cerebral Blood Flow and Metabolism, 25, 593–606.PubMed Stamatovic, S. M., Shakui, P., Keep, R. F., Moore, B. B., Kunkel, S. L., Van, R. N., et al. (2005). Monocyte chemoattractant protein-1 regulation of blood–brain barrier permeability. Journal of Cerebral Blood Flow and Metabolism, 25, 593–606.PubMed
45.
Zurück zum Zitat Soriano, S. G., Amaravadi, L. S., Wang, Y. F., Zhou, H., Yu, G. X., Tonra, J. R., et al. (2002). Mice deficient in fractalkine are less susceptible to cerebral ischemia–reperfusion injury. Journal of Neuroimmunology, 125, 59–65.PubMed Soriano, S. G., Amaravadi, L. S., Wang, Y. F., Zhou, H., Yu, G. X., Tonra, J. R., et al. (2002). Mice deficient in fractalkine are less susceptible to cerebral ischemia–reperfusion injury. Journal of Neuroimmunology, 125, 59–65.PubMed
46.
Zurück zum Zitat Spera, P. A., Ellison, J. A., Feuerstein, G. Z., & Barone, F. C. (1998). IL-10 reduces rat brain injury following focal stroke. Neuroscience Letters, 251, 189–192.PubMed Spera, P. A., Ellison, J. A., Feuerstein, G. Z., & Barone, F. C. (1998). IL-10 reduces rat brain injury following focal stroke. Neuroscience Letters, 251, 189–192.PubMed
47.
Zurück zum Zitat Ooboshi, H., Ibayashi, S., Shichita, T., Kumai, Y., Takada, J., & Ago, T. (2005). Postischemic gene transfer of interleukin-10 protects against both focal and global brain ischemia. Circulation, 111, 913–919.PubMed Ooboshi, H., Ibayashi, S., Shichita, T., Kumai, Y., Takada, J., & Ago, T. (2005). Postischemic gene transfer of interleukin-10 protects against both focal and global brain ischemia. Circulation, 111, 913–919.PubMed
48.
Zurück zum Zitat Pang, L., Ye, W., Che, X. M., Roessler, B. J., Betz, A. L., & Yang, G. Y. (2001). Reduction of inflammatory response in the mouse brain with adenoviral-mediated transforming growth factor-ss1 expression. Stroke, 32, 544–552.PubMed Pang, L., Ye, W., Che, X. M., Roessler, B. J., Betz, A. L., & Yang, G. Y. (2001). Reduction of inflammatory response in the mouse brain with adenoviral-mediated transforming growth factor-ss1 expression. Stroke, 32, 544–552.PubMed
49.
Zurück zum Zitat Ruocco, A., Nicole, O., Docagne, F., Ali, C., Chazalviel, L., Komesli, S., et al. (1999). A transforming growth factor-b antagonist unmasks the neuroprotective role of this endogenous cytokine in excitotoxic and ischemic brain injury. Journal of Cerebral Blood Flow and Metabolism, 19, 1345–1353.PubMed Ruocco, A., Nicole, O., Docagne, F., Ali, C., Chazalviel, L., Komesli, S., et al. (1999). A transforming growth factor-b antagonist unmasks the neuroprotective role of this endogenous cytokine in excitotoxic and ischemic brain injury. Journal of Cerebral Blood Flow and Metabolism, 19, 1345–1353.PubMed
50.
Zurück zum Zitat Zhang, Y., Wei, X., Liu, L., Liu, S., Wang, Z., Zhang, B., et al. (2012). TIPE2, a novel regulator of immunity, protects against experimental stroke. Journal of Biological Chemistry, 287, 32546–32555.PubMed Zhang, Y., Wei, X., Liu, L., Liu, S., Wang, Z., Zhang, B., et al. (2012). TIPE2, a novel regulator of immunity, protects against experimental stroke. Journal of Biological Chemistry, 287, 32546–32555.PubMed
51.
Zurück zum Zitat Kooijman, R., Sarre, S., Michotte, Y., & Keyser, D. J. (2009). Insulin-like growth factor I: a potential neuroprotective compound for the treatment of acute ischemic stroke? Stroke, 404, e83–88. Kooijman, R., Sarre, S., Michotte, Y., & Keyser, D. J. (2009). Insulin-like growth factor I: a potential neuroprotective compound for the treatment of acute ischemic stroke? Stroke, 404, e83–88.
52.
Zurück zum Zitat Denti, L., Annoni, V., Cattadori, E., Salvagnini, M. A., Visioli, S., & Merli, M. F. (2004). Insulin-like growth factor 1 as a predictor of ischemic stroke outcome in the elderly. American Journal of Medicine, 117, 312–317.PubMed Denti, L., Annoni, V., Cattadori, E., Salvagnini, M. A., Visioli, S., & Merli, M. F. (2004). Insulin-like growth factor 1 as a predictor of ischemic stroke outcome in the elderly. American Journal of Medicine, 117, 312–317.PubMed
53.
Zurück zum Zitat Liu, T., Clark, R. K., McDonnell, P. C., Young, P. R., White, R. F., & Barone, F. C. (1994). Tumor necrosis factor-α expression in ischemic neurons. Stroke, 25, 1481–1488.PubMed Liu, T., Clark, R. K., McDonnell, P. C., Young, P. R., White, R. F., & Barone, F. C. (1994). Tumor necrosis factor-α expression in ischemic neurons. Stroke, 25, 1481–1488.PubMed
54.
Zurück zum Zitat Wang, X., Yue, T. L., Barone, F. C., White, R. F., Gagnon, R. C., & Feuerstein, G. Z. (1994). Concomitant cortical expression of TNF-α and IL-1 α mRNAs follows early response gene expression in transient focal ischemia. Molecular and Chemical Neuropathology, 23, 103–114.PubMed Wang, X., Yue, T. L., Barone, F. C., White, R. F., Gagnon, R. C., & Feuerstein, G. Z. (1994). Concomitant cortical expression of TNF-α and IL-1 α mRNAs follows early response gene expression in transient focal ischemia. Molecular and Chemical Neuropathology, 23, 103–114.PubMed
55.
Zurück zum Zitat Murakami, Y., Saito, K., Hara, A., Zhu, Y., Sudo, K., Niwa, M., et al. (2005). Increases in tumor necrosis factor-alpha following transient global cerebral ischemia do not contribute to neuron death in mouse hippocampus. Journal of Neurochemistry, 93, 1616–1622.PubMed Murakami, Y., Saito, K., Hara, A., Zhu, Y., Sudo, K., Niwa, M., et al. (2005). Increases in tumor necrosis factor-alpha following transient global cerebral ischemia do not contribute to neuron death in mouse hippocampus. Journal of Neurochemistry, 93, 1616–1622.PubMed
56.
Zurück zum Zitat Offner, H., Subramanian, S., Parker, S. M., Afentoulis, M. E., Vandenbark, A. A., & Hurn, P. D. (2006). Experimental stroke induces massive, rapid activation of the peripheral immune system. Journal of Cerebral Blood Flow and Metabolism, 26, 654–665.PubMed Offner, H., Subramanian, S., Parker, S. M., Afentoulis, M. E., Vandenbark, A. A., & Hurn, P. D. (2006). Experimental stroke induces massive, rapid activation of the peripheral immune system. Journal of Cerebral Blood Flow and Metabolism, 26, 654–665.PubMed
57.
Zurück zum Zitat Hallenbeck, J. M. (2002). The many faces of tumor necrosis factor in stroke. Nature Medicine, 8, 1363–1368.PubMed Hallenbeck, J. M. (2002). The many faces of tumor necrosis factor in stroke. Nature Medicine, 8, 1363–1368.PubMed
58.
Zurück zum Zitat Ginis, I., Jaiswal, R., Klimanis, D., Liu, J., Greenspon, J., & Hallenbeck, J. M. (2002). TNF-alpha-induced tolerance to ischemic injury involves differential control of NF-kappaB transactivation: the role of NF-kappaB association with p300 adaptor. Journal of Cerebral Blood Flow and Metabolism, 22, 142–152.PubMed Ginis, I., Jaiswal, R., Klimanis, D., Liu, J., Greenspon, J., & Hallenbeck, J. M. (2002). TNF-alpha-induced tolerance to ischemic injury involves differential control of NF-kappaB transactivation: the role of NF-kappaB association with p300 adaptor. Journal of Cerebral Blood Flow and Metabolism, 22, 142–152.PubMed
59.
Zurück zum Zitat Alikhani, M., Alikhani, Z., Raptis, M., & Graves, D. T. J. (2004). TNF-alpha in vivo stimulates apoptosis in fibroblasts through caspase-8 activation and modulates the expression of pro-apoptotic genes. Cell Physiology, 201, 341–348. Alikhani, M., Alikhani, Z., Raptis, M., & Graves, D. T. J. (2004). TNF-alpha in vivo stimulates apoptosis in fibroblasts through caspase-8 activation and modulates the expression of pro-apoptotic genes. Cell Physiology, 201, 341–348.
60.
Zurück zum Zitat Plumpe, J., Malek, N. K., Bock, C. T., Rakemann, T., Manns, M. P., & Trautwein, C. (2000). NF-kappaB determines between apoptosis and proliferation in hepatocytes during liver regeneration. American Journal of Physiology—Gastrointestinal and Liver Physiology, 278, 173–183. Plumpe, J., Malek, N. K., Bock, C. T., Rakemann, T., Manns, M. P., & Trautwein, C. (2000). NF-kappaB determines between apoptosis and proliferation in hepatocytes during liver regeneration. American Journal of Physiology—Gastrointestinal and Liver Physiology, 278, 173–183.
61.
Zurück zum Zitat Zeng, L., Liu, J., Wang, Y., Wang, L., Weng, S., Chen, S., et al. (2012). Cocktail blood biomarkers: prediction of clinical outcomes in patients with acute ischemic stroke. European Neurology, 69(2), 68–75.PubMed Zeng, L., Liu, J., Wang, Y., Wang, L., Weng, S., Chen, S., et al. (2012). Cocktail blood biomarkers: prediction of clinical outcomes in patients with acute ischemic stroke. European Neurology, 69(2), 68–75.PubMed
62.
Zurück zum Zitat Thornberry, N. A., Bull, H. G., Calaycay, J. R., Chapman, K. T., Howard, A. D., & Kostura, M. J. (1992). A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature, 356, 768–774.PubMed Thornberry, N. A., Bull, H. G., Calaycay, J. R., Chapman, K. T., Howard, A. D., & Kostura, M. J. (1992). A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature, 356, 768–774.PubMed
63.
Zurück zum Zitat Dinarello, C. A. (1996). Biologic basis for interleukin-1 in disease. Blood, 15, 2095–2147. Dinarello, C. A. (1996). Biologic basis for interleukin-1 in disease. Blood, 15, 2095–2147.
64.
Zurück zum Zitat Black, R. A., Kronheim, S. R., & Sleath, P. R. (1989). Activation of interleukin-1β by a co-induced protease. FEBS Letters, 247, 386–390.PubMed Black, R. A., Kronheim, S. R., & Sleath, P. R. (1989). Activation of interleukin-1β by a co-induced protease. FEBS Letters, 247, 386–390.PubMed
65.
Zurück zum Zitat Schonbeck, V., Mach, F., & Libby, P. (1998). Generation of biologically active IL-1β by matrix metalloproteinase a novel caspase-1 independent pathway of IL-1β processing. Journal of Immunology, 161, 3340–3346. Schonbeck, V., Mach, F., & Libby, P. (1998). Generation of biologically active IL-1β by matrix metalloproteinase a novel caspase-1 independent pathway of IL-1β processing. Journal of Immunology, 161, 3340–3346.
66.
Zurück zum Zitat Dinarello, C. A., & Wolff, S. M. (1993). The role of interleukin-1 in disease. New England Journal of Medicine, 328, 106–113.PubMed Dinarello, C. A., & Wolff, S. M. (1993). The role of interleukin-1 in disease. New England Journal of Medicine, 328, 106–113.PubMed
67.
Zurück zum Zitat Bankers-Fulbright, J. L., Kalli, K. R., & McLean, D. J. (1996). IL-1 signal transduction. Life Sciences, 59, 61–83.PubMed Bankers-Fulbright, J. L., Kalli, K. R., & McLean, D. J. (1996). IL-1 signal transduction. Life Sciences, 59, 61–83.PubMed
68.
Zurück zum Zitat Rothwell, N. J., & Luheshi, G. N. (2000). Interleukin 1 in the brain: biology, pathology and therapeutic target. Trends in Neurosciences, 23, 618–625.PubMed Rothwell, N. J., & Luheshi, G. N. (2000). Interleukin 1 in the brain: biology, pathology and therapeutic target. Trends in Neurosciences, 23, 618–625.PubMed
69.
Zurück zum Zitat Koga, S., Ogawa, S., Kuwabara, K., Brett, J., Leavy, J. A., & Ryan, J. (1992). Synthesis and release of interleukin 1 by reoxygenated human mononuclear phagocytes. Journal of Clinical Investigation, 90, 1007–1015.PubMed Koga, S., Ogawa, S., Kuwabara, K., Brett, J., Leavy, J. A., & Ryan, J. (1992). Synthesis and release of interleukin 1 by reoxygenated human mononuclear phagocytes. Journal of Clinical Investigation, 90, 1007–1015.PubMed
70.
Zurück zum Zitat Basu, A., Lazovic, J., Krady, J. K., Mauger, D. T., Rothstein, R. P., Smith, M. B., et al. (2005). Interleukin-1 and the interleukin-1 type 1 receptor are essential for the progressive neurodegeneration that ensues subsequent to a mild hypoxic/ischemic injury. Journal of Cerebral Blood Flow and Metabolism, 25, 17–29.PubMed Basu, A., Lazovic, J., Krady, J. K., Mauger, D. T., Rothstein, R. P., Smith, M. B., et al. (2005). Interleukin-1 and the interleukin-1 type 1 receptor are essential for the progressive neurodegeneration that ensues subsequent to a mild hypoxic/ischemic injury. Journal of Cerebral Blood Flow and Metabolism, 25, 17–29.PubMed
71.
Zurück zum Zitat Herrmann, O., Tarabin, V., Suzuki, S., Attigah, N., Coserea, I., & Schneider, A. (2003). Regulation of body temperature and neuroprotection by endogenous interleukin-6 in cerebral ischemia. Journal of Cerebral Blood Flow and Metabolism, 23, 406–415.PubMed Herrmann, O., Tarabin, V., Suzuki, S., Attigah, N., Coserea, I., & Schneider, A. (2003). Regulation of body temperature and neuroprotection by endogenous interleukin-6 in cerebral ischemia. Journal of Cerebral Blood Flow and Metabolism, 23, 406–415.PubMed
72.
Zurück zum Zitat Waje-Andreassen, U., Kråkenes, J., Ulvestad, E., Thomassen, L., Myhr, K. M., Aarseth, J., et al. (2005). IL-6: an early marker for outcome in acute ischemic stroke. Acta Neurologica Scandinavica, 111, 360–365.PubMed Waje-Andreassen, U., Kråkenes, J., Ulvestad, E., Thomassen, L., Myhr, K. M., Aarseth, J., et al. (2005). IL-6: an early marker for outcome in acute ischemic stroke. Acta Neurologica Scandinavica, 111, 360–365.PubMed
73.
Zurück zum Zitat Scheller, J., Chalaris, A., Schmidt-Arras, D., & Rose-John, S. (1813). The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochimica et Biophysica Acta, 2011, 878–888. Scheller, J., Chalaris, A., Schmidt-Arras, D., & Rose-John, S. (1813). The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochimica et Biophysica Acta, 2011, 878–888.
74.
Zurück zum Zitat Connolly, E. S. J., Winfree, C. J., Springer, T. A., Naka, Y., Liao, H., & Yan, S. D. (1996). Cerebral protection in homozygous null ICAM-1 mice after middle cerebral artery occlusion. Role of neutrophil adhesion in the pathogenesis of stroke. Journal of Clinical Investigation, 97, 209–16.PubMed Connolly, E. S. J., Winfree, C. J., Springer, T. A., Naka, Y., Liao, H., & Yan, S. D. (1996). Cerebral protection in homozygous null ICAM-1 mice after middle cerebral artery occlusion. Role of neutrophil adhesion in the pathogenesis of stroke. Journal of Clinical Investigation, 97, 209–16.PubMed
75.
Zurück zum Zitat Moore, K. L., Eaton, S. F., Lyons, D. E., Lichenstein, H. S., Cummings, R. D., & McEver, R. P. (1994). The P-selectin glycoprotein ligand from human neutrophils displays sialylated, fucosylated, O-linked poly-N-acetyllactosamine. Journal of Biological Chemistry, 269, 23318–23327.PubMed Moore, K. L., Eaton, S. F., Lyons, D. E., Lichenstein, H. S., Cummings, R. D., & McEver, R. P. (1994). The P-selectin glycoprotein ligand from human neutrophils displays sialylated, fucosylated, O-linked poly-N-acetyllactosamine. Journal of Biological Chemistry, 269, 23318–23327.PubMed
76.
Zurück zum Zitat Stenberg, P. E., Shuman, M. A., Levine, S. P., & Bainton, D. F. (1984). Redistribution of alpha-granules and their contents in thrombin-stimulated platelets. Journal of Cell Biology, 98, 748–760.PubMed Stenberg, P. E., Shuman, M. A., Levine, S. P., & Bainton, D. F. (1984). Redistribution of alpha-granules and their contents in thrombin-stimulated platelets. Journal of Cell Biology, 98, 748–760.PubMed
77.
Zurück zum Zitat Bargatze, R. F., Kurk, S., Butcher, E. C., & Jutila, M. A. (1994). Neutrophils roll on adherent neutrophils bound to cytokine-induced endothelial cells via L-selectin on the rolling cells. Journal of Experimental Medicine, 180, 1785–1792.PubMed Bargatze, R. F., Kurk, S., Butcher, E. C., & Jutila, M. A. (1994). Neutrophils roll on adherent neutrophils bound to cytokine-induced endothelial cells via L-selectin on the rolling cells. Journal of Experimental Medicine, 180, 1785–1792.PubMed
78.
Zurück zum Zitat Mayadas, T. N., Johnson, R. C., Rayburn, H., Hynes, R. O., & Wagner, D. D. (1993). Leukocyte rolling and extravasation are severely compromised in P-selectin deficient mice. Cell, 74, 541–554.PubMed Mayadas, T. N., Johnson, R. C., Rayburn, H., Hynes, R. O., & Wagner, D. D. (1993). Leukocyte rolling and extravasation are severely compromised in P-selectin deficient mice. Cell, 74, 541–554.PubMed
79.
Zurück zum Zitat Huang, J., Kim, L. J., Mealey, R., Marsh, H. C., Zhang, Y., Tenner, A. J., et al. (1999). Neuronal protection in stroke by an sLex-glycosylated complement inhibitory protein. Science, 285, 595–599.PubMed Huang, J., Kim, L. J., Mealey, R., Marsh, H. C., Zhang, Y., Tenner, A. J., et al. (1999). Neuronal protection in stroke by an sLex-glycosylated complement inhibitory protein. Science, 285, 595–599.PubMed
80.
Zurück zum Zitat Huang, J., Choudhri, T. F., Winfree, C. J., McTaggart, R. A., Kiss, S., Mocco, J., et al. (2000). Postischemic cerebrovascular E-selectin expression mediates tissue injury in murine stroke. Stroke, 31, 3047–3053.PubMed Huang, J., Choudhri, T. F., Winfree, C. J., McTaggart, R. A., Kiss, S., Mocco, J., et al. (2000). Postischemic cerebrovascular E-selectin expression mediates tissue injury in murine stroke. Stroke, 31, 3047–3053.PubMed
81.
Zurück zum Zitat Mocco, J., Choudhri, T., Huang, J., Harfeldt, E., Efros, L., Klingbeil, C., et al. (2002). HuEP5C7 as a humanized monoclonal anti-E/P-selectin neurovascular protective strategy in a blinded placebo-controlled trial of nonhuman primate stroke. Circulation Research, 91, 907–914.PubMed Mocco, J., Choudhri, T., Huang, J., Harfeldt, E., Efros, L., Klingbeil, C., et al. (2002). HuEP5C7 as a humanized monoclonal anti-E/P-selectin neurovascular protective strategy in a blinded placebo-controlled trial of nonhuman primate stroke. Circulation Research, 91, 907–914.PubMed
82.
Zurück zum Zitat Lehmberg, J., Beck, J., Baethmann, A., & Uhl, E. (2006). Effect of P-selectin inhibition on leukocyte endothelium interaction and survival after global cerebral ischemia. Journal of Neurology, 253, 357–363.PubMed Lehmberg, J., Beck, J., Baethmann, A., & Uhl, E. (2006). Effect of P-selectin inhibition on leukocyte endothelium interaction and survival after global cerebral ischemia. Journal of Neurology, 253, 357–363.PubMed
83.
Zurück zum Zitat Cha, J. K., Jeong, M. H., Kim, E. K., Lim, Y. J., Ha, B. R., & Kim, S. H. (2002). Surface expression of P-selectin on platelets is related with clinical worsening in acute ischemic stroke. Journal of Korean Medical Science, 17, 811–816.PubMed Cha, J. K., Jeong, M. H., Kim, E. K., Lim, Y. J., Ha, B. R., & Kim, S. H. (2002). Surface expression of P-selectin on platelets is related with clinical worsening in acute ischemic stroke. Journal of Korean Medical Science, 17, 811–816.PubMed
84.
Zurück zum Zitat Zhao, D. X., Feng, J., Cong, S. Y., & Zhang, W. (2012). Association of E-selectin gene polymorphisms with ischemic stroke in a Chinese Han population. Journal of Neuroscience Research, 90, 1782–1787.PubMed Zhao, D. X., Feng, J., Cong, S. Y., & Zhang, W. (2012). Association of E-selectin gene polymorphisms with ischemic stroke in a Chinese Han population. Journal of Neuroscience Research, 90, 1782–1787.PubMed
85.
Zurück zum Zitat Kaba, N. K., Schultz, J., Law, F. Y., Lefort, C. T., Martel-Gallegos, G., Kim, M., et al. (2008). Inhibition of Na+/H+ exchanger enhances low pH-induced L-selectin shedding and beta2-integrin surface expression in human neutrophils. American Journal of Physiology. Cell Physiology, 295, C1454–1463.PubMed Kaba, N. K., Schultz, J., Law, F. Y., Lefort, C. T., Martel-Gallegos, G., Kim, M., et al. (2008). Inhibition of Na+/H+ exchanger enhances low pH-induced L-selectin shedding and beta2-integrin surface expression in human neutrophils. American Journal of Physiology. Cell Physiology, 295, C1454–1463.PubMed
86.
Zurück zum Zitat Springer, T. A. (1990). Adhesion receptors of the immune system. Nature, 346, 425.PubMed Springer, T. A. (1990). Adhesion receptors of the immune system. Nature, 346, 425.PubMed
87.
Zurück zum Zitat Gahmberg, C. G. M., Tolvanen, P., & Kotovuori. (1997). Leukocyte adhesion: structure and function of human leukocyte β2-integrins and their cellular ligands. European Journal of Biochemistry, 245, 215–232.PubMed Gahmberg, C. G. M., Tolvanen, P., & Kotovuori. (1997). Leukocyte adhesion: structure and function of human leukocyte β2-integrins and their cellular ligands. European Journal of Biochemistry, 245, 215–232.PubMed
88.
Zurück zum Zitat Diacovo, T. G., de Fougerolles, A. R., Bainton, D. F., & Springer, T. A. (1994). A functional integrin ligand on the surface of platelets: intercellular adhesion molecule-2. Journal of Clinical Investigation, 94, 1243–1251.PubMed Diacovo, T. G., de Fougerolles, A. R., Bainton, D. F., & Springer, T. A. (1994). A functional integrin ligand on the surface of platelets: intercellular adhesion molecule-2. Journal of Clinical Investigation, 94, 1243–1251.PubMed
89.
Zurück zum Zitat Zhang, R. L., Chopp, M., Chen, H., & Garcia, J. H. (1994). Temporal profile of ischemic tissue damage, neutrophil response, and vascular plugging following permanent and transient (2H) middle cerebral artery occlusion in the rat. Journal of Neurological Sciences, 125, 3–10. Zhang, R. L., Chopp, M., Chen, H., & Garcia, J. H. (1994). Temporal profile of ischemic tissue damage, neutrophil response, and vascular plugging following permanent and transient (2H) middle cerebral artery occlusion in the rat. Journal of Neurological Sciences, 125, 3–10.
90.
Zurück zum Zitat Kanemoto, Y., Nakase, H., Akita, N., & Sakaki, T. (2002). Effects of anti-intercellular adhesion molecule-1 antibody on reperfusion injury induced by late reperfusion in the rat middle cerebral artery occlusion model. Neurosurgery, 51, 1034–1041.PubMed Kanemoto, Y., Nakase, H., Akita, N., & Sakaki, T. (2002). Effects of anti-intercellular adhesion molecule-1 antibody on reperfusion injury induced by late reperfusion in the rat middle cerebral artery occlusion model. Neurosurgery, 51, 1034–1041.PubMed
91.
Zurück zum Zitat Kitagawa, K., Matsumoto, M., Mabuchi, T., Yagita, Y., Ohtsuki, T., Hori, M., et al. (1998). Deficiency of intercellular adhesion molecule 1 attenuates microcirculatory disturbance and infarction size in focal cerebral ischemia. Journal of Cerebral Blood Flow and Metabolism, 18, 1336–1345.PubMed Kitagawa, K., Matsumoto, M., Mabuchi, T., Yagita, Y., Ohtsuki, T., Hori, M., et al. (1998). Deficiency of intercellular adhesion molecule 1 attenuates microcirculatory disturbance and infarction size in focal cerebral ischemia. Journal of Cerebral Blood Flow and Metabolism, 18, 1336–1345.PubMed
92.
Zurück zum Zitat Khan, M., Jatana, M., Elango, C., Singh, P. A., Singh, A. K., & Singh, I. (2006). Cerebrovascular protection by various nitric oxide donors in rats after experimental stroke. Nitric Oxide, 15, 114–124.PubMed Khan, M., Jatana, M., Elango, C., Singh, P. A., Singh, A. K., & Singh, I. (2006). Cerebrovascular protection by various nitric oxide donors in rats after experimental stroke. Nitric Oxide, 15, 114–124.PubMed
93.
Zurück zum Zitat Vemuganti, R., Dempsey, R. J., & Bowen, K. K. (2004). Inhibition of intercellular adhesion molecule-1 protein expression by antisense oligonucleotides is neuroprotective after transient middle cerebral artery occlusion in rat. Stroke, 35, 179–184.PubMed Vemuganti, R., Dempsey, R. J., & Bowen, K. K. (2004). Inhibition of intercellular adhesion molecule-1 protein expression by antisense oligonucleotides is neuroprotective after transient middle cerebral artery occlusion in rat. Stroke, 35, 179–184.PubMed
94.
Zurück zum Zitat Shyu, K. G., Chang, H., & Lin, C. C. (1997). Serum levels of intercellular adhesion molecule-1 and E-selectin in patients with acute ischaemic stroke. Journal of Neurology, 244, 90–93.PubMed Shyu, K. G., Chang, H., & Lin, C. C. (1997). Serum levels of intercellular adhesion molecule-1 and E-selectin in patients with acute ischaemic stroke. Journal of Neurology, 244, 90–93.PubMed
95.
Zurück zum Zitat Lindsberg, P. J., Carpen, O., Paetau, A., Karjalainen-Lindsberg, M. L., & Kaste, M. (1996). Endothelial ICAM-1 expression associated with inflammatory cell response in human ischemic stroke. Circulation, 94, 939–945.PubMed Lindsberg, P. J., Carpen, O., Paetau, A., Karjalainen-Lindsberg, M. L., & Kaste, M. (1996). Endothelial ICAM-1 expression associated with inflammatory cell response in human ischemic stroke. Circulation, 94, 939–945.PubMed
96.
Zurück zum Zitat Enlimomab, A. S. T. (2001). Use of anti-ICAM-1 therapy in ischemic stroke: results of the Enlimomab Acute Stroke Trial. Neurology, 57, 1428–1434. Enlimomab, A. S. T. (2001). Use of anti-ICAM-1 therapy in ischemic stroke: results of the Enlimomab Acute Stroke Trial. Neurology, 57, 1428–1434.
97.
Zurück zum Zitat Vuorte, J., Lindsberg, P. J., Kaste, M., Meri, S., Jansson, S. E., Rothlein, R., et al. (1999). Anti-ICAM-1 monoclonal antibody R6.5 (Enlimomab) promotes activation of neutrophils in whole blood. Journal of Immunology, 162, 2353–2357. Vuorte, J., Lindsberg, P. J., Kaste, M., Meri, S., Jansson, S. E., Rothlein, R., et al. (1999). Anti-ICAM-1 monoclonal antibody R6.5 (Enlimomab) promotes activation of neutrophils in whole blood. Journal of Immunology, 162, 2353–2357.
98.
Zurück zum Zitat Zhang, L. H., & Wei, E. Q. (2003). Neuroprotective effect of ONO-1078, a leukotriene receptor antagonist, on transient global cerebral ischemia in rats. Acta Pharmacologica Sinica, 24, 1241–1247.PubMed Zhang, L. H., & Wei, E. Q. (2003). Neuroprotective effect of ONO-1078, a leukotriene receptor antagonist, on transient global cerebral ischemia in rats. Acta Pharmacologica Sinica, 24, 1241–1247.PubMed
99.
Zurück zum Zitat Justicia, C., Martin, A., Rojas, S., Gironella, M., Cervera, A., Panes, J., et al. (2006). Anti-VCAM-1 antibodies did not protect against ischemic damage either in rats or in mice. Journal of Cerebral Blood Flow and Metabolism, 26, 421–432.PubMed Justicia, C., Martin, A., Rojas, S., Gironella, M., Cervera, A., Panes, J., et al. (2006). Anti-VCAM-1 antibodies did not protect against ischemic damage either in rats or in mice. Journal of Cerebral Blood Flow and Metabolism, 26, 421–432.PubMed
100.
Zurück zum Zitat Bajetto, A., Bonavia, R., Barbero, S., Florio, T., & Schettini, G. (2001). Chemokines and their receptors in the central nervous system. Frontiers in Neuroendocrinology, 22, 147–184.PubMed Bajetto, A., Bonavia, R., Barbero, S., Florio, T., & Schettini, G. (2001). Chemokines and their receptors in the central nervous system. Frontiers in Neuroendocrinology, 22, 147–184.PubMed
101.
Zurück zum Zitat Chen, Y., Hallenbeck, J. M., Ruetzler, C., Bol, D., Thomas, K., Berman, N. E., et al. (2003). Overexpression of monocyte chemoattractant protein 1 in the brain exacerbates ischemic brain injury and is associated with recruitment of inflammatory cells. Journal of Cerebral Blood Flow and Metabolism, 23, 748–755.PubMed Chen, Y., Hallenbeck, J. M., Ruetzler, C., Bol, D., Thomas, K., Berman, N. E., et al. (2003). Overexpression of monocyte chemoattractant protein 1 in the brain exacerbates ischemic brain injury and is associated with recruitment of inflammatory cells. Journal of Cerebral Blood Flow and Metabolism, 23, 748–755.PubMed
102.
Zurück zum Zitat Lambertsen, K. L., Biber, K., & Finsen, B. (2012). Inflammatory cytokines in experimental and human stroke. Journal of Cerebral Blood Flow and Metabolism, 32, 1677–1698.PubMed Lambertsen, K. L., Biber, K., & Finsen, B. (2012). Inflammatory cytokines in experimental and human stroke. Journal of Cerebral Blood Flow and Metabolism, 32, 1677–1698.PubMed
103.
Zurück zum Zitat Wang, L., Li, Y., Chen, X., Chen, J., Gautam, S. C., Xu, Y., et al. (2002). MCP-1, MIP-1, IL-8 and ischemic cerebral tissue enhance human bone marrow stromal cell migration in interface culture. Hematology, 7, 113–117.PubMed Wang, L., Li, Y., Chen, X., Chen, J., Gautam, S. C., Xu, Y., et al. (2002). MCP-1, MIP-1, IL-8 and ischemic cerebral tissue enhance human bone marrow stromal cell migration in interface culture. Hematology, 7, 113–117.PubMed
104.
Zurück zum Zitat Wang, L., Li, Y., Chen, J., Gautam, S. C., Zhang, Z., Lu, M., et al. (2002). Ischemic cerebral tissue and MCP-1 enhance rat bone marrow stromal cell migration in interface culture. Experimental Hematology, 30, 831–836.PubMed Wang, L., Li, Y., Chen, J., Gautam, S. C., Zhang, Z., Lu, M., et al. (2002). Ischemic cerebral tissue and MCP-1 enhance rat bone marrow stromal cell migration in interface culture. Experimental Hematology, 30, 831–836.PubMed
105.
Zurück zum Zitat Lee, S. R., Kim, H. Y., Rogowska, J., Zhao, B. Q., Bhide, P., Parent, J. M., et al. (2006). Involvement of matrix metalloproteinase in neuroblast cell migration from the subventricular zone after stroke. Journal of Neuroscience, 26, 3491–3495.PubMed Lee, S. R., Kim, H. Y., Rogowska, J., Zhao, B. Q., Bhide, P., Parent, J. M., et al. (2006). Involvement of matrix metalloproteinase in neuroblast cell migration from the subventricular zone after stroke. Journal of Neuroscience, 26, 3491–3495.PubMed
106.
Zurück zum Zitat Zhao, B. Q., Wang, S., Kim, H. Y., Storrie, H., Rosen, B. R., Mooney, D. J., et al. (2006). Role of matrix metalloproteinases in delayed cortical responses after stroke. Nature Medicine, 12, 441–445.PubMed Zhao, B. Q., Wang, S., Kim, H. Y., Storrie, H., Rosen, B. R., Mooney, D. J., et al. (2006). Role of matrix metalloproteinases in delayed cortical responses after stroke. Nature Medicine, 12, 441–445.PubMed
107.
Zurück zum Zitat Rosenberg, G. A., Navratil, M., Barone, F., & Feuerstein, G. (1996). Proteolytic cascade enzymes increase in focal cerebral ischemia in rat. Journal of Cerebral Blood Flow and Metabolism, 16, 360–366.PubMed Rosenberg, G. A., Navratil, M., Barone, F., & Feuerstein, G. (1996). Proteolytic cascade enzymes increase in focal cerebral ischemia in rat. Journal of Cerebral Blood Flow and Metabolism, 16, 360–366.PubMed
108.
Zurück zum Zitat Clark, A. W., Krekoski, C. A., Bou, S. S., Chapman, K. R., & Edwards, D. R. (1997). Increased gelatinase A (MMP-2) and gelatinase B (MMP-9) activities in human brain after focal ischemia. Neuroscience Letters, 238, 53–56.PubMed Clark, A. W., Krekoski, C. A., Bou, S. S., Chapman, K. R., & Edwards, D. R. (1997). Increased gelatinase A (MMP-2) and gelatinase B (MMP-9) activities in human brain after focal ischemia. Neuroscience Letters, 238, 53–56.PubMed
109.
Zurück zum Zitat Castellanos, M., Leira, R., Serena, J., Pumar, J. M., Lizasoain, I., & Castillo, J. (2003). Plasma metalloproteinase-9 concentration predicts hemorrhagic transformation in acute ischemic stroke. Stroke, 34, 40–46.PubMed Castellanos, M., Leira, R., Serena, J., Pumar, J. M., Lizasoain, I., & Castillo, J. (2003). Plasma metalloproteinase-9 concentration predicts hemorrhagic transformation in acute ischemic stroke. Stroke, 34, 40–46.PubMed
110.
Zurück zum Zitat Montaner, J., Alvarez-Sabin, J., Molina, C., Angles, A., Abilleira, S., & Arenillas, J. (2001). Matrix metalloproteinase expression after human cardioembolic stroke: temporal profile and relation to neurological impairment. Stroke, 32, 1759–1766.PubMed Montaner, J., Alvarez-Sabin, J., Molina, C., Angles, A., Abilleira, S., & Arenillas, J. (2001). Matrix metalloproteinase expression after human cardioembolic stroke: temporal profile and relation to neurological impairment. Stroke, 32, 1759–1766.PubMed
111.
Zurück zum Zitat Asahi, M., Wang, X., Mori, T., Sumii, T., Jung, J. C., Moskowitz, M. A., et al. (2001). Effects of matrix metalloproteinase-9 gene knock-out on the proteolysis of blood–brain barrier and white matter components after cerebral ischemia. Journal of Neuroscience, 21, 7724–32.PubMed Asahi, M., Wang, X., Mori, T., Sumii, T., Jung, J. C., Moskowitz, M. A., et al. (2001). Effects of matrix metalloproteinase-9 gene knock-out on the proteolysis of blood–brain barrier and white matter components after cerebral ischemia. Journal of Neuroscience, 21, 7724–32.PubMed
112.
Zurück zum Zitat Tarkowski, E., Rosengren, L., Blomstrand, C., Wikkelso, C., Jensen, C., Ekholm, S., et al. (1997). Intrathecal release of pro- and anti-inflammatory cytokines during stroke. Clinical and Experimental Immunology, 110, 492–499.PubMed Tarkowski, E., Rosengren, L., Blomstrand, C., Wikkelso, C., Jensen, C., Ekholm, S., et al. (1997). Intrathecal release of pro- and anti-inflammatory cytokines during stroke. Clinical and Experimental Immunology, 110, 492–499.PubMed
113.
Zurück zum Zitat Pelidou, S. H., Kostulas, N., Matusevicius, D., Kivisakk, P., Kostulas, V., & Link, H. (1999). High levels of IL-10 secreting cells are present in blood in cerebrovascular diseases. European Journal of Neurology, 6, 437–442.PubMed Pelidou, S. H., Kostulas, N., Matusevicius, D., Kivisakk, P., Kostulas, V., & Link, H. (1999). High levels of IL-10 secreting cells are present in blood in cerebrovascular diseases. European Journal of Neurology, 6, 437–442.PubMed
114.
Zurück zum Zitat Strle, K., Zhou, J. H., Shen, W. H., Broussard, S. R., Johnson, R. W., Freund, G. G., et al. (2001). Interleukin-10 in the brain. Critical Reviews in Immunology, 21, 427–449.PubMed Strle, K., Zhou, J. H., Shen, W. H., Broussard, S. R., Johnson, R. W., Freund, G. G., et al. (2001). Interleukin-10 in the brain. Critical Reviews in Immunology, 21, 427–449.PubMed
115.
Zurück zum Zitat Grilli, M., Barbieri, I., Basudev, H., Brusa, R., Casati, C., Lozza, G., et al. (2000). Interleukin-10 modulates neuronal threshold of vulnerability to ischaemic damage. European Journal of Neuroscience, 12, 2265–2272.PubMed Grilli, M., Barbieri, I., Basudev, H., Brusa, R., Casati, C., Lozza, G., et al. (2000). Interleukin-10 modulates neuronal threshold of vulnerability to ischaemic damage. European Journal of Neuroscience, 12, 2265–2272.PubMed
116.
Zurück zum Zitat Kim, J. S., Yoon, S. S., Kim, Y. H., & Ryu, J. S. (1996). Serial measurement of interleukin-6, transforming growth factor-beta, and S 100 protein in patients with acute stroke. Stroke, 27, 1553–1557.PubMed Kim, J. S., Yoon, S. S., Kim, Y. H., & Ryu, J. S. (1996). Serial measurement of interleukin-6, transforming growth factor-beta, and S 100 protein in patients with acute stroke. Stroke, 27, 1553–1557.PubMed
117.
Zurück zum Zitat van Exel, E., Gussekloo, J., de Craen, A. J., Bootsma-van, D. W. A., Frolich, M., & Westendorp, R. G. (2002). Inflammation and stroke: the Leiden 85-Plus Study. Stroke, 33, 1135–1138.PubMed van Exel, E., Gussekloo, J., de Craen, A. J., Bootsma-van, D. W. A., Frolich, M., & Westendorp, R. G. (2002). Inflammation and stroke: the Leiden 85-Plus Study. Stroke, 33, 1135–1138.PubMed
118.
Zurück zum Zitat Buckwalter, M., & Wyss-Coray, T. (2004). Modelling neuroinflammatory phenotypes in vivo. Journal of Neuroinflammation, 1, 10.PubMed Buckwalter, M., & Wyss-Coray, T. (2004). Modelling neuroinflammatory phenotypes in vivo. Journal of Neuroinflammation, 1, 10.PubMed
119.
Zurück zum Zitat Klempt, N. D., Sirimanne, E., Gunn, A. J., Klempt, M., Singh, K., & Williams, C. (1992). Hypoxia–ischemia induces transforming growth factor beta 1 mRNA in the infant rat brain. Molecular Brain Research, 13, 93–101.PubMed Klempt, N. D., Sirimanne, E., Gunn, A. J., Klempt, M., Singh, K., & Williams, C. (1992). Hypoxia–ischemia induces transforming growth factor beta 1 mRNA in the infant rat brain. Molecular Brain Research, 13, 93–101.PubMed
120.
Zurück zum Zitat Wienner, C., Gehrmann, J., Lindholm, D., Topper, R., Kreutzberg, G. W., & Hossmann, K. A. (1993). Expression of transforming growth factor-beta1 and interleukin-1 beta mRNA in rat brain following transient fore-brain ischemia. Acta Neuropathologica, 86, 439–46. Wienner, C., Gehrmann, J., Lindholm, D., Topper, R., Kreutzberg, G. W., & Hossmann, K. A. (1993). Expression of transforming growth factor-beta1 and interleukin-1 beta mRNA in rat brain following transient fore-brain ischemia. Acta Neuropathologica, 86, 439–46.
121.
Zurück zum Zitat Johnston, R. E., Dillon-Carter, O., Freed, W. J., & Borlongan, C. V. (2001). Trophic factor secreting kidney cell lines: in vitro characterization and functional effects following transplantation in ischemic rats. Brain Research, 900, 268–276.PubMed Johnston, R. E., Dillon-Carter, O., Freed, W. J., & Borlongan, C. V. (2001). Trophic factor secreting kidney cell lines: in vitro characterization and functional effects following transplantation in ischemic rats. Brain Research, 900, 268–276.PubMed
122.
Zurück zum Zitat Sun, H., Gong, S., Carmody, R. J., Hilliard, A., Li, L., Sun, J., et al. (2008). TIPE2, a negative regulator of innate and adaptive immunity that maintains immune homeostasis. Cell, 133, 415–426.PubMed Sun, H., Gong, S., Carmody, R. J., Hilliard, A., Li, L., Sun, J., et al. (2008). TIPE2, a negative regulator of innate and adaptive immunity that maintains immune homeostasis. Cell, 133, 415–426.PubMed
123.
Zurück zum Zitat Zhang, X., Wang, J., Fan, C., Li, H., Sun, H., Gong, S., et al. (2009). Crystal structure of TIPE2 provides insights into immune homeostasis. Nature Structural and Molecular Biology, 16, 89–90.PubMed Zhang, X., Wang, J., Fan, C., Li, H., Sun, H., Gong, S., et al. (2009). Crystal structure of TIPE2 provides insights into immune homeostasis. Nature Structural and Molecular Biology, 16, 89–90.PubMed
124.
Zurück zum Zitat Kooijman, R. (2006). Regulation of apoptosis by insulin-like growth factor (IGF)-I. Cytokine & Growth Factor Reviews, 17, 305–323. Kooijman, R. (2006). Regulation of apoptosis by insulin-like growth factor (IGF)-I. Cytokine & Growth Factor Reviews, 17, 305–323.
125.
Zurück zum Zitat Liu, X. F., Fawcett, J. R., Hanson, L. R., & Frey, W. H. (2004). The window of opportunity for treatment of focal cerebral ischemic damage with noninvasive intranasal insulin-like growth factor-I in rats. Journal of Stroke and Cerebrovascular Diseases, 13, 16–23.PubMed Liu, X. F., Fawcett, J. R., Hanson, L. R., & Frey, W. H. (2004). The window of opportunity for treatment of focal cerebral ischemic damage with noninvasive intranasal insulin-like growth factor-I in rats. Journal of Stroke and Cerebrovascular Diseases, 13, 16–23.PubMed
126.
Zurück zum Zitat Liu, X. F., Fawcett, J. R., Thorne, R. G., DeFor, T. A., & Frey, W. H. (2001). Intranasal administration of insulin-like growth factor-I bypasses the blood–brain barrier and protects against focal cerebral ischemic damage. Journal of Neurological Sciences, 187, 91–97. Liu, X. F., Fawcett, J. R., Thorne, R. G., DeFor, T. A., & Frey, W. H. (2001). Intranasal administration of insulin-like growth factor-I bypasses the blood–brain barrier and protects against focal cerebral ischemic damage. Journal of Neurological Sciences, 187, 91–97.
127.
Zurück zum Zitat De, S. A., Brouns, R., Uyttenboogaart, M., De, R. S., Moens, M., Wilczak, N., et al. (2011). Insulin-like growth factor I serum levels influence ischemic stroke outcome. Stroke, 42, 2180–2185. De, S. A., Brouns, R., Uyttenboogaart, M., De, R. S., Moens, M., Wilczak, N., et al. (2011). Insulin-like growth factor I serum levels influence ischemic stroke outcome. Stroke, 42, 2180–2185.
128.
Zurück zum Zitat Bsibsi, M., Persoon-Deen, C., Verwer, R. W., Meeuwsen, S., Ravid, R., & Van, N. J. M. (2006). Toll-like receptor 3 on adult human astrocytes triggers production of neuroprotective mediators. Glia, 53, 688–695.PubMed Bsibsi, M., Persoon-Deen, C., Verwer, R. W., Meeuwsen, S., Ravid, R., & Van, N. J. M. (2006). Toll-like receptor 3 on adult human astrocytes triggers production of neuroprotective mediators. Glia, 53, 688–695.PubMed
129.
Zurück zum Zitat Bsibsi, M., Ravid, R., Gveric, D., & Van Noort, J. M. (2002). Broad expression of Toll-like receptors in the human central nervous system. Journal of Neuropathology and Experimental Neurology, 61, 1013–1021.PubMed Bsibsi, M., Ravid, R., Gveric, D., & Van Noort, J. M. (2002). Broad expression of Toll-like receptors in the human central nervous system. Journal of Neuropathology and Experimental Neurology, 61, 1013–1021.PubMed
130.
Zurück zum Zitat Singh, A. K., & Jiang, Y. (2004). How does peripheral lipopolysaccharide induce gene expression in the brain of rats? Toxicology, 201, 197–207.PubMed Singh, A. K., & Jiang, Y. (2004). How does peripheral lipopolysaccharide induce gene expression in the brain of rats? Toxicology, 201, 197–207.PubMed
131.
Zurück zum Zitat Jack, C. S., Arbour, N., Manusow, J., Montgrain, V., Blain, M., McCrea, E., et al. (2005). TLR signaling tailors innate immune responses in human microglia and astrocytes. Journal of Immunology, 175, 4320–4330. Jack, C. S., Arbour, N., Manusow, J., Montgrain, V., Blain, M., McCrea, E., et al. (2005). TLR signaling tailors innate immune responses in human microglia and astrocytes. Journal of Immunology, 175, 4320–4330.
132.
Zurück zum Zitat Marsh, B. J., Williams-Karnesky, R. L., & Stenzel-Poore, M. P. (2009). Toll-like receptor signaling in endogenous neuroprotection and stroke. Neuroscience, 158, 1007–1020.PubMed Marsh, B. J., Williams-Karnesky, R. L., & Stenzel-Poore, M. P. (2009). Toll-like receptor signaling in endogenous neuroprotection and stroke. Neuroscience, 158, 1007–1020.PubMed
133.
Zurück zum Zitat Sakata, Y., Dong, J. W., Vallejo, J. G., Huang, C. H., Baker, J. S., Tracey, K. J., et al. (2007). Toll-like receptor 2 modulates left ventricular function following ischemia–reperfusion injury. American Journal of Physiology—Heart and Circulatory Physiology, 292, H503–H509.PubMed Sakata, Y., Dong, J. W., Vallejo, J. G., Huang, C. H., Baker, J. S., Tracey, K. J., et al. (2007). Toll-like receptor 2 modulates left ventricular function following ischemia–reperfusion injury. American Journal of Physiology—Heart and Circulatory Physiology, 292, H503–H509.PubMed
134.
Zurück zum Zitat Shigeoka, A. A., Holscher, T. D., King, A. J., Hall, F. W., Kiosses, W. B., Tobias, P. S., et al. (2007). TLR2 is constitutively expressed within the kidney and participates in ischemic renal injury through both MyD88-dependent and -independent pathways. Journal of Immunology, 178, 6252–6258. Shigeoka, A. A., Holscher, T. D., King, A. J., Hall, F. W., Kiosses, W. B., Tobias, P. S., et al. (2007). TLR2 is constitutively expressed within the kidney and participates in ischemic renal injury through both MyD88-dependent and -independent pathways. Journal of Immunology, 178, 6252–6258.
135.
Zurück zum Zitat Cao, C. X., Yang, Q. W., Lv, F. L., Cui, J., Fu, H. B., & Wang, J. Z. (2007). Reduced cerebral ischemia–reperfusion injury in Toll-like receptor 4 deficient mice. Biochemical and Biophysical Research Communications, 353, 509–514.PubMed Cao, C. X., Yang, Q. W., Lv, F. L., Cui, J., Fu, H. B., & Wang, J. Z. (2007). Reduced cerebral ischemia–reperfusion injury in Toll-like receptor 4 deficient mice. Biochemical and Biophysical Research Communications, 353, 509–514.PubMed
136.
Zurück zum Zitat Lehnardt, S., Schott, E., Trimbuch, T., Laubisch, D., Krueger, C., Wulczyn, G., et al. (2008). A vicious cycle involving release of heat shock protein 60 from injured cells and activation of toll-like receptor 4 mediates neurodegeneration in the CNS. Journal of Neuroscience, 28, 2320–2331.PubMed Lehnardt, S., Schott, E., Trimbuch, T., Laubisch, D., Krueger, C., Wulczyn, G., et al. (2008). A vicious cycle involving release of heat shock protein 60 from injured cells and activation of toll-like receptor 4 mediates neurodegeneration in the CNS. Journal of Neuroscience, 28, 2320–2331.PubMed
137.
Zurück zum Zitat Ziegler, G., Harhausen, D., Schepers, C., Hoffmann, O., Rohr, C., Prinz, V., et al. (2007). TLR2 has a detrimental role in mouse transient focal cerebral ischemia. Biochemical and Biophysical Research Communications, 359, 574–579.PubMed Ziegler, G., Harhausen, D., Schepers, C., Hoffmann, O., Rohr, C., Prinz, V., et al. (2007). TLR2 has a detrimental role in mouse transient focal cerebral ischemia. Biochemical and Biophysical Research Communications, 359, 574–579.PubMed
138.
Zurück zum Zitat Caso, J. R., Pradillo, J. M., Hurtado, O., Lorenzo, P., Moro, M. A., & Lizasoain, I. (2007). Toll-like receptor 4 is involved in brain damage and inflammation after experimental stroke. Circulation, 115, 1599–1608.PubMed Caso, J. R., Pradillo, J. M., Hurtado, O., Lorenzo, P., Moro, M. A., & Lizasoain, I. (2007). Toll-like receptor 4 is involved in brain damage and inflammation after experimental stroke. Circulation, 115, 1599–1608.PubMed
139.
Zurück zum Zitat Hua, F., Ma, J., Ha, T., Xia, Y., Kelley, J., Williams, D. L., et al. (2007). Activation of Toll-like receptor 4 signaling contributes to hippocampal neuronal death following global cerebral ischemia/reperfusion. Journal of Neuroimmunology, 190, 101–111.PubMed Hua, F., Ma, J., Ha, T., Xia, Y., Kelley, J., Williams, D. L., et al. (2007). Activation of Toll-like receptor 4 signaling contributes to hippocampal neuronal death following global cerebral ischemia/reperfusion. Journal of Neuroimmunology, 190, 101–111.PubMed
140.
Zurück zum Zitat Kinouchi, H., Sharp, F. R., Hill, M. P., Koistinaho, J., Sagar, S. M., & Chan, P. H. (1993). Induction of 70-kDa heat shock protein and hsp70 mRNA following transient focal cerebral ischemia in the rat. Journal of Cerebral Blood Flow and Metabolism, 13, 105–115.PubMed Kinouchi, H., Sharp, F. R., Hill, M. P., Koistinaho, J., Sagar, S. M., & Chan, P. H. (1993). Induction of 70-kDa heat shock protein and hsp70 mRNA following transient focal cerebral ischemia in the rat. Journal of Cerebral Blood Flow and Metabolism, 13, 105–115.PubMed
141.
Zurück zum Zitat Faraco, G., Fossati, S., Bianchi, M. E., Patrone, M., Pedrazzi, M., Sparatore, B., et al. (2007). High mobility group box 1 protein is released by neural cells upon different stresses and worsens ischemic neurodegeneration in vitro and in vivo. Journal of Neurochemistry, 103, 590–603.PubMed Faraco, G., Fossati, S., Bianchi, M. E., Patrone, M., Pedrazzi, M., Sparatore, B., et al. (2007). High mobility group box 1 protein is released by neural cells upon different stresses and worsens ischemic neurodegeneration in vitro and in vivo. Journal of Neurochemistry, 103, 590–603.PubMed
142.
Zurück zum Zitat Schneider, A., Martin-Villalba, A., Weih, F., Vogel, J., Wirth, T., & Schwaninger, M. (1999). NF-kappaB is activated and promotes cell death in focal cerebral ischemia. Nature Medicine, 5, 554–559.PubMed Schneider, A., Martin-Villalba, A., Weih, F., Vogel, J., Wirth, T., & Schwaninger, M. (1999). NF-kappaB is activated and promotes cell death in focal cerebral ischemia. Nature Medicine, 5, 554–559.PubMed
143.
Zurück zum Zitat Liu, H., Xin, L., Chan, B. P. L., Teoh, R., Tang, B. L., & Tan, Y. H. (2002). Interferon beta administration confers a beneficial outcome in a rabbit model of thromboembolic cerebral ischemia. Neuroscience Letters, 327, 146–148.PubMed Liu, H., Xin, L., Chan, B. P. L., Teoh, R., Tang, B. L., & Tan, Y. H. (2002). Interferon beta administration confers a beneficial outcome in a rabbit model of thromboembolic cerebral ischemia. Neuroscience Letters, 327, 146–148.PubMed
144.
Zurück zum Zitat Veldhuis, W., Derksen, J., Floris, S., Vander, M. P., de Vries, H., Schepers, J., et al. (2003). Interferon-beta blocks infiltration of inflammatory cells and reduces infarct volume after ischemic stroke in the rat. Journal of Cerebral Blood Flow and Metabolism, 23, 1029–1039.PubMed Veldhuis, W., Derksen, J., Floris, S., Vander, M. P., de Vries, H., Schepers, J., et al. (2003). Interferon-beta blocks infiltration of inflammatory cells and reduces infarct volume after ischemic stroke in the rat. Journal of Cerebral Blood Flow and Metabolism, 23, 1029–1039.PubMed
145.
Zurück zum Zitat Bogoyevitch, M. A., Gillespie-Brown, J., Ketterman, A. J., Fuller, S. J., Ben-Levy, R., Ashworth, A., et al. (1996). Stimulation of the stress-activated mitogen-activated protein kinase subfamilies in perfused heart. p38/RK mitogen-activated protein kinases and c-Jun N-terminal kinases are activated by ischemia/reperfusion. Circulation Research, 79, 162–173.PubMed Bogoyevitch, M. A., Gillespie-Brown, J., Ketterman, A. J., Fuller, S. J., Ben-Levy, R., Ashworth, A., et al. (1996). Stimulation of the stress-activated mitogen-activated protein kinase subfamilies in perfused heart. p38/RK mitogen-activated protein kinases and c-Jun N-terminal kinases are activated by ischemia/reperfusion. Circulation Research, 79, 162–173.PubMed
146.
Zurück zum Zitat Ferrell, J. E. (1996). Tripping the switch fantastic: how a protein kinase cascade can convert graded inputs into switch-like outputs. Trends in Biochemical Sciences, 21, 460–466.PubMed Ferrell, J. E. (1996). Tripping the switch fantastic: how a protein kinase cascade can convert graded inputs into switch-like outputs. Trends in Biochemical Sciences, 21, 460–466.PubMed
147.
Zurück zum Zitat Davis, R. J. (1993). The mitogen-activated protein kinase signal transduction pathway. Journal of Biological Chemistry, 268, 14553–14556.PubMed Davis, R. J. (1993). The mitogen-activated protein kinase signal transduction pathway. Journal of Biological Chemistry, 268, 14553–14556.PubMed
148.
Zurück zum Zitat Nithianandarajah-Jones, G. N., Wilm, B., Goldring, C. E., Müller, J., & Cross, M. J. (2012). ERK5: structure, regulation and function. Cellular Signalling, 24, 2187–2196.PubMed Nithianandarajah-Jones, G. N., Wilm, B., Goldring, C. E., Müller, J., & Cross, M. J. (2012). ERK5: structure, regulation and function. Cellular Signalling, 24, 2187–2196.PubMed
149.
Zurück zum Zitat Lewis, T. S., Shapiro, P. S., & Ahn, N. G. (1998). Signal transduction through MAP kinase cascades. Advances in Cancer Research, 74, 49–139.PubMed Lewis, T. S., Shapiro, P. S., & Ahn, N. G. (1998). Signal transduction through MAP kinase cascades. Advances in Cancer Research, 74, 49–139.PubMed
150.
Zurück zum Zitat Sutton, L. N., Clark, B. J., Norwood, C. R., Woodford, E. J., & Welsh, F. A. (1991). Global cerebral ischemia in piglets under conditions of mild and deep hypothermia. Stroke, 22, 1567–1573.PubMed Sutton, L. N., Clark, B. J., Norwood, C. R., Woodford, E. J., & Welsh, F. A. (1991). Global cerebral ischemia in piglets under conditions of mild and deep hypothermia. Stroke, 22, 1567–1573.PubMed
151.
Zurück zum Zitat Kamme, F., Camp, K., & Wieloch, T. (1995). Biphasic expression of the fos and jun families of transcription factors following transient forebrain ischaemia in the rat. Effect of hypothermia. European Journal of Neuroscience, 7, 2007–2016.PubMed Kamme, F., Camp, K., & Wieloch, T. (1995). Biphasic expression of the fos and jun families of transcription factors following transient forebrain ischaemia in the rat. Effect of hypothermia. European Journal of Neuroscience, 7, 2007–2016.PubMed
152.
Zurück zum Zitat Wang, Z. Q., Wu, D. C., Huang, F. P., & Yang, G. Y. (2004). Inhibition of MEK/ERK 1/2 pathway reduces pro-inflammatory cytokine interleukin-1 expression in focal cerebral ischemia. Brain Research, 996, 55–66.PubMed Wang, Z. Q., Wu, D. C., Huang, F. P., & Yang, G. Y. (2004). Inhibition of MEK/ERK 1/2 pathway reduces pro-inflammatory cytokine interleukin-1 expression in focal cerebral ischemia. Brain Research, 996, 55–66.PubMed
153.
Zurück zum Zitat Barnes, P. J. (2010). Mechanisms and resistance in glucocorticoid control of inflammation. Journal of Steroid Biochemistry and Molecular Biology, 120, 6–85. Barnes, P. J. (2010). Mechanisms and resistance in glucocorticoid control of inflammation. Journal of Steroid Biochemistry and Molecular Biology, 120, 6–85.
154.
Zurück zum Zitat Woo, C. H., Massett, M. P., Shishido, T., Itoh, S., Ding, B., McClain, C., et al. (2006). ERK5 activation inhibits inflammatory responses via peroxisome proliferator-activated receptor delta (PPARdelta) stimulation. Journal of Biological Chemistry, 281, 32164–32174.PubMed Woo, C. H., Massett, M. P., Shishido, T., Itoh, S., Ding, B., McClain, C., et al. (2006). ERK5 activation inhibits inflammatory responses via peroxisome proliferator-activated receptor delta (PPARdelta) stimulation. Journal of Biological Chemistry, 281, 32164–32174.PubMed
155.
Zurück zum Zitat Xia, Z., Dickens, M., Raingeaud, J., Davis, R. J., & Greenberg, M. E. (1995). Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science, 270, 1326–1331.PubMed Xia, Z., Dickens, M., Raingeaud, J., Davis, R. J., & Greenberg, M. E. (1995). Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science, 270, 1326–1331.PubMed
156.
Zurück zum Zitat Kawasaki, H., Morooka, T., Shimohama, S., Kimura, J., Hirano, T., Gotoh, Y., et al. (1997). Activation and involvement of p38 mitogen-activated protein kinase in glutamate-induced apoptosis in rat cerebellar granule cells. Journal of Biological Chemistry, 272, 18518–18521.PubMed Kawasaki, H., Morooka, T., Shimohama, S., Kimura, J., Hirano, T., Gotoh, Y., et al. (1997). Activation and involvement of p38 mitogen-activated protein kinase in glutamate-induced apoptosis in rat cerebellar granule cells. Journal of Biological Chemistry, 272, 18518–18521.PubMed
157.
Zurück zum Zitat Guan, Q. H., Pei, D. S., Zong, Y. Y., Xu, T. L., & Zhang, G. Y. (2006). Neuroprotection against ischemic brain injury by a small peptide inhibitor of c-Jun N-terminal kinase (JNK) via nuclear and non-nuclear pathways. Neuroscience, 139, 609–627.PubMed Guan, Q. H., Pei, D. S., Zong, Y. Y., Xu, T. L., & Zhang, G. Y. (2006). Neuroprotection against ischemic brain injury by a small peptide inhibitor of c-Jun N-terminal kinase (JNK) via nuclear and non-nuclear pathways. Neuroscience, 139, 609–627.PubMed
158.
Zurück zum Zitat Sawe, N., Steinberg, G., & Zhao, H. (2008). Dual roles of the MAPK/ERK1/2 cell signaling pathway after stroke. Journal of Neuroscience Research, 86, 1659–1669.PubMed Sawe, N., Steinberg, G., & Zhao, H. (2008). Dual roles of the MAPK/ERK1/2 cell signaling pathway after stroke. Journal of Neuroscience Research, 86, 1659–1669.PubMed
159.
Zurück zum Zitat Benakis, C., Bonny, C., & Hirt, L. (2010). JNK inhibition and inflammation after cerebral ischemia. Brain, Behavior, and Immunity, 24, 800–811.PubMed Benakis, C., Bonny, C., & Hirt, L. (2010). JNK inhibition and inflammation after cerebral ischemia. Brain, Behavior, and Immunity, 24, 800–811.PubMed
160.
Zurück zum Zitat Kaminska, B. (2005). MAPK signalling pathways as molecular targets for anti-inflammatory therapy—from molecular mechanisms to therapeutic benefits. Biochimica et Biophysica Acta, 1754, 253–262.PubMed Kaminska, B. (2005). MAPK signalling pathways as molecular targets for anti-inflammatory therapy—from molecular mechanisms to therapeutic benefits. Biochimica et Biophysica Acta, 1754, 253–262.PubMed
161.
Zurück zum Zitat Wang, L. W., Tu, Y. F., Huang, C. C., & Ho, C. J. (2012). JNK signaling is the shared pathway linking neuroinflammation, blood–brain barrier disruption, and oligodendroglial apoptosis in the white matter injury of the immature brain. Journal of Neuroinflammation, 17, 175. Wang, L. W., Tu, Y. F., Huang, C. C., & Ho, C. J. (2012). JNK signaling is the shared pathway linking neuroinflammation, blood–brain barrier disruption, and oligodendroglial apoptosis in the white matter injury of the immature brain. Journal of Neuroinflammation, 17, 175.
162.
Zurück zum Zitat Barone, F. C., Irving, E. A., & Ray, A. M. (2001). Inhibition of p38 mitogen-activated protein kinase provides neuroprotection in cerebral focal ischemia. Medicinal Research Reviews, 21, 129–145.PubMed Barone, F. C., Irving, E. A., & Ray, A. M. (2001). Inhibition of p38 mitogen-activated protein kinase provides neuroprotection in cerebral focal ischemia. Medicinal Research Reviews, 21, 129–145.PubMed
163.
Zurück zum Zitat Wang, H., Xu, L., Venkatachalam, S., Trzaskos, J. M., Friedman, S. M., Feuerstein, G. Z., et al. (2001). Differential regulation of IL-1beta and TNF-alpha RNA expression by MEK1 inhibitor after focal cerebral ischemia in mice. Biochemical and Biophysical Research Communications, 286, 869–874.PubMed Wang, H., Xu, L., Venkatachalam, S., Trzaskos, J. M., Friedman, S. M., Feuerstein, G. Z., et al. (2001). Differential regulation of IL-1beta and TNF-alpha RNA expression by MEK1 inhibitor after focal cerebral ischemia in mice. Biochemical and Biophysical Research Communications, 286, 869–874.PubMed
164.
Zurück zum Zitat Maddahi, A., & Edvinsson, L. (2008). Enhanced expressions of microvascular smooth muscle receptors after focal cerebral ischemia occur via the MAPK MEK/ERK pathway. BMC Neuroscience, 9, 85.PubMed Maddahi, A., & Edvinsson, L. (2008). Enhanced expressions of microvascular smooth muscle receptors after focal cerebral ischemia occur via the MAPK MEK/ERK pathway. BMC Neuroscience, 9, 85.PubMed
165.
Zurück zum Zitat Alessandrini, A., Namura, S., Moskowitz, M. A., & Bonventre, J. V. (1999). MEK1 protein kinase inhibition protects against damage resulting from focal cerebral ischemia. Proceedings of the National Academy of Sciences of the United States of America, 96, 12866–12869.PubMed Alessandrini, A., Namura, S., Moskowitz, M. A., & Bonventre, J. V. (1999). MEK1 protein kinase inhibition protects against damage resulting from focal cerebral ischemia. Proceedings of the National Academy of Sciences of the United States of America, 96, 12866–12869.PubMed
166.
Zurück zum Zitat Wang, X., Wang, H., Xu, L., Rozanski, D. J., Sugawara, T., Chan, P. H., et al. (2003). Significant neuroprotection against ischemic brain injury by inhibition of the MEK1 protein kinase in mice: exploration of potential mechanism associated with apoptosis. Journal of Pharmacology and Experimental Therapeutics, 304, 172–178.PubMed Wang, X., Wang, H., Xu, L., Rozanski, D. J., Sugawara, T., Chan, P. H., et al. (2003). Significant neuroprotection against ischemic brain injury by inhibition of the MEK1 protein kinase in mice: exploration of potential mechanism associated with apoptosis. Journal of Pharmacology and Experimental Therapeutics, 304, 172–178.PubMed
167.
Zurück zum Zitat Roux, P. P., & Blenis, J. (2004). ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiology and Molecular Biology Reviews, 68, 320–344.PubMed Roux, P. P., & Blenis, J. (2004). ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiology and Molecular Biology Reviews, 68, 320–344.PubMed
168.
Zurück zum Zitat Han, B. H., & Holtzman, D. M. (2000). BDNF protects the neonatal brain from hypoxic–ischemic injury in vivo via the ERK pathway. Journal of Neuroscience, 20, 5775–5781.PubMed Han, B. H., & Holtzman, D. M. (2000). BDNF protects the neonatal brain from hypoxic–ischemic injury in vivo via the ERK pathway. Journal of Neuroscience, 20, 5775–5781.PubMed
169.
Zurück zum Zitat Wang, R. M., Zhang, Q. G., Li, J., Yang, L. C., Yang, F., & Brann, D. W. (2009). The ERK5-MEF2C transcription factor pathway contributes to anti-apoptotic effect of cerebral ischemia preconditioning in the hippocampal CA1 region of rats. Brain Research, 1255, 32–41.PubMed Wang, R. M., Zhang, Q. G., Li, J., Yang, L. C., Yang, F., & Brann, D. W. (2009). The ERK5-MEF2C transcription factor pathway contributes to anti-apoptotic effect of cerebral ischemia preconditioning in the hippocampal CA1 region of rats. Brain Research, 1255, 32–41.PubMed
170.
Zurück zum Zitat Ridder, D. A., & Schwaninger, M. (2009). NF-kappaB signaling in cerebral ischemia. Neuroscience, 158, 995–1006.PubMed Ridder, D. A., & Schwaninger, M. (2009). NF-kappaB signaling in cerebral ischemia. Neuroscience, 158, 995–1006.PubMed
171.
Zurück zum Zitat Napetschnig, J., & Wu, H. (2013). Molecular basis of NF-κB signaling. Annual Review of Biophysics, 42, 443–68.PubMed Napetschnig, J., & Wu, H. (2013). Molecular basis of NF-κB signaling. Annual Review of Biophysics, 42, 443–68.PubMed
172.
Zurück zum Zitat Khan, M., Sekhon, B., Giri, S., Jatana, M., Gilg, A. G., Ayasolla, K., et al. (2005). S-Nitrosoglutathione reduces inflammation and protects brain against focal cerebral ischemia in a rat model of experimental stroke. Journal of Cerebral Blood Flow and Metabolism, 25, 177–192.PubMed Khan, M., Sekhon, B., Giri, S., Jatana, M., Gilg, A. G., Ayasolla, K., et al. (2005). S-Nitrosoglutathione reduces inflammation and protects brain against focal cerebral ischemia in a rat model of experimental stroke. Journal of Cerebral Blood Flow and Metabolism, 25, 177–192.PubMed
173.
Zurück zum Zitat Hill, W. D., Hess, D. C., Carroll, J. E., Wakade, C. G., Howard, E. F., Chen, Q., et al. (2001). The NF-kappaB inhibitor diethyldithiocarbamate (DDTC) increases brain cell death in a transient middle cerebral artery occlusion model of ischemia. Brain Research Bulletin, 55, 375–86.PubMed Hill, W. D., Hess, D. C., Carroll, J. E., Wakade, C. G., Howard, E. F., Chen, Q., et al. (2001). The NF-kappaB inhibitor diethyldithiocarbamate (DDTC) increases brain cell death in a transient middle cerebral artery occlusion model of ischemia. Brain Research Bulletin, 55, 375–86.PubMed
174.
Zurück zum Zitat Smith, C. J., Emsley, H. C., Vail, A., Georgiou, R. F., Rothwell, N. J., Tyrrell, P. J., et al. (2006). Variability of the systemic acute phase response after ischemic stroke. Journal of Neurological Sciences, 251, 77–81. Smith, C. J., Emsley, H. C., Vail, A., Georgiou, R. F., Rothwell, N. J., Tyrrell, P. J., et al. (2006). Variability of the systemic acute phase response after ischemic stroke. Journal of Neurological Sciences, 251, 77–81.
175.
Zurück zum Zitat Palasik, W., Fiszer, U., Lechowicz, W., Czartoryska, B., Krzesiewicz, M., & Lugowska, A. (2005). Assessment of relations between clinical outcome of ischemic stroke and activity of inflammatory processes in the acute phase based on examination of selected parameters. European Neurology, 53, 188–193.PubMed Palasik, W., Fiszer, U., Lechowicz, W., Czartoryska, B., Krzesiewicz, M., & Lugowska, A. (2005). Assessment of relations between clinical outcome of ischemic stroke and activity of inflammatory processes in the acute phase based on examination of selected parameters. European Neurology, 53, 188–193.PubMed
176.
Zurück zum Zitat McColl, B. W., Rothwell, N. J., & Allan, S. M. (2008). Systemic inflammation alters the kinetics of cerebrovascular tight junction disruption after experimental stroke in mice. Journal of Neuroscience, 28, 9451–9462.PubMed McColl, B. W., Rothwell, N. J., & Allan, S. M. (2008). Systemic inflammation alters the kinetics of cerebrovascular tight junction disruption after experimental stroke in mice. Journal of Neuroscience, 28, 9451–9462.PubMed
177.
Zurück zum Zitat Dandona, P., Aljada, A., & Bandyopadhyay, A. (2004). Inflammation: the link between insulin resistance, obesity and diabetes. Trends in Immunology, 25, 4–7.PubMed Dandona, P., Aljada, A., & Bandyopadhyay, A. (2004). Inflammation: the link between insulin resistance, obesity and diabetes. Trends in Immunology, 25, 4–7.PubMed
178.
Zurück zum Zitat Hansson, G. K., & Libby, P. (2006). The immune response in atherosclerosis: a double-edged sword. Nature Reviews Immunology, 6, 508–519.PubMed Hansson, G. K., & Libby, P. (2006). The immune response in atherosclerosis: a double-edged sword. Nature Reviews Immunology, 6, 508–519.PubMed
179.
Zurück zum Zitat McGill, J. K., Gallagher, L., Carswell, H. V., Irving, E. A., Dominiczak, A. F., & Macrae, I. M. (2005). Impaired functional recovery after stroke in the stroke-prone spontaneously hypertensive rat. Stroke, 36, 135–141.PubMed McGill, J. K., Gallagher, L., Carswell, H. V., Irving, E. A., Dominiczak, A. F., & Macrae, I. M. (2005). Impaired functional recovery after stroke in the stroke-prone spontaneously hypertensive rat. Stroke, 36, 135–141.PubMed
180.
Zurück zum Zitat Tureyen, K., Kapadia, R., Bowen, K. K., Satriotomo, I., Liang, J., Feinstein, D. L., et al. (2007). Peroxisome proliferator-activated receptor-gamma agonists induce neuroprotection following transient focal ischemia in normotensive, normoglycemic as well as hypertensive and type-2 diabetic rodents. Journal of Neurochemistry, 101, 41–56.PubMed Tureyen, K., Kapadia, R., Bowen, K. K., Satriotomo, I., Liang, J., Feinstein, D. L., et al. (2007). Peroxisome proliferator-activated receptor-gamma agonists induce neuroprotection following transient focal ischemia in normotensive, normoglycemic as well as hypertensive and type-2 diabetic rodents. Journal of Neurochemistry, 101, 41–56.PubMed
181.
Zurück zum Zitat Warlow, C., Sudlow, C., Dennis, M., Wardlaw, J., & Sandercock, P. (2003). Stroke. Lancet, 362, 1211–1224.PubMed Warlow, C., Sudlow, C., Dennis, M., Wardlaw, J., & Sandercock, P. (2003). Stroke. Lancet, 362, 1211–1224.PubMed
182.
Zurück zum Zitat Krakauer, J. W. (2007). The complex dynamics of stroke onset and progression. Current Opinion in Neurology, 20, 47–50.PubMed Krakauer, J. W. (2007). The complex dynamics of stroke onset and progression. Current Opinion in Neurology, 20, 47–50.PubMed
183.
Zurück zum Zitat Amantea, D., Nappi, G., Bernardi, G., Bagetta, G., & Corasaniti, M. T. (2009). Post-ischemic brain damage: pathophysiology and role of inflammatory mediators. FEBS Journal, 276, 13–26.PubMed Amantea, D., Nappi, G., Bernardi, G., Bagetta, G., & Corasaniti, M. T. (2009). Post-ischemic brain damage: pathophysiology and role of inflammatory mediators. FEBS Journal, 276, 13–26.PubMed
184.
Zurück zum Zitat Kriz, J. (2006). Inflammation in ischemic brain injury: timing is important. Critical Reviews in Neurobiology, 18, 145–157.PubMed Kriz, J. (2006). Inflammation in ischemic brain injury: timing is important. Critical Reviews in Neurobiology, 18, 145–157.PubMed
185.
Zurück zum Zitat Ruehl, M. L., Orozco, J. A., Stoker, M. B., McDonagh, P. F., Coull, B. M., & Ritter, L. S. (2002). Protective effects of inhibiting both blood and vascular selectins after stroke and reperfusion. Neurological Research, 24, 226–232.PubMed Ruehl, M. L., Orozco, J. A., Stoker, M. B., McDonagh, P. F., Coull, B. M., & Ritter, L. S. (2002). Protective effects of inhibiting both blood and vascular selectins after stroke and reperfusion. Neurological Research, 24, 226–232.PubMed
186.
Zurück zum Zitat Zhang, R. L., Chopp, M., Jiang, N., Tang, W. X., Prostak, J., Manning, A. M., et al. (1995). Anti-intercellular adhesion molecule-1 antibody reduces ischemic cell damage after transient but not permanent middle cerebral artery occlusion in the Wistar rat. Stroke, 26, 1438–1442.PubMed Zhang, R. L., Chopp, M., Jiang, N., Tang, W. X., Prostak, J., Manning, A. M., et al. (1995). Anti-intercellular adhesion molecule-1 antibody reduces ischemic cell damage after transient but not permanent middle cerebral artery occlusion in the Wistar rat. Stroke, 26, 1438–1442.PubMed
187.
Zurück zum Zitat Chopp, M., Zhang, R. L., Chen, H., Li, Y., Jiang, N., & Rusche, J. R. (1994). Postischemic administration of an anti-Mac-1 antibody reduces ischemic cell damage after transient middle cerebral artery occlusion in rats. Stroke, 25, 869–875.PubMed Chopp, M., Zhang, R. L., Chen, H., Li, Y., Jiang, N., & Rusche, J. R. (1994). Postischemic administration of an anti-Mac-1 antibody reduces ischemic cell damage after transient middle cerebral artery occlusion in rats. Stroke, 25, 869–875.PubMed
188.
Zurück zum Zitat Ma, M., Ma, Y., Yi, X., Guo, R., Zhu, W., Fan, X., et al. (2008). Intranasal delivery of transforming growth factor-beta1 in mice after stroke reduces infarct volume and increases neurogenesis in the subventricular zone. BMC Neuroscience, 10, 117. Ma, M., Ma, Y., Yi, X., Guo, R., Zhu, W., Fan, X., et al. (2008). Intranasal delivery of transforming growth factor-beta1 in mice after stroke reduces infarct volume and increases neurogenesis in the subventricular zone. BMC Neuroscience, 10, 117.
189.
Zurück zum Zitat Veldhoen, M., Hocking, R. J., Atkins, C. J., Locksley, R. M., & Stockinger, B. (2006). TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity, 24, 179–189.PubMed Veldhoen, M., Hocking, R. J., Atkins, C. J., Locksley, R. M., & Stockinger, B. (2006). TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity, 24, 179–189.PubMed
190.
Zurück zum Zitat Taylor, A., Verhagen, J., Blaser, K., Akdis, M., & Akdis, C. A. (2006). Mechanisms of immune suppression by interleukin-10 and transforming growth factor-beta: the role of T regulatory cells. Immunology, 117, 433–442.PubMed Taylor, A., Verhagen, J., Blaser, K., Akdis, M., & Akdis, C. A. (2006). Mechanisms of immune suppression by interleukin-10 and transforming growth factor-beta: the role of T regulatory cells. Immunology, 117, 433–442.PubMed
191.
Zurück zum Zitat Emsley, H. C., Smith, C. J., Georgiou, R. F., Vail, A., Hopkins, S. J., Rothwell, N. J., et al. (2005). Acute stroke investigators: a randomised phase II study of interleukin-1 receptor antagonist in acute stroke patients. Journal of Neurology, Neurosurgery, and Psychiatry, 76, 1366–1372.PubMed Emsley, H. C., Smith, C. J., Georgiou, R. F., Vail, A., Hopkins, S. J., Rothwell, N. J., et al. (2005). Acute stroke investigators: a randomised phase II study of interleukin-1 receptor antagonist in acute stroke patients. Journal of Neurology, Neurosurgery, and Psychiatry, 76, 1366–1372.PubMed
192.
Zurück zum Zitat Krams, M., Lees, K. R., Hacke, W., Grieve, A. P., Orgogozo, J. M., & Ford, G. A. (2003). ASTIN Study Investigators. Acute Stroke Therapy by Inhibition of Neutrophils (ASTIN): an adaptive dose–response study of UK-279,276 in acute ischemic stroke. Stroke, 34, 2543–2548.PubMed Krams, M., Lees, K. R., Hacke, W., Grieve, A. P., Orgogozo, J. M., & Ford, G. A. (2003). ASTIN Study Investigators. Acute Stroke Therapy by Inhibition of Neutrophils (ASTIN): an adaptive dose–response study of UK-279,276 in acute ischemic stroke. Stroke, 34, 2543–2548.PubMed
193.
Zurück zum Zitat Becker, K. J. (2002). Anti-leukocyte antibodies: LeukArrest (Hu23F2G) and Enlimomab (R6.5) in acute stroke. Current Medical Research and Opinion, 18, s18–22.PubMed Becker, K. J. (2002). Anti-leukocyte antibodies: LeukArrest (Hu23F2G) and Enlimomab (R6.5) in acute stroke. Current Medical Research and Opinion, 18, s18–22.PubMed
194.
Zurück zum Zitat Danton, G. H., & Dietrich, W. D. (2003). Inflammatory mechanisms after ischemia and stroke. Neuropathology and Experimental Neurology, 62, 127–136. Danton, G. H., & Dietrich, W. D. (2003). Inflammatory mechanisms after ischemia and stroke. Neuropathology and Experimental Neurology, 62, 127–136.
195.
Zurück zum Zitat Minnerup, J., Sutherland, B. A., Buchan, A. M., & Kleinschnitz, C. (2012). Neuroprotection for stroke: current status and future perspectives. International Journal of Molecular Sciences, 13, 11753–11772.PubMed Minnerup, J., Sutherland, B. A., Buchan, A. M., & Kleinschnitz, C. (2012). Neuroprotection for stroke: current status and future perspectives. International Journal of Molecular Sciences, 13, 11753–11772.PubMed
196.
Zurück zum Zitat Mergenthaler, P., & Meisel, A. (2012). Do stroke models model stroke? Disease Models & Mechanisms, 5, 718–725. Mergenthaler, P., & Meisel, A. (2012). Do stroke models model stroke? Disease Models & Mechanisms, 5, 718–725.
197.
Zurück zum Zitat Zaremba, J., & Losy, J. (2001). Early TNF-α levels correlate with ischemic stroke severity. Acta Neurologica Scandinavica, 104, 288–295.PubMed Zaremba, J., & Losy, J. (2001). Early TNF-α levels correlate with ischemic stroke severity. Acta Neurologica Scandinavica, 104, 288–295.PubMed
Metadaten
Titel
Role of Inflammation and Its Mediators in Acute Ischemic Stroke
verfasst von
Rong Jin
Lin Liu
Shihao Zhang
Anil Nanda
Guohong Li
Publikationsdatum
01.10.2013
Verlag
Springer US
Erschienen in
Journal of Cardiovascular Translational Research / Ausgabe 5/2013
Print ISSN: 1937-5387
Elektronische ISSN: 1937-5395
DOI
https://doi.org/10.1007/s12265-013-9508-6

Weitere Artikel der Ausgabe 5/2013

Journal of Cardiovascular Translational Research 5/2013 Zur Ausgabe

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.