Skip to main content
Erschienen in: Journal of Cardiovascular Translational Research 2/2017

09.03.2017 | Original Article

Translational Challenges in Cardiovascular Tissue Engineering

verfasst von: Maximilian Y. Emmert, Emanuela S. Fioretta, Simon P. Hoerstrup

Erschienen in: Journal of Cardiovascular Translational Research | Ausgabe 2/2017

Einloggen, um Zugang zu erhalten

Abstract

Valvular heart disease and congenital heart defects represent a major cause of death around the globe. Although current therapy strategies have rapidly evolved over the decades and are nowadays safe, effective, and applicable to many affected patients, the currently used artificial prostheses are still suboptimal. They do not promote regeneration, physiological remodeling, or growth (particularly important aspects for children) as their native counterparts. This results in the continuous degeneration and subsequent failure of these prostheses which is often associated with an increased morbidity and mortality as well as the need for multiple re-interventions. To overcome this problem, the concept of tissue engineering (TE) has been repeatedly suggested as a potential technology to enable native-like cardiovascular replacements with regenerative and growth capacities, suitable for young adults and children. However, despite promising data from pre-clinical and first clinical pilot trials, the translation and clinical relevance of such TE technologies is still very limited. The reasons that currently limit broad clinical adoption are multifaceted and comprise of scientific, clinical, logistical, technical, and regulatory challenges which need to be overcome. The aim of this review is to provide an overview about the translational problems and challenges in current TE approaches. It further suggests directions and potential solutions on how these issues may be efficiently addressed in the future to accelerate clinical translation. In addition, a particular focus is put on the current regulatory guidelines and the associated challenges for these promising TE technologies.
Literatur
2.
Zurück zum Zitat Nkomo, V. T., Gardin, J. M., Skelton, T. N., Gottdiener, J. S., Scott, C. G., & Enriquez-Sarano, M. Burden of valvular heart diseases: a population-based study. The Lancet, 368(9540), 1005–1011. doi:10.1016/S0140-6736(06)69208-8. Nkomo, V. T., Gardin, J. M., Skelton, T. N., Gottdiener, J. S., Scott, C. G., & Enriquez-Sarano, M. Burden of valvular heart diseases: a population-based study. The Lancet, 368(9540), 1005–1011. doi:10.​1016/​S0140-6736(06)69208-8.
4.
Zurück zum Zitat Cribier, A., Eltchaninoff, H., Bash, A., Borenstein, N., Tron, C., Bauer, F., et al. (2002). Percutaneous transcatheter implantation of an aortic valve prosthesis for calcific aortic stenosis: first human case description. Circulation, 106(24), 3006–3008.CrossRefPubMed Cribier, A., Eltchaninoff, H., Bash, A., Borenstein, N., Tron, C., Bauer, F., et al. (2002). Percutaneous transcatheter implantation of an aortic valve prosthesis for calcific aortic stenosis: first human case description. Circulation, 106(24), 3006–3008.CrossRefPubMed
5.
Zurück zum Zitat Fioretta, E. S., Dijkman, P. E., Emmert, M. Y., & Hoerstrup, S. P. (2016). The future of heart valve replacement: recent developments and translational challenges for heart valve tissue engineering. Journal of Tissue Engineering and Regenerative Medicine. doi:10.1002/term.2326.PubMed Fioretta, E. S., Dijkman, P. E., Emmert, M. Y., & Hoerstrup, S. P. (2016). The future of heart valve replacement: recent developments and translational challenges for heart valve tissue engineering. Journal of Tissue Engineering and Regenerative Medicine. doi:10.​1002/​term.​2326.PubMed
7.
Zurück zum Zitat Alexi-Meskishvilia, V., Ovroutskib, S., Ewertb, P., DaÈhnertb, I., Bergerb, F., Langeb, P. E., et al. (2000). Optimal conduit size for extracardiac Fontan operation. European Journal of Cardio-Thoracic Surgery, 18(690–695). Alexi-Meskishvilia, V., Ovroutskib, S., Ewertb, P., DaÈhnertb, I., Bergerb, F., Langeb, P. E., et al. (2000). Optimal conduit size for extracardiac Fontan operation. European Journal of Cardio-Thoracic Surgery, 18(690–695).
10.
11.
Zurück zum Zitat Dohmen, P. M., Lembcke, A., Hotz, H., Kivelitz, D., & Konertz, W. F. (2002). Ross operation with a tissue-engineered heart valve. The Annals of Thoracic Surgery, 74(5), 1438–1442.CrossRefPubMed Dohmen, P. M., Lembcke, A., Hotz, H., Kivelitz, D., & Konertz, W. F. (2002). Ross operation with a tissue-engineered heart valve. The Annals of Thoracic Surgery, 74(5), 1438–1442.CrossRefPubMed
13.
Zurück zum Zitat Cebotari, S., Lichtenberg, A., Tudorache, I., Hilfiker, A., Mertsching, H., Leyh, R., et al. (2006). Clinical application of tissue engineered human heart valves using autologous progenitor cells. Circulation, 114(1 Suppl), I132–I137. doi:10.1161/CIRCULATIONAHA.105.001065.PubMed Cebotari, S., Lichtenberg, A., Tudorache, I., Hilfiker, A., Mertsching, H., Leyh, R., et al. (2006). Clinical application of tissue engineered human heart valves using autologous progenitor cells. Circulation, 114(1 Suppl), I132–I137. doi:10.​1161/​CIRCULATIONAHA.​105.​001065.PubMed
14.
Zurück zum Zitat Dohmen, P. M., Lembcke, A., Holinski, S., Kivelitz, D., Braun, J. P., Pruss, A., et al. (2007). Mid-term clinical results using a tissue-engineered pulmonary valve to reconstruct the right ventricular outflow tract during the Ross procedure. The Annals of Thoracic Surgery, 84(3), 729–736. doi:10.1016/j.athoracsur.2007.04.072.CrossRefPubMed Dohmen, P. M., Lembcke, A., Holinski, S., Kivelitz, D., Braun, J. P., Pruss, A., et al. (2007). Mid-term clinical results using a tissue-engineered pulmonary valve to reconstruct the right ventricular outflow tract during the Ross procedure. The Annals of Thoracic Surgery, 84(3), 729–736. doi:10.​1016/​j.​athoracsur.​2007.​04.​072.CrossRefPubMed
15.
Zurück zum Zitat Naito, Y., Imai, Y., Shin’oka, T., Kashiwagi, J., Aoki, M., Watanabe, M., et al. (2003). Successful clinical application of tissue-engineered graft for extracardiac Fontan operation. The Journal of Thoracic and Cardiovascular Surgery, 125(2), 419–420. doi:10.1067/mtc.2003.134.CrossRefPubMed Naito, Y., Imai, Y., Shin’oka, T., Kashiwagi, J., Aoki, M., Watanabe, M., et al. (2003). Successful clinical application of tissue-engineered graft for extracardiac Fontan operation. The Journal of Thoracic and Cardiovascular Surgery, 125(2), 419–420. doi:10.​1067/​mtc.​2003.​134.CrossRefPubMed
16.
Zurück zum Zitat Shinoka, T., & Breuer, C. (2008). Tissue-engineered blood vessels in pediatric cardiac surgery. Yale Journal of Biology and Medicine, 81, 161–166.PubMedPubMedCentral Shinoka, T., & Breuer, C. (2008). Tissue-engineered blood vessels in pediatric cardiac surgery. Yale Journal of Biology and Medicine, 81, 161–166.PubMedPubMedCentral
18.
Zurück zum Zitat Fioretta, E. S., Fledderus, J. O., Burakowska-Meise, E. A., Baaijens, F. P., Verhaar, M. C., & Bouten, C. V. (2012). Polymer-based scaffold designs for in situ vascular tissue engineering: controlling recruitment and differentiation behavior of endothelial colony forming cells. Macromolecular Bioscience, 12(5), 577–590. doi:10.1002/mabi.201100315.CrossRefPubMed Fioretta, E. S., Fledderus, J. O., Burakowska-Meise, E. A., Baaijens, F. P., Verhaar, M. C., & Bouten, C. V. (2012). Polymer-based scaffold designs for in situ vascular tissue engineering: controlling recruitment and differentiation behavior of endothelial colony forming cells. Macromolecular Bioscience, 12(5), 577–590. doi:10.​1002/​mabi.​201100315.CrossRefPubMed
20.
Zurück zum Zitat Cheung, D. Y., Duan, B., & Butcher, J. T. (2015). Current progress in tissue engineering of heart valves: multiscale problems, multiscale solutions. Expert opinion on biological therapy. [early online]. Cheung, D. Y., Duan, B., & Butcher, J. T. (2015). Current progress in tissue engineering of heart valves: multiscale problems, multiscale solutions. Expert opinion on biological therapy. [early online].
23.
Zurück zum Zitat Patterson, J. T., Gilliland, T., Maxfield, M. W., Church, S., Naito, Y., Shinoka, T., et al. (2012). Tissue-engineered vascular grafts for use in the treatment of congenital heart disease: from the bench to the clinic and back again. Regenerative Medicine, 7(3), 409–419. doi:10.2217/rme.12.12.CrossRefPubMedPubMedCentral Patterson, J. T., Gilliland, T., Maxfield, M. W., Church, S., Naito, Y., Shinoka, T., et al. (2012). Tissue-engineered vascular grafts for use in the treatment of congenital heart disease: from the bench to the clinic and back again. Regenerative Medicine, 7(3), 409–419. doi:10.​2217/​rme.​12.​12.CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Tudorache, I., Horke, A., Cebotari, S., Sarikouch, S., Boethig, D., Breymann, T., et al. (2016). Decellularized aortic homografts for aortic valve and aorta ascendens replacement. European Journal of Cardio-Thoracic Surgery, 50(1), 89–97. doi:10.1093/ejcts/ezw013.CrossRefPubMedPubMedCentral Tudorache, I., Horke, A., Cebotari, S., Sarikouch, S., Boethig, D., Breymann, T., et al. (2016). Decellularized aortic homografts for aortic valve and aorta ascendens replacement. European Journal of Cardio-Thoracic Surgery, 50(1), 89–97. doi:10.​1093/​ejcts/​ezw013.CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Sarikouch, S., Horke, A., Tudorache, I., Beerbaum, P., Westhoff-Bleck, M., Boethig, D., et al. (2016). Decellularized fresh homografts for pulmonary valve replacement: a decade of clinical experience. European Journal of Cardio-Thoracic Surgery. doi:10.1093/ejcts/ezw050. Sarikouch, S., Horke, A., Tudorache, I., Beerbaum, P., Westhoff-Bleck, M., Boethig, D., et al. (2016). Decellularized fresh homografts for pulmonary valve replacement: a decade of clinical experience. European Journal of Cardio-Thoracic Surgery. doi:10.​1093/​ejcts/​ezw050.
27.
Zurück zum Zitat Neumann, A., Cebotari, S., Tudorache, I., Haverich, A., & Sarikouch, S. (2013). Heart valve engineering: decellularized allograft matrices in clinical practice. Biomed Tech (Berl), 58(5), 453–456. doi:10.1515/bmt-2012-0115.CrossRef Neumann, A., Cebotari, S., Tudorache, I., Haverich, A., & Sarikouch, S. (2013). Heart valve engineering: decellularized allograft matrices in clinical practice. Biomed Tech (Berl), 58(5), 453–456. doi:10.​1515/​bmt-2012-0115.CrossRef
28.
Zurück zum Zitat Cebotari, S., Tudorache, I., Ciubotaru, A., Boethig, D., Sarikouch, S., Goerler, A., et al. (2011). Use of fresh decellularized allografts for pulmonary valve replacement may reduce the reoperation rate in children and young adults: early report. Circulation, 124(11 Suppl), S115–S123. doi:10.1161/CIRCULATIONAHA.110.012161.CrossRefPubMed Cebotari, S., Tudorache, I., Ciubotaru, A., Boethig, D., Sarikouch, S., Goerler, A., et al. (2011). Use of fresh decellularized allografts for pulmonary valve replacement may reduce the reoperation rate in children and young adults: early report. Circulation, 124(11 Suppl), S115–S123. doi:10.​1161/​CIRCULATIONAHA.​110.​012161.CrossRefPubMed
29.
30.
Zurück zum Zitat Hoerstrup, S. P., Sodian, R., Daebritz, S., Wang, J., Bacha, E. A., Martin, D. P., et al. (2000). Functional living trileaflet heart valves grown in vitro. Circulation, 102(19 Suppl 3), III44–III49.PubMed Hoerstrup, S. P., Sodian, R., Daebritz, S., Wang, J., Bacha, E. A., Martin, D. P., et al. (2000). Functional living trileaflet heart valves grown in vitro. Circulation, 102(19 Suppl 3), III44–III49.PubMed
31.
Zurück zum Zitat Hoerstrup, S. P., Cummings Mrcs, I., Lachat, M., Schoen, F. J., Jenni, R., Leschka, S., et al. (2006). Functional growth in tissue-engineered living, vascular grafts: follow-up at 100 weeks in a large animal model. Circulation, 114(1 Suppl), I159–I166. doi:10.1161/CIRCULATIONAHA.105.001172.PubMed Hoerstrup, S. P., Cummings Mrcs, I., Lachat, M., Schoen, F. J., Jenni, R., Leschka, S., et al. (2006). Functional growth in tissue-engineered living, vascular grafts: follow-up at 100 weeks in a large animal model. Circulation, 114(1 Suppl), I159–I166. doi:10.​1161/​CIRCULATIONAHA.​105.​001172.PubMed
32.
Zurück zum Zitat Shinoka, T., Ma, P. X., Shum-Tim, D., Breuer, C. K., Cusick, R. A., Zund, G., et al. (1996). Tissue-engineered heart valves. Autologous valve leaflet replacement study in a lamb model. Circulation, 94(9), II164–II168.PubMed Shinoka, T., Ma, P. X., Shum-Tim, D., Breuer, C. K., Cusick, R. A., Zund, G., et al. (1996). Tissue-engineered heart valves. Autologous valve leaflet replacement study in a lamb model. Circulation, 94(9), II164–II168.PubMed
33.
Zurück zum Zitat Weber, B., Scherman, J., Emmert, M. Y., Gruenenfelder, J., Verbeek, R., Bracher, M., et al. (2011). Injectable living marrow stromal cell-based autologous tissue engineered heart valves: first experiences with a one-step intervention in primates. European Heart Journal, 32(22), 2830–2840. doi:10.1093/eurheartj/ehr059.CrossRefPubMed Weber, B., Scherman, J., Emmert, M. Y., Gruenenfelder, J., Verbeek, R., Bracher, M., et al. (2011). Injectable living marrow stromal cell-based autologous tissue engineered heart valves: first experiences with a one-step intervention in primates. European Heart Journal, 32(22), 2830–2840. doi:10.​1093/​eurheartj/​ehr059.CrossRefPubMed
34.
Zurück zum Zitat Driessen-Mol, A., Emmert, M. Y., Dijkman, P. E., Frese, L., Sanders, B., Weber, B., et al. (2014). Transcatheter implantation of homologous “off-the-shelf” tissue-engineered heart valves with self-repair capacity: long-term functionality and rapid in vivo remodeling in sheep. Journal of the American College of Cardiology, 63(13), 1320–1329. doi:10.1016/j.jacc.2013.09.082.CrossRefPubMed Driessen-Mol, A., Emmert, M. Y., Dijkman, P. E., Frese, L., Sanders, B., Weber, B., et al. (2014). Transcatheter implantation of homologous “off-the-shelf” tissue-engineered heart valves with self-repair capacity: long-term functionality and rapid in vivo remodeling in sheep. Journal of the American College of Cardiology, 63(13), 1320–1329. doi:10.​1016/​j.​jacc.​2013.​09.​082.CrossRefPubMed
37.
Zurück zum Zitat Sievers, H.-H., Stierle, U., Schmidtke, C., & Bechtel, M. (2003). Decellularized pulmonary homograft (SynerGraft) for reconstruction of the right ventricular outflow tract: first clinical experience. [journal article]. Zeitschrift für Kardiologie, 92(1), 53–59. doi:10.1007/s00392-003-0883-x.CrossRefPubMed Sievers, H.-H., Stierle, U., Schmidtke, C., & Bechtel, M. (2003). Decellularized pulmonary homograft (SynerGraft) for reconstruction of the right ventricular outflow tract: first clinical experience. [journal article]. Zeitschrift für Kardiologie, 92(1), 53–59. doi:10.​1007/​s00392-003-0883-x.CrossRefPubMed
38.
Zurück zum Zitat Hibino, N., McConnell, P., Shinoka, T., Malik, M., & Galantowicz, M. (2015). Preliminary experience in the use of an extracellular matrix (CorMatrix) as a tube graft: word of caution. Seminars in thoracic and cardiovascular surgery, doi:10.1053/j.semtcvs.2015.08.008. Hibino, N., McConnell, P., Shinoka, T., Malik, M., & Galantowicz, M. (2015). Preliminary experience in the use of an extracellular matrix (CorMatrix) as a tube graft: word of caution. Seminars in thoracic and cardiovascular surgery, doi:10.​1053/​j.​semtcvs.​2015.​08.​008.
40.
Zurück zum Zitat Salmikangas, P., Schuessler-Lenz, M., Ruiz, S., Celis, P., Reischl, I., Menezes-Ferreira, M., et al. (2015). Marketing regulatory oversight of advanced therapy medicinal products (ATMPs) in Europe: the EMA/CAT perspective. Advances in Experimental Medicine and Biology, 871, 103–130. doi:10.1007/978-3-319-18618-4_6.CrossRefPubMed Salmikangas, P., Schuessler-Lenz, M., Ruiz, S., Celis, P., Reischl, I., Menezes-Ferreira, M., et al. (2015). Marketing regulatory oversight of advanced therapy medicinal products (ATMPs) in Europe: the EMA/CAT perspective. Advances in Experimental Medicine and Biology, 871, 103–130. doi:10.​1007/​978-3-319-18618-4_​6.CrossRefPubMed
41.
Zurück zum Zitat Yano, K., Watanabe, N., Tsuyuki, K., Ikawa, T., Kasanuki, H., & Yamato, M. (2015). Regulatory approval for autologous human cells and tissue products in the United States, the European Union, and Japan. Regenerative Therapy, 1, 45–56. doi:10.1016/j.reth.2014.10.001.CrossRef Yano, K., Watanabe, N., Tsuyuki, K., Ikawa, T., Kasanuki, H., & Yamato, M. (2015). Regulatory approval for autologous human cells and tissue products in the United States, the European Union, and Japan. Regenerative Therapy, 1, 45–56. doi:10.​1016/​j.​reth.​2014.​10.​001.CrossRef
42.
Zurück zum Zitat Sanzenbacher, R., Dwenger, A., Schuessler-Lenz, M., Cichutek, K., & Flory, E. (2007). European regulation tackles tissue engineering. Nat Biotech, 25(10), 1089–1091.CrossRef Sanzenbacher, R., Dwenger, A., Schuessler-Lenz, M., Cichutek, K., & Flory, E. (2007). European regulation tackles tissue engineering. Nat Biotech, 25(10), 1089–1091.CrossRef
43.
Zurück zum Zitat Commission Directive 2009/120/EC of 14 September 2009 amending Directive 2001/83/EC of the European Parliament and of the Council on the Community code relating to medicinal products for human use as regards advanced therapy medicinal products (2009). Official Journal of the European Union, 242, 3). Commission Directive 2009/120/EC of 14 September 2009 amending Directive 2001/83/EC of the European Parliament and of the Council on the Community code relating to medicinal products for human use as regards advanced therapy medicinal products (2009). Official Journal of the European Union, 242, 3).
44.
Zurück zum Zitat Lee, M. H., Arcidiacono, J. A., Bilek, A. M., Wille, J. J., Hamill, C. A., Wonnacott, K. M., et al. (2010). Considerations for tissue-engineered and regenerative medicine product development prior to clinical trials in the United States. Tissue Engineering. Part B, Reviews, 16(1), 41–54.CrossRefPubMed Lee, M. H., Arcidiacono, J. A., Bilek, A. M., Wille, J. J., Hamill, C. A., Wonnacott, K. M., et al. (2010). Considerations for tissue-engineered and regenerative medicine product development prior to clinical trials in the United States. Tissue Engineering. Part B, Reviews, 16(1), 41–54.CrossRefPubMed
47.
Zurück zum Zitat Lichtenberg, A., Tudorache, I., Cebotari, S., Suprunov, M., Tudorache, G., Goerler, H., et al. (2006). Preclinical testing of tissue-engineered heart valves re-endothelialized under simulated physiological conditions. Circulation, 114(1 Suppl), I559–I565. doi:10.1161/CIRCULATIONAHA.105.001206.PubMed Lichtenberg, A., Tudorache, I., Cebotari, S., Suprunov, M., Tudorache, G., Goerler, H., et al. (2006). Preclinical testing of tissue-engineered heart valves re-endothelialized under simulated physiological conditions. Circulation, 114(1 Suppl), I559–I565. doi:10.​1161/​CIRCULATIONAHA.​105.​001206.PubMed
51.
52.
Zurück zum Zitat Simon, P., Kasimir, M. T., Seebacher, G., Weigel, G., Allrich, R., Salzer-Muhar, U., et al. (2003). Early failure of the tissue engineered porcine heart valve SYNERGRAFT in pediatric patients. European Journal of Cardio-Thoracic Surgery, 23(6), 1002–1006.CrossRefPubMed Simon, P., Kasimir, M. T., Seebacher, G., Weigel, G., Allrich, R., Salzer-Muhar, U., et al. (2003). Early failure of the tissue engineered porcine heart valve SYNERGRAFT in pediatric patients. European Journal of Cardio-Thoracic Surgery, 23(6), 1002–1006.CrossRefPubMed
53.
Zurück zum Zitat Voges, I., Brasen, J. H., Entenmann, A., Scheid, M., Scheewe, J., Fischer, G., et al. (2013). Adverse results of a decellularized tissue-engineered pulmonary valve in humans assessed with magnetic resonance imaging. European Journal of Cardio-Thoracic Surgery, 44(4), e272–e279. doi:10.1093/ejcts/ezt328.CrossRefPubMed Voges, I., Brasen, J. H., Entenmann, A., Scheid, M., Scheewe, J., Fischer, G., et al. (2013). Adverse results of a decellularized tissue-engineered pulmonary valve in humans assessed with magnetic resonance imaging. European Journal of Cardio-Thoracic Surgery, 44(4), e272–e279. doi:10.​1093/​ejcts/​ezt328.CrossRefPubMed
54.
Zurück zum Zitat Ruffer, A., Purbojo, A., Cicha, I., Glockler, M., Potapov, S., Dittrich, S., et al. (2010). Early failure of xenogenous de-cellularised pulmonary valve conduits—a word of caution! European Journal of Cardio-Thoracic Surgery, 38(1), 78–85. doi:10.1016/j.ejcts.2010.01.044.CrossRefPubMed Ruffer, A., Purbojo, A., Cicha, I., Glockler, M., Potapov, S., Dittrich, S., et al. (2010). Early failure of xenogenous de-cellularised pulmonary valve conduits—a word of caution! European Journal of Cardio-Thoracic Surgery, 38(1), 78–85. doi:10.​1016/​j.​ejcts.​2010.​01.​044.CrossRefPubMed
55.
Zurück zum Zitat Woo, J. S., Fishbein, M. C., & Reemtsen, B. (2015). Histologic examination of decellularized porcine intestinal submucosa extracellular matrix (CorMatrix) in pediatric congenital heart surgery. Cardiovascular Pathology. doi:10.1016/j.carpath.2015.08.007.PubMed Woo, J. S., Fishbein, M. C., & Reemtsen, B. (2015). Histologic examination of decellularized porcine intestinal submucosa extracellular matrix (CorMatrix) in pediatric congenital heart surgery. Cardiovascular Pathology. doi:10.​1016/​j.​carpath.​2015.​08.​007.PubMed
56.
Zurück zum Zitat Watanabe, M., Shin’oka, T., Tohyama, S., Hibino, N., Konuma, T., Matsumura, G., et al. (2001). Tissue-engineered vascular autograft: inferior vena cava replacement in a dog model. Tissue Engineering, 7(4), 429–439.CrossRefPubMed Watanabe, M., Shin’oka, T., Tohyama, S., Hibino, N., Konuma, T., Matsumura, G., et al. (2001). Tissue-engineered vascular autograft: inferior vena cava replacement in a dog model. Tissue Engineering, 7(4), 429–439.CrossRefPubMed
57.
Zurück zum Zitat Hoerstrup, S. P., Kadner, A., Melnitchouk, S., Trojan, A., Eid, K., Tracy, J., et al. (2002). Tissue engineering of functional trileaflet heart valves from human marrow stromal cells. Circulation, 106(suppl I), I-143–I-150. doi:10.1161/01.cir.0000032872.55215.05. Hoerstrup, S. P., Kadner, A., Melnitchouk, S., Trojan, A., Eid, K., Tracy, J., et al. (2002). Tissue engineering of functional trileaflet heart valves from human marrow stromal cells. Circulation, 106(suppl I), I-143–I-150. doi:10.​1161/​01.​cir.​0000032872.​55215.​05.
58.
Zurück zum Zitat Frese, L., Sanders, B., Beer, G. M., Weber, B., Driessen-Mol, A., Baaijens, F. P. T., et al. (2015). Adipose derived tissue engineered heart valve. Journal of Tissue Science & Engineering, 06(03). doi:10.4172/2157-7552.1000156. Frese, L., Sanders, B., Beer, G. M., Weber, B., Driessen-Mol, A., Baaijens, F. P. T., et al. (2015). Adipose derived tissue engineered heart valve. Journal of Tissue Science & Engineering, 06(03). doi:10.​4172/​2157-7552.​1000156.
59.
Zurück zum Zitat Sodian, R., Schaefermeier, P., Begg-Zips, S., Kuebler, W. M., Shakibaei, M., & Daebritz, S. (2010). Use of human umbilical cord blood-derived progenitor cells for tissue-engineered heart valves. Ann.Thorac.Surg., 89(3), 819–828.CrossRefPubMed Sodian, R., Schaefermeier, P., Begg-Zips, S., Kuebler, W. M., Shakibaei, M., & Daebritz, S. (2010). Use of human umbilical cord blood-derived progenitor cells for tissue-engineered heart valves. Ann.Thorac.Surg., 89(3), 819–828.CrossRefPubMed
60.
Zurück zum Zitat Bayon, Y., Vertes, A. A., Ronfard, V., Egloff, M., Snykers, S., Salinas, G. F., et al. (2014). Translating cell-based regenerative medicines from research to successful products: challenges and solutions. Tissue Engineering. Part B, Reviews, 20(4), 246–256. doi:10.1089/ten.TEB.2013.0727.CrossRefPubMed Bayon, Y., Vertes, A. A., Ronfard, V., Egloff, M., Snykers, S., Salinas, G. F., et al. (2014). Translating cell-based regenerative medicines from research to successful products: challenges and solutions. Tissue Engineering. Part B, Reviews, 20(4), 246–256. doi:10.​1089/​ten.​TEB.​2013.​0727.CrossRefPubMed
61.
Zurück zum Zitat Fioretta, E. S., Simonet, M., Smits, A. I., Baaijens, F. P., & Bouten, C. V. (2014). Differential response of endothelial and endothelial colony forming cells on electrospun scaffolds with distinct microfiber diameters. Biomacromolecules, 15(3), 821–829. doi:10.1021/bm4016418.CrossRefPubMed Fioretta, E. S., Simonet, M., Smits, A. I., Baaijens, F. P., & Bouten, C. V. (2014). Differential response of endothelial and endothelial colony forming cells on electrospun scaffolds with distinct microfiber diameters. Biomacromolecules, 15(3), 821–829. doi:10.​1021/​bm4016418.CrossRefPubMed
62.
Zurück zum Zitat Nisbet, D. R., Forsythe, J. S., Shen, W., Finkelstein, D. I., & Horne, M. K. (2009). Review paper: a review of the cellular response on electrospun nanofibers for tissue engineering. Journal of Biomaterials Applications, 24(1), 7–29.CrossRefPubMed Nisbet, D. R., Forsythe, J. S., Shen, W., Finkelstein, D. I., & Horne, M. K. (2009). Review paper: a review of the cellular response on electrospun nanofibers for tissue engineering. Journal of Biomaterials Applications, 24(1), 7–29.CrossRefPubMed
63.
Zurück zum Zitat Jana, S., Tranquillo, R. T., & Lerman, A. (2016). Cells for tissue engineering of cardiac valves. Journal of Tissue Engineering and Regenerative Medicine, 10(10), 804–824. doi:10.1002/term.2010.CrossRefPubMed Jana, S., Tranquillo, R. T., & Lerman, A. (2016). Cells for tissue engineering of cardiac valves. Journal of Tissue Engineering and Regenerative Medicine, 10(10), 804–824. doi:10.​1002/​term.​2010.CrossRefPubMed
64.
Zurück zum Zitat da Costa, F. D., Dohmen, P. M., Duarte, D., von Glenn, C., Lopes, S. V., Filho, H. H., et al. (2005). Immunological and echocardiographic evaluation of decellularized versus cryopreserved allografts during the Ross operation. European Journal of Cardio-Thoracic Surgery, 27(4), 572–578. doi:10.1016/j.ejcts.2004.12.057.CrossRefPubMed da Costa, F. D., Dohmen, P. M., Duarte, D., von Glenn, C., Lopes, S. V., Filho, H. H., et al. (2005). Immunological and echocardiographic evaluation of decellularized versus cryopreserved allografts during the Ross operation. European Journal of Cardio-Thoracic Surgery, 27(4), 572–578. doi:10.​1016/​j.​ejcts.​2004.​12.​057.CrossRefPubMed
66.
67.
Zurück zum Zitat Melchiorri, A. J., Hibino, N., Yi, T., Lee, Y. U., Sugiura, T., Tara, S., et al. (2015). Contrasting biofunctionalization strategies for the enhanced endothelialization of biodegradable vascular grafts. Biomacromolecules, 16(2), 437–446. doi:10.1021/bm501853s.CrossRefPubMed Melchiorri, A. J., Hibino, N., Yi, T., Lee, Y. U., Sugiura, T., Tara, S., et al. (2015). Contrasting biofunctionalization strategies for the enhanced endothelialization of biodegradable vascular grafts. Biomacromolecules, 16(2), 437–446. doi:10.​1021/​bm501853s.CrossRefPubMed
68.
Zurück zum Zitat Tara, S., Kurobe, H., Maxfield, M. W., Rocco, K. A., Yi, T., Naito, Y., et al. (2015). Evaluation of remodeling process in small-diameter cell-free tissue-engineered arterial graft. Journal of Vascular Surgery, 62(3), 734–743. doi:10.1016/j.jvs.2014.03.011.CrossRefPubMed Tara, S., Kurobe, H., Maxfield, M. W., Rocco, K. A., Yi, T., Naito, Y., et al. (2015). Evaluation of remodeling process in small-diameter cell-free tissue-engineered arterial graft. Journal of Vascular Surgery, 62(3), 734–743. doi:10.​1016/​j.​jvs.​2014.​03.​011.CrossRefPubMed
69.
Zurück zum Zitat Talacua, H., Smits, A. I., Muylaert, D. E., van Rijswijk, J. W., Vink, A., Verhaar, M. C., et al. (2015). In situ tissue engineering of functional small-diameter blood vessels by host circulating cells only. Tissue Engineering. Part A, 21(19–20), 2583–2594. doi:10.1089/ten.TEA.2015.0066.CrossRefPubMed Talacua, H., Smits, A. I., Muylaert, D. E., van Rijswijk, J. W., Vink, A., Verhaar, M. C., et al. (2015). In situ tissue engineering of functional small-diameter blood vessels by host circulating cells only. Tissue Engineering. Part A, 21(19–20), 2583–2594. doi:10.​1089/​ten.​TEA.​2015.​0066.CrossRefPubMed
71.
Zurück zum Zitat Smyth, J. V., Welch, M., Carr, H. M., Dodd, P. D., Eisenberg, P. R., & Walker, M. G. (1995). Fibrinolysis profiles and platelet activation after endothelial cell seeding of prosthetic vascular grafts. Annals of Vascular Surgery, 9(6), 542–546. doi:10.1007/BF02018827.CrossRefPubMed Smyth, J. V., Welch, M., Carr, H. M., Dodd, P. D., Eisenberg, P. R., & Walker, M. G. (1995). Fibrinolysis profiles and platelet activation after endothelial cell seeding of prosthetic vascular grafts. Annals of Vascular Surgery, 9(6), 542–546. doi:10.​1007/​BF02018827.CrossRefPubMed
72.
Zurück zum Zitat Laube, H. R., Duwe, J., Rutsch, W., & Konertz, W. (2000). Clinical experience with autologous endothelial cell-seeded polytetrafluoroethylene coronary artery bypass grafts. The Journal of Thoracic and Cardiovascular Surgery, 120(1), 134–141. doi:10.1067/mtc.2000.106327.CrossRefPubMed Laube, H. R., Duwe, J., Rutsch, W., & Konertz, W. (2000). Clinical experience with autologous endothelial cell-seeded polytetrafluoroethylene coronary artery bypass grafts. The Journal of Thoracic and Cardiovascular Surgery, 120(1), 134–141. doi:10.​1067/​mtc.​2000.​106327.CrossRefPubMed
73.
Zurück zum Zitat Zilla, P., Fasol, R., Deutsch, M., Fischlein, T., Minar, E., Hammerle, A., et al. (1987). Endothelial cell seeding of polytetrafluoroethylene vascular grafts in humans: a preliminary report. Journal of Vascular Surgery, 6(6), 535–541. doi:10.1016/0741-5214(87)90266-7.CrossRefPubMed Zilla, P., Fasol, R., Deutsch, M., Fischlein, T., Minar, E., Hammerle, A., et al. (1987). Endothelial cell seeding of polytetrafluoroethylene vascular grafts in humans: a preliminary report. Journal of Vascular Surgery, 6(6), 535–541. doi:10.​1016/​0741-5214(87)90266-7.CrossRefPubMed
75.
Zurück zum Zitat Shi, Z., Neoh, K. G., & Kang, E. T. (2013). In vitro endothelialization of cobalt chromium alloys with micro/nanostructures using adipose-derived stem cells. Journal of Materials Science: Materials in Medicine, 24(4), 1067–1077. doi:10.1007/s10856-013-4868-7.PubMed Shi, Z., Neoh, K. G., & Kang, E. T. (2013). In vitro endothelialization of cobalt chromium alloys with micro/nanostructures using adipose-derived stem cells. Journal of Materials Science: Materials in Medicine, 24(4), 1067–1077. doi:10.​1007/​s10856-013-4868-7.PubMed
76.
Zurück zum Zitat Kim, Y., & Liu, J. C. (2016). Protein-engineered microenvironments can promote endothelial differentiation of human mesenchymal stem cells in the absence of exogenous growth factors. Biomaterials Science, 4(12), 1761–1772. doi:10.1039/C6BM00472E.CrossRefPubMed Kim, Y., & Liu, J. C. (2016). Protein-engineered microenvironments can promote endothelial differentiation of human mesenchymal stem cells in the absence of exogenous growth factors. Biomaterials Science, 4(12), 1761–1772. doi:10.​1039/​C6BM00472E.CrossRefPubMed
79.
Zurück zum Zitat Rotmans, J. I., Heyligers, J. M., Verhagen, H. J., Velema, E., Nagtegaal, M. M., de Kleijn, D. P., et al. (2005). In vivo cell seeding with anti-CD34 antibodies successfully accelerates endothelialization but stimulates intimal hyperplasia in porcine arteriovenous expanded polytetrafluoroethylene grafts. Circulation, 112(1), 12–18. doi:10.1161/CIRCULATIONAHA.104.504407.CrossRefPubMed Rotmans, J. I., Heyligers, J. M., Verhagen, H. J., Velema, E., Nagtegaal, M. M., de Kleijn, D. P., et al. (2005). In vivo cell seeding with anti-CD34 antibodies successfully accelerates endothelialization but stimulates intimal hyperplasia in porcine arteriovenous expanded polytetrafluoroethylene grafts. Circulation, 112(1), 12–18. doi:10.​1161/​CIRCULATIONAHA.​104.​504407.CrossRefPubMed
80.
Zurück zum Zitat Lu, S., Zhang, P., Sun, X., Gong, F., Yang, S., Shen, L., et al. (2013). Synthetic ePTFE grafts coated with an anti-CD133 antibody-functionalized heparin/collagen multilayer with rapid in vivo endothelialization properties. ACS Applied Materials & Interfaces, 5(15), 7360–7369. doi:10.1021/am401706w.CrossRef Lu, S., Zhang, P., Sun, X., Gong, F., Yang, S., Shen, L., et al. (2013). Synthetic ePTFE grafts coated with an anti-CD133 antibody-functionalized heparin/collagen multilayer with rapid in vivo endothelialization properties. ACS Applied Materials & Interfaces, 5(15), 7360–7369. doi:10.​1021/​am401706w.CrossRef
82.
Zurück zum Zitat Ravi, S., Qu, Z., & Chaikof, E. L. (2009). Polymeric materials for tissue engineering of arterial substitutes. Vascular, 17(Supplement 1), S45-S54, doi:10.2310/6670.2008.00084. Ravi, S., Qu, Z., & Chaikof, E. L. (2009). Polymeric materials for tissue engineering of arterial substitutes. Vascular, 17(Supplement 1), S45-S54, doi:10.​2310/​6670.​2008.​00084.
84.
Zurück zum Zitat Caiado, F., Carvalho, T., Silva, F., Castro, C., Clode, N., Dye, J. F., et al. (2011). The role of fibrin E on the modulation of endothelial progenitors adhesion, differentiation and angiogenic growth factor production and the promotion of wound healing. Biomaterials, 32(29), 7096–7105. doi:10.1016/j.biomaterials.2011.06.022.CrossRefPubMed Caiado, F., Carvalho, T., Silva, F., Castro, C., Clode, N., Dye, J. F., et al. (2011). The role of fibrin E on the modulation of endothelial progenitors adhesion, differentiation and angiogenic growth factor production and the promotion of wound healing. Biomaterials, 32(29), 7096–7105. doi:10.​1016/​j.​biomaterials.​2011.​06.​022.CrossRefPubMed
85.
Zurück zum Zitat Rodenberg, E. J., & Pavalko, F. M. (2007). Peptides derived from fibronectin type III connecting segments promote endothelial cell adhesion but not platelet adhesion: implications in tissue-engineered vascular grafts. Tissue Engineering, 13(11), 2653–2666. doi:10.1089/ten.2007.0037.CrossRefPubMed Rodenberg, E. J., & Pavalko, F. M. (2007). Peptides derived from fibronectin type III connecting segments promote endothelial cell adhesion but not platelet adhesion: implications in tissue-engineered vascular grafts. Tissue Engineering, 13(11), 2653–2666. doi:10.​1089/​ten.​2007.​0037.CrossRefPubMed
86.
Zurück zum Zitat Jun, H.-W., & West, J. L. (2005). Modification of polyurethaneurea with PEG and YIGSR peptide to enhance endothelialization without platelet adhesion. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 72B(1), 131–139. doi:10.1002/jbm.b.30135.CrossRef Jun, H.-W., & West, J. L. (2005). Modification of polyurethaneurea with PEG and YIGSR peptide to enhance endothelialization without platelet adhesion. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 72B(1), 131–139. doi:10.​1002/​jbm.​b.​30135.CrossRef
87.
Zurück zum Zitat Aubin, H., Mas-Moruno, C., Iijima, M., Schutterle, N., Steinbrink, M., Assmann, A., et al. (2016). Customized interface biofunctionalization of decellularized extracellular matrix: toward enhanced endothelialization. Tissue Engineering. Part C, Methods, 22(5), 496–508. doi:10.1089/ten.TEC.2015.0556.CrossRefPubMedPubMedCentral Aubin, H., Mas-Moruno, C., Iijima, M., Schutterle, N., Steinbrink, M., Assmann, A., et al. (2016). Customized interface biofunctionalization of decellularized extracellular matrix: toward enhanced endothelialization. Tissue Engineering. Part C, Methods, 22(5), 496–508. doi:10.​1089/​ten.​TEC.​2015.​0556.CrossRefPubMedPubMedCentral
88.
91.
92.
Zurück zum Zitat Liu, T., Liu, S., Zhang, K., Chen, J., & Huang, N. (2014). Endothelialization of implanted cardiovascular biomaterial surfaces: the development from in vitro to in vivo. Journal of Biomedical Materials Research. Part A, 102(10), 3754–3772. doi:10.1002/jbm.a.35025.CrossRefPubMed Liu, T., Liu, S., Zhang, K., Chen, J., & Huang, N. (2014). Endothelialization of implanted cardiovascular biomaterial surfaces: the development from in vitro to in vivo. Journal of Biomedical Materials Research. Part A, 102(10), 3754–3772. doi:10.​1002/​jbm.​a.​35025.CrossRefPubMed
95.
Zurück zum Zitat Ram-Liebig, G., Bednarz, J., Stuerzebecher, B., Fahlenkamp, D., Barbagli, G., Romano, G., et al. (2015). Regulatory challenges for autologous tissue engineered products on their way from bench to bedside in Europe. Advanced Drug Delivery Reviews, 82-83, 181–191. doi:10.1016/j.addr.2014.11.009.CrossRefPubMed Ram-Liebig, G., Bednarz, J., Stuerzebecher, B., Fahlenkamp, D., Barbagli, G., Romano, G., et al. (2015). Regulatory challenges for autologous tissue engineered products on their way from bench to bedside in Europe. Advanced Drug Delivery Reviews, 82-83, 181–191. doi:10.​1016/​j.​addr.​2014.​11.​009.CrossRefPubMed
96.
Zurück zum Zitat Hurtado-Aguilar, L. G., Mulderrig, S., Moreira, R., Hatam, N., Spillner, J., Schmitz-Rode, T., et al. (2016). Ultrasound for in vitro noninvasive, real time monitoring and evaluation of tissue-engineered heart valves. Tissue Engineering. Part C, Methods. doi:10.1089/ten.TEC.2016.0300.PubMed Hurtado-Aguilar, L. G., Mulderrig, S., Moreira, R., Hatam, N., Spillner, J., Schmitz-Rode, T., et al. (2016). Ultrasound for in vitro noninvasive, real time monitoring and evaluation of tissue-engineered heart valves. Tissue Engineering. Part C, Methods. doi:10.​1089/​ten.​TEC.​2016.​0300.PubMed
97.
Zurück zum Zitat Ozaki, S., Herijgers, P., & Flameng, W. (2004). A new model to test the calcification characteristics of bioprosthetic heart valves. Annals of Thoracic and Cardiovascular Surgery, 10, 23–28.PubMed Ozaki, S., Herijgers, P., & Flameng, W. (2004). A new model to test the calcification characteristics of bioprosthetic heart valves. Annals of Thoracic and Cardiovascular Surgery, 10, 23–28.PubMed
98.
Zurück zum Zitat Taramasso, M., Emmert, M. Y., Reser, D., Guidotti, A., Cesarovic, N., Campagnol, M., et al. (2015). Pre-clinical in vitro and in vivo models for heart valve therapies. Journal of Cardiovascular Translational Research, 8(5), 319–327. doi:10.1007/s12265-015-9631-7.CrossRefPubMed Taramasso, M., Emmert, M. Y., Reser, D., Guidotti, A., Cesarovic, N., Campagnol, M., et al. (2015). Pre-clinical in vitro and in vivo models for heart valve therapies. Journal of Cardiovascular Translational Research, 8(5), 319–327. doi:10.​1007/​s12265-015-9631-7.CrossRefPubMed
99.
Zurück zum Zitat Yuan, S. M., Mishaly, D., Shinfeld, A., & Raanani, E. (2008). Right ventricular outflow tract reconstruction: valved conduit of choice and clinical outcomes. Journal of Cardiovascular Medicine, 9, 327–337.CrossRefPubMed Yuan, S. M., Mishaly, D., Shinfeld, A., & Raanani, E. (2008). Right ventricular outflow tract reconstruction: valved conduit of choice and clinical outcomes. Journal of Cardiovascular Medicine, 9, 327–337.CrossRefPubMed
100.
Zurück zum Zitat Bayon, Y., Vertes, A. A., Ronfard, V., Culme-Seymour, E., Mason, C., Stroemer, P., et al. (2015). Turning regenerative medicine breakthrough ideas and innovations into commercial products. Tissue Engineering. Part B, Reviews, 21(6), 560–571. doi:10.1089/ten.TEB.2015.0068.CrossRefPubMed Bayon, Y., Vertes, A. A., Ronfard, V., Culme-Seymour, E., Mason, C., Stroemer, P., et al. (2015). Turning regenerative medicine breakthrough ideas and innovations into commercial products. Tissue Engineering. Part B, Reviews, 21(6), 560–571. doi:10.​1089/​ten.​TEB.​2015.​0068.CrossRefPubMed
Metadaten
Titel
Translational Challenges in Cardiovascular Tissue Engineering
verfasst von
Maximilian Y. Emmert
Emanuela S. Fioretta
Simon P. Hoerstrup
Publikationsdatum
09.03.2017
Verlag
Springer US
Erschienen in
Journal of Cardiovascular Translational Research / Ausgabe 2/2017
Print ISSN: 1937-5387
Elektronische ISSN: 1937-5395
DOI
https://doi.org/10.1007/s12265-017-9728-2

Weitere Artikel der Ausgabe 2/2017

Journal of Cardiovascular Translational Research 2/2017 Zur Ausgabe

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.