Skip to main content
Erschienen in: Journal of Cardiovascular Translational Research 2/2017

13.03.2017 | Review

Stem Cell Spheroids and Ex Vivo Niche Modeling: Rationalization and Scaling-Up

verfasst von: Isotta Chimenti, Diana Massai, Umberto Morbiducci, Antonio Paolo Beltrami, Maurizio Pesce, Elisa Messina

Erschienen in: Journal of Cardiovascular Translational Research | Ausgabe 2/2017

Einloggen, um Zugang zu erhalten

Abstract

Improved protocols/devices for in vitro culture of 3D cell spheroids may provide essential cues for proper growth and differentiation of stem/progenitor cells (S/PCs) in their niche, allowing preservation of specific features, such as multi-lineage potential and paracrine activity. Several platforms have been employed to replicate these conditions and to generate S/PC spheroids for therapeutic applications. However, they incompletely reproduce the niche environment, with partial loss of its highly regulated network, with additional hurdles in the field of cardiac biology, due to debated resident S/PCs therapeutic potential and clinical translation. In this contribution, the essential niche conditions (metabolic, geometric, mechanical) that allow S/PCs maintenance/commitment will be discussed. In particular, we will focus on both existing bioreactor-based platforms for the culture of S/PC as spheroids, and on possible criteria for the scaling-up of niche-like spheroids, which could be envisaged as promising tools for personalized cardiac regenerative medicine, as well as for high-throughput drug screening.
Literatur
1.
Zurück zum Zitat Jones, D. L., & Wagers, A. J. (2008). No place like home: anatomy and function of the stem cell niche. Nature Reviews. Molecular Cell Biology, 9(1), 11–21.PubMedCrossRef Jones, D. L., & Wagers, A. J. (2008). No place like home: anatomy and function of the stem cell niche. Nature Reviews. Molecular Cell Biology, 9(1), 11–21.PubMedCrossRef
2.
Zurück zum Zitat Beltrami, A. P., Cesselli, D., & Beltrami, C. A. (2012). Stem cell senescence and regenerative paradigms. Clinical Pharmacology and Therapeutics, 91(1), 21–29.PubMedCrossRef Beltrami, A. P., Cesselli, D., & Beltrami, C. A. (2012). Stem cell senescence and regenerative paradigms. Clinical Pharmacology and Therapeutics, 91(1), 21–29.PubMedCrossRef
4.
Zurück zum Zitat Clevers, H. (2016). Modeling development and disease with organoids. Cell, 165(7), 1586–1597.PubMedCrossRef Clevers, H. (2016). Modeling development and disease with organoids. Cell, 165(7), 1586–1597.PubMedCrossRef
6.
Zurück zum Zitat Kirouac, D. C., Ito, C., Csaszar, E., Roch, A., Yu, M., Sykes, E. A., et al. (2010). Dynamic interaction networks in a hierarchically organized tissue. Molecular Systems Biology, 6, 417.PubMedCrossRefPubMedCentral Kirouac, D. C., Ito, C., Csaszar, E., Roch, A., Yu, M., Sykes, E. A., et al. (2010). Dynamic interaction networks in a hierarchically organized tissue. Molecular Systems Biology, 6, 417.PubMedCrossRefPubMedCentral
7.
Zurück zum Zitat Roeder, I., Loeffler, M., & Glauche, I. (2011). Towards a quantitative understanding of stem cell-niche interaction: experiments, models, and technologies. Blood Cells, Molecules & Diseases, 46(4), 308–317.CrossRef Roeder, I., Loeffler, M., & Glauche, I. (2011). Towards a quantitative understanding of stem cell-niche interaction: experiments, models, and technologies. Blood Cells, Molecules & Diseases, 46(4), 308–317.CrossRef
8.
Zurück zum Zitat Yeh, H. Y., Liu, B. H., Sieber, M., & Hsu, S. H. (2014). Substrate-dependent gene regulation of self-assembled human MSC spheroids on chitosan membranes. BMC Genomics, 15, 10.PubMedCrossRefPubMedCentral Yeh, H. Y., Liu, B. H., Sieber, M., & Hsu, S. H. (2014). Substrate-dependent gene regulation of self-assembled human MSC spheroids on chitosan membranes. BMC Genomics, 15, 10.PubMedCrossRefPubMedCentral
9.
Zurück zum Zitat Laschke, M. W., & Menger, M. D. (2016). Life is 3D: boosting spheroid function for tissue engineering. Trends Biotechnol. Laschke, M. W., & Menger, M. D. (2016). Life is 3D: boosting spheroid function for tissue engineering. Trends Biotechnol.
11.
Zurück zum Zitat Kilian, K. A., Bugarija, B., Lahn, B. T., & Mrksich, M. (2010). Geometric cues for directing the differentiation of mesenchymal stem cells. Proceedings of the National Academy of Sciences of the United States of America, 107(11), 4872–4877.PubMedCrossRefPubMedCentral Kilian, K. A., Bugarija, B., Lahn, B. T., & Mrksich, M. (2010). Geometric cues for directing the differentiation of mesenchymal stem cells. Proceedings of the National Academy of Sciences of the United States of America, 107(11), 4872–4877.PubMedCrossRefPubMedCentral
12.
Zurück zum Zitat Aragona, M., Panciera, T., Manfrin, A., Giulitti, S., Michielin, F., Elvassore, N., et al. (2013). A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors. Cell, 154(5), 1047–1059.PubMedCrossRef Aragona, M., Panciera, T., Manfrin, A., Giulitti, S., Michielin, F., Elvassore, N., et al. (2013). A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors. Cell, 154(5), 1047–1059.PubMedCrossRef
13.
Zurück zum Zitat Ugolini, G. S., Rasponi, M., Pavesi, A., Santoro, R., Kamm, R., Fiore, G. B., et al. (2016). On-chip assessment of human primary cardiac fibroblasts proliferative responses to uniaxial cyclic mechanical strain. Biotechnology and Bioengineering, 113(4), 859–869.PubMedCrossRef Ugolini, G. S., Rasponi, M., Pavesi, A., Santoro, R., Kamm, R., Fiore, G. B., et al. (2016). On-chip assessment of human primary cardiac fibroblasts proliferative responses to uniaxial cyclic mechanical strain. Biotechnology and Bioengineering, 113(4), 859–869.PubMedCrossRef
16.
Zurück zum Zitat Nelson, C. M., Jean, R. P., Tan, J. L., Liu, W. F., Sniadecki, N. J., Spector, A. A., et al. (2005). Emergent patterns of growth controlled by multicellular form and mechanics. Proceedings of the National Academy of Sciences of the United States of America, 102(33), 11594–11599.PubMedCrossRefPubMedCentral Nelson, C. M., Jean, R. P., Tan, J. L., Liu, W. F., Sniadecki, N. J., Spector, A. A., et al. (2005). Emergent patterns of growth controlled by multicellular form and mechanics. Proceedings of the National Academy of Sciences of the United States of America, 102(33), 11594–11599.PubMedCrossRefPubMedCentral
17.
Zurück zum Zitat Wan, L. Q., Kang, S. M., Eng, G., Grayson, W. L., Lu, X. L., Huo, B., et al. (2010). Geometric control of human stem cell morphology and differentiation. Integrative Biology, 2(7–8), 346–353.PubMedCrossRefPubMedCentral Wan, L. Q., Kang, S. M., Eng, G., Grayson, W. L., Lu, X. L., Huo, B., et al. (2010). Geometric control of human stem cell morphology and differentiation. Integrative Biology, 2(7–8), 346–353.PubMedCrossRefPubMedCentral
18.
Zurück zum Zitat Wan, L. Q., Ronaldson, K., Park, M., Taylor, G., Zhang, Y., Gimble, J. M., et al. (2011). Micropatterned mammalian cells exhibit phenotype-specific left-right asymmetry. Proceedings of the National Academy of Sciences, 108(30), 12295–12300.CrossRef Wan, L. Q., Ronaldson, K., Park, M., Taylor, G., Zhang, Y., Gimble, J. M., et al. (2011). Micropatterned mammalian cells exhibit phenotype-specific left-right asymmetry. Proceedings of the National Academy of Sciences, 108(30), 12295–12300.CrossRef
19.
Zurück zum Zitat Cui, Y., Hameed, F. M., Yang, B., Lee, K., Pan, C. Q., Park, S., et al. (2015). Cyclic stretching of soft substrates induces spreading and growth. Nature Communications, 6 [Article]. Cui, Y., Hameed, F. M., Yang, B., Lee, K., Pan, C. Q., Park, S., et al. (2015). Cyclic stretching of soft substrates induces spreading and growth. Nature Communications, 6 [Article].
20.
Zurück zum Zitat Downing, T. L., Soto, J., Morez, C., Houssin, T., Fritz, A., Yuan, F., et al. (2013). Biophysical regulation of epigenetic state and cell reprogramming. Nature Materials, 12(12), 1154–1162 [Article].PubMedCrossRef Downing, T. L., Soto, J., Morez, C., Houssin, T., Fritz, A., Yuan, F., et al. (2013). Biophysical regulation of epigenetic state and cell reprogramming. Nature Materials, 12(12), 1154–1162 [Article].PubMedCrossRef
21.
Zurück zum Zitat van Putten, S., Shafieyan, Y., & Hinz, B. (2015). Mechanical control of cardiac myofibroblasts. Journal of Molecular and Cellular Cardiology. van Putten, S., Shafieyan, Y., & Hinz, B. (2015). Mechanical control of cardiac myofibroblasts. Journal of Molecular and Cellular Cardiology.
22.
Zurück zum Zitat Schroer, A. K., & Merryman, W. D. (2015). Mechanobiology of myofibroblast adhesion in fibrotic cardiac disease. Journal of Cell Science, 128(10), 1865–1875.PubMedCrossRefPubMedCentral Schroer, A. K., & Merryman, W. D. (2015). Mechanobiology of myofibroblast adhesion in fibrotic cardiac disease. Journal of Cell Science, 128(10), 1865–1875.PubMedCrossRefPubMedCentral
23.
Zurück zum Zitat Pesce, M., & Santoro, R. (2016). Feeling the right force: how to contextualize the cell mechanical behavior in physiologic turnover and pathologic evolution of the cardiovascular system. Pharmacology & Therapeutics. Pesce, M., & Santoro, R. (2016). Feeling the right force: how to contextualize the cell mechanical behavior in physiologic turnover and pathologic evolution of the cardiovascular system. Pharmacology & Therapeutics.
24.
Zurück zum Zitat Anderson, D. G., Levenberg, S., & Langer, R. (2004). Nanoliter-scale synthesis of arrayed biomaterials and application to human embryonic stem cells. Nature Biotechnology, 22(7), 863–866. doi:10.1038/nbt981.PubMedCrossRef Anderson, D. G., Levenberg, S., & Langer, R. (2004). Nanoliter-scale synthesis of arrayed biomaterials and application to human embryonic stem cells. Nature Biotechnology, 22(7), 863–866. doi:10.​1038/​nbt981.PubMedCrossRef
25.
Zurück zum Zitat Tourniaire, G., Collins, J., Campbell, S., Mizomoto, H., Ogawa, S., Thaburet, J. F., et al. (2006). Polymer microarrays for cellular adhesion. Chemical Communications (Cambridge, England), (20), 2118–2120. Tourniaire, G., Collins, J., Campbell, S., Mizomoto, H., Ogawa, S., Thaburet, J. F., et al. (2006). Polymer microarrays for cellular adhesion. Chemical Communications (Cambridge, England), (20), 2118–2120.
27.
Zurück zum Zitat Kirouac, D. C., Madlambayan, G. J., Yu, M., Sykes, E. A., Ito, C., & Zandstra, P. W. (2009). Cell-cell interaction networks regulate blood stem and progenitor cell fate. Molecular Systems Biology, 5, 293.PubMedCrossRefPubMedCentral Kirouac, D. C., Madlambayan, G. J., Yu, M., Sykes, E. A., Ito, C., & Zandstra, P. W. (2009). Cell-cell interaction networks regulate blood stem and progenitor cell fate. Molecular Systems Biology, 5, 293.PubMedCrossRefPubMedCentral
28.
Zurück zum Zitat Walters, N. J., & Gentleman, E. (2015). Evolving insights in cell-matrix interactions: Elucidating how non-soluble properties of the extracellular niche direct stem cell fate. Acta Biomaterialia, 11, 3–16.PubMedCrossRef Walters, N. J., & Gentleman, E. (2015). Evolving insights in cell-matrix interactions: Elucidating how non-soluble properties of the extracellular niche direct stem cell fate. Acta Biomaterialia, 11, 3–16.PubMedCrossRef
29.
Zurück zum Zitat Zhang, R., Liberski, A., Khan, F., Diaz-Mochon, J. J., & Bradley, M. (2008). Inkjet fabrication of hydrogel microarrays using in situ nanolitre-scale polymerisation. Chemical Communications (Cambridge, England), (11), 1317–1319. Zhang, R., Liberski, A., Khan, F., Diaz-Mochon, J. J., & Bradley, M. (2008). Inkjet fabrication of hydrogel microarrays using in situ nanolitre-scale polymerisation. Chemical Communications (Cambridge, England), (11), 1317–1319.
30.
Zurück zum Zitat Kurth, I., Franke, K., Pompe, T., Bornhauser, M., & Werner, C. (2011). Extracellular matrix functionalized microcavities to control hematopoietic stem and progenitor cell fate. Macromolecular Bioscience, 11(6), 739–747.PubMedCrossRef Kurth, I., Franke, K., Pompe, T., Bornhauser, M., & Werner, C. (2011). Extracellular matrix functionalized microcavities to control hematopoietic stem and progenitor cell fate. Macromolecular Bioscience, 11(6), 739–747.PubMedCrossRef
31.
Zurück zum Zitat Khan, F., Tare, R. S., Oreffo, R. O., & Bradley, M. (2009). Versatile biocompatible polymer hydrogels: scaffolds for cell growth. Angewandte Chemie (International Ed. in English), 48(5), 978–982.CrossRef Khan, F., Tare, R. S., Oreffo, R. O., & Bradley, M. (2009). Versatile biocompatible polymer hydrogels: scaffolds for cell growth. Angewandte Chemie (International Ed. in English), 48(5), 978–982.CrossRef
33.
Zurück zum Zitat Tajbakhsh, S., Rocheteau, P., & Le Roux, I. (2009). Asymmetric cell divisions and asymmetric cell fates. Annual Review of Cell and Developmental Biology, 25, 671–699.PubMedCrossRef Tajbakhsh, S., Rocheteau, P., & Le Roux, I. (2009). Asymmetric cell divisions and asymmetric cell fates. Annual Review of Cell and Developmental Biology, 25, 671–699.PubMedCrossRef
34.
Zurück zum Zitat Neumuller, R. A., & Knoblich, J. A. (2009). Dividing cellular asymmetry: asymmetric cell division and its implications for stem cells and cancer. Genes & Development, 23(23), 2675–2699.CrossRef Neumuller, R. A., & Knoblich, J. A. (2009). Dividing cellular asymmetry: asymmetric cell division and its implications for stem cells and cancer. Genes & Development, 23(23), 2675–2699.CrossRef
36.
Zurück zum Zitat Zhang, Y., Gordon, A., Qian, W., & Chen, W. (2015). Engineering nanoscale stem cell niche: direct stem cell behavior at cell-matrix interface. Advanced Healthcare Materials, 4(13), 1900–1914.PubMedCrossRef Zhang, Y., Gordon, A., Qian, W., & Chen, W. (2015). Engineering nanoscale stem cell niche: direct stem cell behavior at cell-matrix interface. Advanced Healthcare Materials, 4(13), 1900–1914.PubMedCrossRef
37.
Zurück zum Zitat Jež, M., Rožman, P., Ivanović, Z., & Bas, T. (2015). Concise review: the role of oxygen in hematopoietic stem cell physiology. Journal of Cellular Physiology, 230(9), 1999–2005.PubMedCrossRef Jež, M., Rožman, P., Ivanović, Z., & Bas, T. (2015). Concise review: the role of oxygen in hematopoietic stem cell physiology. Journal of Cellular Physiology, 230(9), 1999–2005.PubMedCrossRef
38.
Zurück zum Zitat Pruitt, B. L., Dunn, A. R., Weis, W. I., & Nelson, W. J. (2014). Mechano-transduction: from molecules to tissues. PLoS Biology, 12(11), e1001996.PubMedCrossRefPubMedCentral Pruitt, B. L., Dunn, A. R., Weis, W. I., & Nelson, W. J. (2014). Mechano-transduction: from molecules to tissues. PLoS Biology, 12(11), e1001996.PubMedCrossRefPubMedCentral
39.
Zurück zum Zitat Brickman, J. M., & Serup, P. (2016). Properties of embryoid bodies. Wiley Interdiscip Rev Dev Biol. Brickman, J. M., & Serup, P. (2016). Properties of embryoid bodies. Wiley Interdiscip Rev Dev Biol.
40.
Zurück zum Zitat Achilli, T. M., Meyer, J., & Morgan, J. R. (2012). Advances in the formation, use and understanding of multi-cellular spheroids. Expert Opinion on Biological Therapy, 12(10), 1347–1360.PubMedCrossRefPubMedCentral Achilli, T. M., Meyer, J., & Morgan, J. R. (2012). Advances in the formation, use and understanding of multi-cellular spheroids. Expert Opinion on Biological Therapy, 12(10), 1347–1360.PubMedCrossRefPubMedCentral
41.
Zurück zum Zitat Cesarz, Z., & Tamama, K. (2016). Spheroid culture of mesenchymal stem cells. Stem Cells International, 2016, 9176357.PubMedCrossRef Cesarz, Z., & Tamama, K. (2016). Spheroid culture of mesenchymal stem cells. Stem Cells International, 2016, 9176357.PubMedCrossRef
42.
Zurück zum Zitat Rouwkema, J., Koopman, B., Blitterswijk, C., Dhert, W., & Malda, J. (2010). Supply of nutrients to cells in engineered tissues. Biotechnology & Genetic Engineering Reviews, 26, 163–178.CrossRef Rouwkema, J., Koopman, B., Blitterswijk, C., Dhert, W., & Malda, J. (2010). Supply of nutrients to cells in engineered tissues. Biotechnology & Genetic Engineering Reviews, 26, 163–178.CrossRef
43.
Zurück zum Zitat Forte, E., Miraldi, F., Chimenti, I., Angelini, F., Zeuner, A., Giacomello, A., et al. (2012). TGFbeta-dependent epithelial-to-mesenchymal transition is required to generate cardiospheres from human adult heart biopsies. Stem Cells and Development, 21(17), 3081–3090.PubMedCrossRefPubMedCentral Forte, E., Miraldi, F., Chimenti, I., Angelini, F., Zeuner, A., Giacomello, A., et al. (2012). TGFbeta-dependent epithelial-to-mesenchymal transition is required to generate cardiospheres from human adult heart biopsies. Stem Cells and Development, 21(17), 3081–3090.PubMedCrossRefPubMedCentral
44.
Zurück zum Zitat Pampaloni, F., Reynaud, E. G., & Stelzer, E. H. (2007). The third dimension bridges the gap between cell culture and live tissue. Nature Reviews. Molecular Cell Biology, 8(10), 839–845.PubMedCrossRef Pampaloni, F., Reynaud, E. G., & Stelzer, E. H. (2007). The third dimension bridges the gap between cell culture and live tissue. Nature Reviews. Molecular Cell Biology, 8(10), 839–845.PubMedCrossRef
45.
Zurück zum Zitat Pedersen, J. A., & Swartz, M. A. (2005). Mechanobiology in the third dimension. Annals of Biomedical Engineering, 33(11), 1469–1490.PubMedCrossRef Pedersen, J. A., & Swartz, M. A. (2005). Mechanobiology in the third dimension. Annals of Biomedical Engineering, 33(11), 1469–1490.PubMedCrossRef
46.
Zurück zum Zitat Bazou, D. (2010). Biochemical properties of encapsulated high-density 3-D HepG2 aggregates formed in an ultrasound trap for application in hepatotoxicity studies: biochemical responses of encapsulated 3-D HepG2 aggregates. Cell Biology and Toxicology, 26(2), 127–141.PubMedCrossRef Bazou, D. (2010). Biochemical properties of encapsulated high-density 3-D HepG2 aggregates formed in an ultrasound trap for application in hepatotoxicity studies: biochemical responses of encapsulated 3-D HepG2 aggregates. Cell Biology and Toxicology, 26(2), 127–141.PubMedCrossRef
47.
Zurück zum Zitat Ravi, M., Paramesh, V., Kaviya, S. R., Anuradha, E., & Solomon, F. D. (2015). 3D cell culture systems: advantages and applications. Journal of Cellular Physiology, 230(1), 16–26.PubMedCrossRef Ravi, M., Paramesh, V., Kaviya, S. R., Anuradha, E., & Solomon, F. D. (2015). 3D cell culture systems: advantages and applications. Journal of Cellular Physiology, 230(1), 16–26.PubMedCrossRef
49.
Zurück zum Zitat Yoshida, Y., & Yamanaka, S. (2010). Recent stem cell advances: induced pluripotent stem cells for disease modeling and stem cell-based regeneration. Circulation, 122(1), 80–87.PubMedCrossRef Yoshida, Y., & Yamanaka, S. (2010). Recent stem cell advances: induced pluripotent stem cells for disease modeling and stem cell-based regeneration. Circulation, 122(1), 80–87.PubMedCrossRef
50.
Zurück zum Zitat Hosoya, M., & Czysz, K. (2016). Translational prospects and challenges in human induced pluripotent stem cell research in drug discovery. Cell, 5(4). Hosoya, M., & Czysz, K. (2016). Translational prospects and challenges in human induced pluripotent stem cell research in drug discovery. Cell, 5(4).
51.
Zurück zum Zitat Takayama, K., & Mizuguchi, H. (2016). Generation of human pluripotent stem cell-derived hepatocyte-like cells for drug toxicity screening. Drug Metab Pharmacokinet. Takayama, K., & Mizuguchi, H. (2016). Generation of human pluripotent stem cell-derived hepatocyte-like cells for drug toxicity screening. Drug Metab Pharmacokinet.
52.
Zurück zum Zitat Trounson, A., & DeWitt, N. D. (2016). Pluripotent stem cells progressing to the clinic. Nature Reviews. Molecular Cell Biology, 17(3), 194–200.PubMedCrossRef Trounson, A., & DeWitt, N. D. (2016). Pluripotent stem cells progressing to the clinic. Nature Reviews. Molecular Cell Biology, 17(3), 194–200.PubMedCrossRef
53.
Zurück zum Zitat Tang, S., Xie, M., Cao, N., & Ding, S. (2016). Patient-specific induced pluripotent stem cells for disease modeling and phenotypic drug discovery. Journal of Medicinal Chemistry, 59(1), 2–15.PubMedCrossRef Tang, S., Xie, M., Cao, N., & Ding, S. (2016). Patient-specific induced pluripotent stem cells for disease modeling and phenotypic drug discovery. Journal of Medicinal Chemistry, 59(1), 2–15.PubMedCrossRef
54.
Zurück zum Zitat Nelson, T. J., & Terzic, A. (2011). Induced pluripotent stem cells: an emerging theranostics platform. Clinical Pharmacology and Therapeutics, 89(5), 648–650.PubMedCrossRef Nelson, T. J., & Terzic, A. (2011). Induced pluripotent stem cells: an emerging theranostics platform. Clinical Pharmacology and Therapeutics, 89(5), 648–650.PubMedCrossRef
55.
Zurück zum Zitat Kempf, H., Olmer, R., Kropp, C., Ruckert, M., Jara-Avaca, M., Robles-Diaz, D., et al. (2014). Controlling expansion and cardiomyogenic differentiation of human pluripotent stem cells in scalable suspension culture. Stem Cell Reports, 3(6), 1132–1146.PubMedCrossRefPubMedCentral Kempf, H., Olmer, R., Kropp, C., Ruckert, M., Jara-Avaca, M., Robles-Diaz, D., et al. (2014). Controlling expansion and cardiomyogenic differentiation of human pluripotent stem cells in scalable suspension culture. Stem Cell Reports, 3(6), 1132–1146.PubMedCrossRefPubMedCentral
56.
Zurück zum Zitat Skardal, A., Shupe, T., & Atala, A. (2016). Organoid-on-a-chip and body-on-a-chip systems for drug screening and disease modeling. Drug Discovery Today, 21(9), 1399–1411.PubMedCrossRef Skardal, A., Shupe, T., & Atala, A. (2016). Organoid-on-a-chip and body-on-a-chip systems for drug screening and disease modeling. Drug Discovery Today, 21(9), 1399–1411.PubMedCrossRef
57.
Zurück zum Zitat Pastrana, E., Silva-Vargas, V., & Doetsch, F. (2011). Eyes wide open: a critical review of sphere-formation as an assay for stem cells. Cell Stem Cell, 8(5), 486–498.PubMedCrossRefPubMedCentral Pastrana, E., Silva-Vargas, V., & Doetsch, F. (2011). Eyes wide open: a critical review of sphere-formation as an assay for stem cells. Cell Stem Cell, 8(5), 486–498.PubMedCrossRefPubMedCentral
58.
Zurück zum Zitat Reynolds, B. A., & Weiss, S. (1992). Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science, 255(5052), 1707–1710.PubMedCrossRef Reynolds, B. A., & Weiss, S. (1992). Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science, 255(5052), 1707–1710.PubMedCrossRef
59.
Zurück zum Zitat Dmitriev, R. I., Zhdanov, A. V., Nolan, Y. M., & Papkovsky, D. B. (2013). Imaging of neurosphere oxygenation with phosphorescent probes. Biomaterials, 34(37), 9307–9317.PubMedCrossRef Dmitriev, R. I., Zhdanov, A. V., Nolan, Y. M., & Papkovsky, D. B. (2013). Imaging of neurosphere oxygenation with phosphorescent probes. Biomaterials, 34(37), 9307–9317.PubMedCrossRef
60.
Zurück zum Zitat Kim, M., & Morshead, C. M. (2003). Distinct populations of forebrain neural stem and progenitor cells can be isolated using side-population analysis. The Journal of Neuroscience, 23(33), 10703–10709.PubMed Kim, M., & Morshead, C. M. (2003). Distinct populations of forebrain neural stem and progenitor cells can be isolated using side-population analysis. The Journal of Neuroscience, 23(33), 10703–10709.PubMed
61.
Zurück zum Zitat Corti, S., Locatelli, F., Papadimitriou, D., Donadoni, C., Salani, S., Del Bo, R., et al. (2006). Identification of a primitive brain-derived neural stem cell population based on aldehyde dehydrogenase activity. Stem Cells, 24(4), 975–985.PubMedCrossRef Corti, S., Locatelli, F., Papadimitriou, D., Donadoni, C., Salani, S., Del Bo, R., et al. (2006). Identification of a primitive brain-derived neural stem cell population based on aldehyde dehydrogenase activity. Stem Cells, 24(4), 975–985.PubMedCrossRef
62.
Zurück zum Zitat Shin, J. C., Kim, K. N., Yoo, J., Kim, I. S., Yun, S., Lee, H., et al. (2015). Clinical trial of human fetal brain-derived neural stem/progenitor cell transplantation in patients with traumatic cervical spinal cord injury. Neural Plasticity, 2015, 630932.PubMedCrossRefPubMedCentral Shin, J. C., Kim, K. N., Yoo, J., Kim, I. S., Yun, S., Lee, H., et al. (2015). Clinical trial of human fetal brain-derived neural stem/progenitor cell transplantation in patients with traumatic cervical spinal cord injury. Neural Plasticity, 2015, 630932.PubMedCrossRefPubMedCentral
63.
Zurück zum Zitat Yousefifard, M., Rahimi-Movaghar, V., Nasirinezhad, F., Baikpour, M., Safari, S., Saadat, S., et al. (2016). Neural stem/progenitor cell transplantation for spinal cord injury treatment; A systematic review and meta-analysis. Neuroscience, 322, 377–397.PubMedCrossRef Yousefifard, M., Rahimi-Movaghar, V., Nasirinezhad, F., Baikpour, M., Safari, S., Saadat, S., et al. (2016). Neural stem/progenitor cell transplantation for spinal cord injury treatment; A systematic review and meta-analysis. Neuroscience, 322, 377–397.PubMedCrossRef
64.
Zurück zum Zitat Lee, E. J., Park, S. J., Kang, S. K., Kim, G. H., Kang, H. J., Lee, S. W., et al. (2012). Spherical bullet formation via E-cadherin promotes therapeutic potency of mesenchymal stem cells derived from human umbilical cord blood for myocardial infarction. Molecular Therapy, 20(7), 1424–1433.PubMedCrossRefPubMedCentral Lee, E. J., Park, S. J., Kang, S. K., Kim, G. H., Kang, H. J., Lee, S. W., et al. (2012). Spherical bullet formation via E-cadherin promotes therapeutic potency of mesenchymal stem cells derived from human umbilical cord blood for myocardial infarction. Molecular Therapy, 20(7), 1424–1433.PubMedCrossRefPubMedCentral
65.
Zurück zum Zitat Tsai, A. C., Liu, Y., Yuan, X., & Ma, T. (2015). Compaction, fusion, and functional activation of three-dimensional human mesenchymal stem cell aggregate. Tissue Engineering. Part A, 21(9–10), 1705–1719.PubMedCrossRefPubMedCentral Tsai, A. C., Liu, Y., Yuan, X., & Ma, T. (2015). Compaction, fusion, and functional activation of three-dimensional human mesenchymal stem cell aggregate. Tissue Engineering. Part A, 21(9–10), 1705–1719.PubMedCrossRefPubMedCentral
66.
Zurück zum Zitat Ruiz, S. A., & Chen, C. S. (2008). Emergence of patterned stem cell differentiation within multicellular structures. Stem Cells, 26(11), 2921–2927.PubMedCrossRefPubMedCentral Ruiz, S. A., & Chen, C. S. (2008). Emergence of patterned stem cell differentiation within multicellular structures. Stem Cells, 26(11), 2921–2927.PubMedCrossRefPubMedCentral
67.
Zurück zum Zitat Kim, J., & Ma, T. (2013). Endogenous extracellular matrices enhance human mesenchymal stem cell aggregate formation and survival. Biotechnology Progress, 29(2), 441–451.PubMedCrossRef Kim, J., & Ma, T. (2013). Endogenous extracellular matrices enhance human mesenchymal stem cell aggregate formation and survival. Biotechnology Progress, 29(2), 441–451.PubMedCrossRef
68.
Zurück zum Zitat Huang, G. S., Dai, L. G., Yen, B. L., & Hsu, S. H. (2011). Spheroid formation of mesenchymal stem cells on chitosan and chitosan-hyaluronan membranes. Biomaterials, 32(29), 6929–6945.PubMedCrossRef Huang, G. S., Dai, L. G., Yen, B. L., & Hsu, S. H. (2011). Spheroid formation of mesenchymal stem cells on chitosan and chitosan-hyaluronan membranes. Biomaterials, 32(29), 6929–6945.PubMedCrossRef
69.
Zurück zum Zitat Chimenti, I., Pagano, F., Angelini, F., Siciliano, C., Mangino, G., Picchio, V., et al. (2016). Human lung spheroids as in vitro niches of lung progenitor cells with distinctive paracrine and plasticity properties. Stem Cells Transl Med. Chimenti, I., Pagano, F., Angelini, F., Siciliano, C., Mangino, G., Picchio, V., et al. (2016). Human lung spheroids as in vitro niches of lung progenitor cells with distinctive paracrine and plasticity properties. Stem Cells Transl Med.
70.
Zurück zum Zitat Henry, E., Cores, J., Hensley, M. T., Anthony, S., Vandergriff, A., de Andrade, J. B., et al. (2015). Adult lung spheroid cells contain progenitor cells and mediate regeneration in rodents with bleomycin-induced pulmonary fibrosis. Stem Cells Translational Medicine, 4(11), 1265–1274.PubMedCrossRefPubMedCentral Henry, E., Cores, J., Hensley, M. T., Anthony, S., Vandergriff, A., de Andrade, J. B., et al. (2015). Adult lung spheroid cells contain progenitor cells and mediate regeneration in rodents with bleomycin-induced pulmonary fibrosis. Stem Cells Translational Medicine, 4(11), 1265–1274.PubMedCrossRefPubMedCentral
71.
Zurück zum Zitat Bergmann, O., Zdunek, S., Felker, A., Salehpour, M., Alkass, K., Bernard, S., et al. (2015). Dynamics of cell generation and turnover in the human heart. Cell, 161(7), 1566–1575.PubMedCrossRef Bergmann, O., Zdunek, S., Felker, A., Salehpour, M., Alkass, K., Bernard, S., et al. (2015). Dynamics of cell generation and turnover in the human heart. Cell, 161(7), 1566–1575.PubMedCrossRef
72.
Zurück zum Zitat Pesce, M., Burba, I., Gambini, E., Prandi, F., Pompilio, G., & Capogrossi, M. C. (2011). Endothelial and cardiac progenitors: boosting, conditioning and (re)programming for cardiovascular repair. Pharmacology & Therapeutics, 129(1), 50–61.CrossRef Pesce, M., Burba, I., Gambini, E., Prandi, F., Pompilio, G., & Capogrossi, M. C. (2011). Endothelial and cardiac progenitors: boosting, conditioning and (re)programming for cardiovascular repair. Pharmacology & Therapeutics, 129(1), 50–61.CrossRef
73.
Zurück zum Zitat Gambini, E., Pompilio, G., Biondi, A., Alamanni, F., Capogrossi, M. C., Agrifoglio, M., et al. (2011). C-kit+ cardiac progenitors exhibit mesenchymal markers and preferential cardiovascular commitment. Cardiovascular Research, 89(2), 362–373.PubMedCrossRef Gambini, E., Pompilio, G., Biondi, A., Alamanni, F., Capogrossi, M. C., Agrifoglio, M., et al. (2011). C-kit+ cardiac progenitors exhibit mesenchymal markers and preferential cardiovascular commitment. Cardiovascular Research, 89(2), 362–373.PubMedCrossRef
74.
Zurück zum Zitat Avolio, E., Gianfranceschi, G., Cesselli, D., Caragnano, A., Athanasakis, E., Katare, R., et al. (2014). Ex vivo molecular rejuvenation improves the therapeutic activity of senescent human cardiac stem cells in a mouse model of myocardial infarction. Stem Cells, 32(9), 2373–2385.PubMedCrossRef Avolio, E., Gianfranceschi, G., Cesselli, D., Caragnano, A., Athanasakis, E., Katare, R., et al. (2014). Ex vivo molecular rejuvenation improves the therapeutic activity of senescent human cardiac stem cells in a mouse model of myocardial infarction. Stem Cells, 32(9), 2373–2385.PubMedCrossRef
75.
Zurück zum Zitat Gianfranceschi, G., Caragnano, A., Piazza, S., Manini, I., Ciani, Y., Verardo, R., et al. (2016). Critical role of lysosomes in the dysfunction of human cardiac stem cells obtained from failing hearts. International Journal of Cardiology, 216, 140–150.PubMedCrossRef Gianfranceschi, G., Caragnano, A., Piazza, S., Manini, I., Ciani, Y., Verardo, R., et al. (2016). Critical role of lysosomes in the dysfunction of human cardiac stem cells obtained from failing hearts. International Journal of Cardiology, 216, 140–150.PubMedCrossRef
76.
Zurück zum Zitat Forte, E., Chimenti, I., Barile, L., Gaetani, R., Angelini, F., Ionta, V., et al. (2011). Cardiac cell therapy: the next (re)generation. Stem Cell Reviews, 7(4), 1018–1030.PubMedCrossRef Forte, E., Chimenti, I., Barile, L., Gaetani, R., Angelini, F., Ionta, V., et al. (2011). Cardiac cell therapy: the next (re)generation. Stem Cell Reviews, 7(4), 1018–1030.PubMedCrossRef
77.
Zurück zum Zitat Messina, E., De Angelis, L., Frati, G., Morrone, S., Chimenti, S., Fiordaliso, F., et al. (2004). Isolation and expansion of adult cardiac stem cells from human and murine heart. Circulation Research, 95(9), 911–921.PubMedCrossRef Messina, E., De Angelis, L., Frati, G., Morrone, S., Chimenti, S., Fiordaliso, F., et al. (2004). Isolation and expansion of adult cardiac stem cells from human and murine heart. Circulation Research, 95(9), 911–921.PubMedCrossRef
78.
Zurück zum Zitat Chimenti, I., Gaetani, R., Barile, L., Forte, E., Ionta, V., Angelini, F., et al. (2012a). Isolation and expansion of adult cardiac stem/progenitor cells in the form of cardiospheres from human cardiac biopsies and murine hearts. Methods in Molecular Biology, 879, 327–338.PubMedCrossRef Chimenti, I., Gaetani, R., Barile, L., Forte, E., Ionta, V., Angelini, F., et al. (2012a). Isolation and expansion of adult cardiac stem/progenitor cells in the form of cardiospheres from human cardiac biopsies and murine hearts. Methods in Molecular Biology, 879, 327–338.PubMedCrossRef
79.
Zurück zum Zitat Chimenti, I., Gaetani, R., Forte, E., Angelini, F., De Falco, E., Zoccai, G. B., et al. (2014). Serum and supplement optimization for EU GMP-compliance in cardiospheres cell culture. Journal of Cellular and Molecular Medicine, 18(4), 624–634.PubMedCrossRefPubMedCentral Chimenti, I., Gaetani, R., Forte, E., Angelini, F., De Falco, E., Zoccai, G. B., et al. (2014). Serum and supplement optimization for EU GMP-compliance in cardiospheres cell culture. Journal of Cellular and Molecular Medicine, 18(4), 624–634.PubMedCrossRefPubMedCentral
80.
Zurück zum Zitat Yacoub, M. H., & Terrovitis, J. (2013). CADUCEUS, SCIPIO, ALCADIA: Cell therapy trials using cardiac-derived cells for patients with post myocardial infarction LV dysfunction, still evolving. Glob Cardiol Sci Pract, 2013(1), 5–8.PubMedCrossRefPubMedCentral Yacoub, M. H., & Terrovitis, J. (2013). CADUCEUS, SCIPIO, ALCADIA: Cell therapy trials using cardiac-derived cells for patients with post myocardial infarction LV dysfunction, still evolving. Glob Cardiol Sci Pract, 2013(1), 5–8.PubMedCrossRefPubMedCentral
81.
Zurück zum Zitat Peruzzi, M., De Falco, E., Abbate, A., Biondi-Zoccai, G., Chimenti, I., Lotrionte, M., et al. (2015). State of the art on the evidence base in cardiac regenerative therapy: overview of 41 systematic reviews. BioMed Research International, 2015, 613782.PubMedCrossRefPubMedCentral Peruzzi, M., De Falco, E., Abbate, A., Biondi-Zoccai, G., Chimenti, I., Lotrionte, M., et al. (2015). State of the art on the evidence base in cardiac regenerative therapy: overview of 41 systematic reviews. BioMed Research International, 2015, 613782.PubMedCrossRefPubMedCentral
82.
Zurück zum Zitat Gaetani, R., Feyen, D. A., Doevendans, P. A., Gremmels, H., Forte, E., Fledderus, J. O., et al. (2014). Different types of cultured human adult cardiac progenitor cells have a high degree of transcriptome similarity. Journal of Cellular and Molecular Medicine, 18(11), 2147–2151.PubMedCrossRefPubMedCentral Gaetani, R., Feyen, D. A., Doevendans, P. A., Gremmels, H., Forte, E., Fledderus, J. O., et al. (2014). Different types of cultured human adult cardiac progenitor cells have a high degree of transcriptome similarity. Journal of Cellular and Molecular Medicine, 18(11), 2147–2151.PubMedCrossRefPubMedCentral
83.
Zurück zum Zitat Siciliano, C., Chimenti, I., Ibrahim, M., Napoletano, C., Mangino, G., Scafetta, G., et al. (2015). Cardiosphere conditioned media influence the plasticity of human mediastinal adipose tissue-derived mesenchymal stem cells. Cell Transplantation, 24(11), 2307–2322.PubMedCrossRef Siciliano, C., Chimenti, I., Ibrahim, M., Napoletano, C., Mangino, G., Scafetta, G., et al. (2015). Cardiosphere conditioned media influence the plasticity of human mediastinal adipose tissue-derived mesenchymal stem cells. Cell Transplantation, 24(11), 2307–2322.PubMedCrossRef
84.
Zurück zum Zitat Covas, D. T., Panepucci, R. A., Fontes, A. M., Silva Jr., W. A., Orellana, M. D., Freitas, M. C., et al. (2008). Multipotent mesenchymal stromal cells obtained from diverse human tissues share functional properties and gene-expression profile with CD146+ perivascular cells and fibroblasts. Experimental Hematology, 36(5), 642–654.PubMedCrossRef Covas, D. T., Panepucci, R. A., Fontes, A. M., Silva Jr., W. A., Orellana, M. D., Freitas, M. C., et al. (2008). Multipotent mesenchymal stromal cells obtained from diverse human tissues share functional properties and gene-expression profile with CD146+ perivascular cells and fibroblasts. Experimental Hematology, 36(5), 642–654.PubMedCrossRef
85.
Zurück zum Zitat Crisan, M., Yap, S., Casteilla, L., Chen, C. W., Corselli, M., Park, T. S., et al. (2008). A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell, 3(3), 301–313.PubMedCrossRef Crisan, M., Yap, S., Casteilla, L., Chen, C. W., Corselli, M., Park, T. S., et al. (2008). A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell, 3(3), 301–313.PubMedCrossRef
86.
Zurück zum Zitat Caplan, A. I. (2016). MSCs: the sentinel and safe-guards of injury. Journal of Cellular Physiology, 231(7), 1413–1416.PubMedCrossRef Caplan, A. I. (2016). MSCs: the sentinel and safe-guards of injury. Journal of Cellular Physiology, 231(7), 1413–1416.PubMedCrossRef
87.
Zurück zum Zitat Kimura, W., & Sadek, H. A. (2012). The cardiac hypoxic niche: emerging role of hypoxic microenvironment in cardiac progenitors. Cardiovasc Diagn Ther, 2(4), 278–289.PubMedPubMedCentral Kimura, W., & Sadek, H. A. (2012). The cardiac hypoxic niche: emerging role of hypoxic microenvironment in cardiac progenitors. Cardiovasc Diagn Ther, 2(4), 278–289.PubMedPubMedCentral
88.
Zurück zum Zitat Urbanek, K., Cesselli, D., Rota, M., Nascimbene, A., De Angelis, A., Hosoda, T., et al. (2006). Stem cell niches in the adult mouse heart. Proceedings of the National Academy of Sciences of the United States of America, 103(24), 9226–9231.PubMedCrossRefPubMedCentral Urbanek, K., Cesselli, D., Rota, M., Nascimbene, A., De Angelis, A., Hosoda, T., et al. (2006). Stem cell niches in the adult mouse heart. Proceedings of the National Academy of Sciences of the United States of America, 103(24), 9226–9231.PubMedCrossRefPubMedCentral
89.
Zurück zum Zitat Li, T. S., Cheng, K., Lee, S. T., Matsushita, S., Davis, D., Malliaras, K., et al. (2010). Cardiospheres recapitulate a niche-like microenvironment rich in stemness and cell-matrix interactions, rationalizing their enhanced functional potency for myocardial repair. Stem Cells, 28(11), 2088–2098.PubMedCrossRefPubMedCentral Li, T. S., Cheng, K., Lee, S. T., Matsushita, S., Davis, D., Malliaras, K., et al. (2010). Cardiospheres recapitulate a niche-like microenvironment rich in stemness and cell-matrix interactions, rationalizing their enhanced functional potency for myocardial repair. Stem Cells, 28(11), 2088–2098.PubMedCrossRefPubMedCentral
90.
Zurück zum Zitat D'Elia, P., Ionta, V., Chimenti, I., Angelini, F., Miraldi, F., Pala, A., et al. (2013). Analysis of pregnancy-associated plasma protein a production in human adult cardiac progenitor cells. BioMed Research International, 2013, 190178.PubMedPubMedCentral D'Elia, P., Ionta, V., Chimenti, I., Angelini, F., Miraldi, F., Pala, A., et al. (2013). Analysis of pregnancy-associated plasma protein a production in human adult cardiac progenitor cells. BioMed Research International, 2013, 190178.PubMedPubMedCentral
91.
Zurück zum Zitat Chimenti, I., Forte, E., Angelini, F., Giacomello, A., & Messina, E. (2012b). From ontogenesis to regeneration: learning how to instruct adult cardiac progenitor cells. Progress in Molecular Biology and Translational Science, 111, 109–137.PubMedCrossRef Chimenti, I., Forte, E., Angelini, F., Giacomello, A., & Messina, E. (2012b). From ontogenesis to regeneration: learning how to instruct adult cardiac progenitor cells. Progress in Molecular Biology and Translational Science, 111, 109–137.PubMedCrossRef
92.
Zurück zum Zitat Chua, K. N., Poon, K. L., Lim, J., Sim, W. J., Huang, R. Y., & Thiery, J. P. (2011). Target cell movement in tumor and cardiovascular diseases based on the epithelial-mesenchymal transition concept. Advanced Drug Delivery Reviews, 63(8), 558–567.PubMedCrossRef Chua, K. N., Poon, K. L., Lim, J., Sim, W. J., Huang, R. Y., & Thiery, J. P. (2011). Target cell movement in tumor and cardiovascular diseases based on the epithelial-mesenchymal transition concept. Advanced Drug Delivery Reviews, 63(8), 558–567.PubMedCrossRef
93.
Zurück zum Zitat Caja, L., Bertran, E., Campbell, J., Fausto, N., & Fabregat, I. (2011). The transforming growth factor-beta (TGF-beta) mediates acquisition of a mesenchymal stem cell-like phenotype in human liver cells. Journal of Cellular Physiology, 226(5), 1214–1223.PubMedCrossRef Caja, L., Bertran, E., Campbell, J., Fausto, N., & Fabregat, I. (2011). The transforming growth factor-beta (TGF-beta) mediates acquisition of a mesenchymal stem cell-like phenotype in human liver cells. Journal of Cellular Physiology, 226(5), 1214–1223.PubMedCrossRef
94.
Zurück zum Zitat Boudoulas, K. D., & Hatzopoulos, A. K. (2009). Cardiac repair and regeneration: the Rubik’s cube of cell therapy for heart disease. Disease Models & Mechanisms, 2(7–8), 344–358.CrossRef Boudoulas, K. D., & Hatzopoulos, A. K. (2009). Cardiac repair and regeneration: the Rubik’s cube of cell therapy for heart disease. Disease Models & Mechanisms, 2(7–8), 344–358.CrossRef
95.
Zurück zum Zitat Limana, F., Capogrossi, M. C., & Germani, A. (2011). The epicardium in cardiac repair: from the stem cell view. Pharmacology & Therapeutics, 129(1), 82–96.CrossRef Limana, F., Capogrossi, M. C., & Germani, A. (2011). The epicardium in cardiac repair: from the stem cell view. Pharmacology & Therapeutics, 129(1), 82–96.CrossRef
96.
Zurück zum Zitat Pagano, F., Angelini, F., Siciliano, C., Tasciotti, J., Mangino, G., De Falco, E., et al. (2017). Beta2-adrenergic signaling affects the phenotype of human cardiac progenitor cells through EMT modulation. Pharmacol Res. Pagano, F., Angelini, F., Siciliano, C., Tasciotti, J., Mangino, G., De Falco, E., et al. (2017). Beta2-adrenergic signaling affects the phenotype of human cardiac progenitor cells through EMT modulation. Pharmacol Res.
97.
Zurück zum Zitat Tseliou, E., de Couto, G., Terrovitis, J., Sun, B., Weixin, L., Marban, L., et al. (2014). Angiogenesis, cardiomyocyte proliferation and anti-fibrotic effects underlie structural preservation post-infarction by intramyocardially-injected cardiospheres. PloS One, 9(2), e88590.PubMedCrossRefPubMedCentral Tseliou, E., de Couto, G., Terrovitis, J., Sun, B., Weixin, L., Marban, L., et al. (2014). Angiogenesis, cardiomyocyte proliferation and anti-fibrotic effects underlie structural preservation post-infarction by intramyocardially-injected cardiospheres. PloS One, 9(2), e88590.PubMedCrossRefPubMedCentral
98.
Zurück zum Zitat Chimenti, I., Forte, E., Angelini, F., Messina, E., & Giacomello, A. (2013). Biochemistry and biology: heart-to-heart to investigate cardiac progenitor cells. Biochimica et Biophysica Acta, 1830(2), 2459–2469.PubMedCrossRef Chimenti, I., Forte, E., Angelini, F., Messina, E., & Giacomello, A. (2013). Biochemistry and biology: heart-to-heart to investigate cardiac progenitor cells. Biochimica et Biophysica Acta, 1830(2), 2459–2469.PubMedCrossRef
99.
Zurück zum Zitat Ito, K., & Suda, T. (2014). Metabolic requirements for the maintenance of self-renewing stem cells. Nature Reviews. Molecular Cell Biology, 15(4), 243–256.PubMedCrossRefPubMedCentral Ito, K., & Suda, T. (2014). Metabolic requirements for the maintenance of self-renewing stem cells. Nature Reviews. Molecular Cell Biology, 15(4), 243–256.PubMedCrossRefPubMedCentral
100.
Zurück zum Zitat Tennant, D. A., Frezza, C., MacKenzie, E. D., Nguyen, Q. D., Zheng, L., Selak, M. A., et al. (2009). Reactivating HIF prolyl hydroxylases under hypoxia results in metabolic catastrophe and cell death. Oncogene, 28(45), 4009–4021.PubMedCrossRef Tennant, D. A., Frezza, C., MacKenzie, E. D., Nguyen, Q. D., Zheng, L., Selak, M. A., et al. (2009). Reactivating HIF prolyl hydroxylases under hypoxia results in metabolic catastrophe and cell death. Oncogene, 28(45), 4009–4021.PubMedCrossRef
101.
Zurück zum Zitat Takubo, K., Nagamatsu, G., Kobayashi, C. I., Nakamura-Ishizu, A., Kobayashi, H., Ikeda, E., et al. (2013). Regulation of glycolysis by Pdk functions as a metabolic checkpoint for cell cycle quiescence in hematopoietic stem cells. Cell Stem Cell, 12(1), 49–61.PubMedCrossRef Takubo, K., Nagamatsu, G., Kobayashi, C. I., Nakamura-Ishizu, A., Kobayashi, H., Ikeda, E., et al. (2013). Regulation of glycolysis by Pdk functions as a metabolic checkpoint for cell cycle quiescence in hematopoietic stem cells. Cell Stem Cell, 12(1), 49–61.PubMedCrossRef
102.
Zurück zum Zitat Chen, C., Liu, Y., Liu, R., Ikenoue, T., Guan, K. L., Liu, Y., et al. (2008). TSC-mTOR maintains quiescence and function of hematopoietic stem cells by repressing mitochondrial biogenesis and reactive oxygen species. The Journal of Experimental Medicine, 205(10), 2397–2408.PubMedCrossRefPubMedCentral Chen, C., Liu, Y., Liu, R., Ikenoue, T., Guan, K. L., Liu, Y., et al. (2008). TSC-mTOR maintains quiescence and function of hematopoietic stem cells by repressing mitochondrial biogenesis and reactive oxygen species. The Journal of Experimental Medicine, 205(10), 2397–2408.PubMedCrossRefPubMedCentral
103.
Zurück zum Zitat Greer, E. L., Banko, M. R., & Brunet, A. (2009). AMP-activated protein kinase and FoxO transcription factors in dietary restriction-induced longevity. Annals of the New York Academy of Sciences, 1170, 688–692.PubMedCrossRefPubMedCentral Greer, E. L., Banko, M. R., & Brunet, A. (2009). AMP-activated protein kinase and FoxO transcription factors in dietary restriction-induced longevity. Annals of the New York Academy of Sciences, 1170, 688–692.PubMedCrossRefPubMedCentral
104.
Zurück zum Zitat Johnson, A. M., & Kartha, C. C. (2014). Proliferation of murine c-kit(pos) cardiac stem cells stimulated with IGF-1 is associated with Akt-1 mediated phosphorylation and nuclear export of FoxO3a and its effect on downstream cell cycle regulators. Growth Factors, 32(2), 53–62.PubMedCrossRef Johnson, A. M., & Kartha, C. C. (2014). Proliferation of murine c-kit(pos) cardiac stem cells stimulated with IGF-1 is associated with Akt-1 mediated phosphorylation and nuclear export of FoxO3a and its effect on downstream cell cycle regulators. Growth Factors, 32(2), 53–62.PubMedCrossRef
105.
Zurück zum Zitat Moussaieff, A., Kogan, N. M., & Aberdam, D. (2015). Concise review: energy metabolites: key mediators of the epigenetic state of pluripotency. Stem Cells, 33(8), 2374–2380.PubMedCrossRef Moussaieff, A., Kogan, N. M., & Aberdam, D. (2015). Concise review: energy metabolites: key mediators of the epigenetic state of pluripotency. Stem Cells, 33(8), 2374–2380.PubMedCrossRef
106.
Zurück zum Zitat Carey, B. W., Finley, L. W., Cross, J. R., Allis, C. D., & Thompson, C. B. (2015). Intracellular alpha-ketoglutarate maintains the pluripotency of embryonic stem cells. Nature, 518(7539), 413–416.PubMedCrossRef Carey, B. W., Finley, L. W., Cross, J. R., Allis, C. D., & Thompson, C. B. (2015). Intracellular alpha-ketoglutarate maintains the pluripotency of embryonic stem cells. Nature, 518(7539), 413–416.PubMedCrossRef
107.
Zurück zum Zitat Shiraki, N., Shiraki, Y., Tsuyama, T., Obata, F., Miura, M., Nagae, G., et al. (2014). Methionine metabolism regulates maintenance and differentiation of human pluripotent stem cells. Cell Metabolism, 19(5), 780–794.PubMedCrossRef Shiraki, N., Shiraki, Y., Tsuyama, T., Obata, F., Miura, M., Nagae, G., et al. (2014). Methionine metabolism regulates maintenance and differentiation of human pluripotent stem cells. Cell Metabolism, 19(5), 780–794.PubMedCrossRef
108.
Zurück zum Zitat Shirato, K., Nakajima, K., Korekane, H., Takamatsu, S., Gao, C., Angata, T., et al. (2011). Hypoxic regulation of glycosylation via the N-acetylglucosamine cycle. Journal of Clinical Biochemistry and Nutrition, 48(1), 20–25.PubMedCrossRef Shirato, K., Nakajima, K., Korekane, H., Takamatsu, S., Gao, C., Angata, T., et al. (2011). Hypoxic regulation of glycosylation via the N-acetylglucosamine cycle. Journal of Clinical Biochemistry and Nutrition, 48(1), 20–25.PubMedCrossRef
109.
Zurück zum Zitat Salabei, J. K., Lorkiewicz, P. K., Holden, C. R., Li, Q., Hong, K. U., Bolli, R., et al. (2015). Glutamine regulates cardiac progenitor cell metabolism and proliferation. Stem Cells, 33(8), 2613–2627.PubMedCrossRefPubMedCentral Salabei, J. K., Lorkiewicz, P. K., Holden, C. R., Li, Q., Hong, K. U., Bolli, R., et al. (2015). Glutamine regulates cardiac progenitor cell metabolism and proliferation. Stem Cells, 33(8), 2613–2627.PubMedCrossRefPubMedCentral
110.
Zurück zum Zitat Zafir, A., Readnower, R., Long, B. W., McCracken, J., Aird, A., Alvarez, A., et al. (2013). Protein O-GlcNAcylation is a novel cytoprotective signal in cardiac stem cells. Stem Cells, 31(4), 765–775.PubMedCrossRef Zafir, A., Readnower, R., Long, B. W., McCracken, J., Aird, A., Alvarez, A., et al. (2013). Protein O-GlcNAcylation is a novel cytoprotective signal in cardiac stem cells. Stem Cells, 31(4), 765–775.PubMedCrossRef
111.
Zurück zum Zitat Zafir, A., Bradley, J. A., Long, B. W., Muthusamy, S., Li, Q., Hill, B. G., et al. (2015). O-GlcNAcylation negatively regulates cardiomyogenic fate in adult mouse cardiac mesenchymal stromal cells. PloS One, 10(11), e0142939.PubMedCrossRefPubMedCentral Zafir, A., Bradley, J. A., Long, B. W., Muthusamy, S., Li, Q., Hill, B. G., et al. (2015). O-GlcNAcylation negatively regulates cardiomyogenic fate in adult mouse cardiac mesenchymal stromal cells. PloS One, 10(11), e0142939.PubMedCrossRefPubMedCentral
112.
Zurück zum Zitat Gilbert, P. M., Havenstrite, K. L., Magnusson, K. E., Sacco, A., Leonardi, N. A., Kraft, P., et al. (2010). Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science, 329(5995), 1078–1081.PubMedCrossRefPubMedCentral Gilbert, P. M., Havenstrite, K. L., Magnusson, K. E., Sacco, A., Leonardi, N. A., Kraft, P., et al. (2010). Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science, 329(5995), 1078–1081.PubMedCrossRefPubMedCentral
113.
Zurück zum Zitat McBeath, R., Pirone, D. M., Nelson, C. M., Bhadriraju, K., & Chen, C. S. (2004). Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Developmental Cell, 6(4), 483–495.PubMedCrossRef McBeath, R., Pirone, D. M., Nelson, C. M., Bhadriraju, K., & Chen, C. S. (2004). Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Developmental Cell, 6(4), 483–495.PubMedCrossRef
114.
Zurück zum Zitat Desmaison, A., Frongia, C., Grenier, K., Ducommun, B., & Lobjois, V. (2013). Mechanical stress impairs mitosis progression in multi-cellular tumor spheroids. PloS One, 8(12), e80447.PubMedCrossRefPubMedCentral Desmaison, A., Frongia, C., Grenier, K., Ducommun, B., & Lobjois, V. (2013). Mechanical stress impairs mitosis progression in multi-cellular tumor spheroids. PloS One, 8(12), e80447.PubMedCrossRefPubMedCentral
115.
Zurück zum Zitat Santinon, G., Pocaterra, A., & Dupont, S. (2016). Control of YAP/TAZ activity by metabolic and nutrient-sensing pathways. Trends in Cell Biology, 26(4), 289–299.PubMedCrossRef Santinon, G., Pocaterra, A., & Dupont, S. (2016). Control of YAP/TAZ activity by metabolic and nutrient-sensing pathways. Trends in Cell Biology, 26(4), 289–299.PubMedCrossRef
116.
Zurück zum Zitat Mosqueira, D., Pagliari, S., Uto, K., Ebara, M., Romanazzo, S., Escobedo-Lucea, C., et al. (2014). Hippo pathway effectors control cardiac progenitor cell fate by acting as dynamic sensors of substrate mechanics and nanostructure. ACS Nano, 8(3), 2033–2047.PubMedCrossRef Mosqueira, D., Pagliari, S., Uto, K., Ebara, M., Romanazzo, S., Escobedo-Lucea, C., et al. (2014). Hippo pathway effectors control cardiac progenitor cell fate by acting as dynamic sensors of substrate mechanics and nanostructure. ACS Nano, 8(3), 2033–2047.PubMedCrossRef
117.
Zurück zum Zitat Lin, Z., & Pu, W. T. (2014). Harnessing Hippo in the heart: Hippo/Yap signaling and applications to heart regeneration and rejuvenation. Stem Cell Research, 13(3 Pt B), 571–581.PubMedCrossRefPubMedCentral Lin, Z., & Pu, W. T. (2014). Harnessing Hippo in the heart: Hippo/Yap signaling and applications to heart regeneration and rejuvenation. Stem Cell Research, 13(3 Pt B), 571–581.PubMedCrossRefPubMedCentral
118.
Zurück zum Zitat Pesce, M., Messina, E., Chimenti, I., & Beltrami, A. P. (2017). Cardiac mechanoperception: a life-long story from early beats to aging and failure. Stem Cells and Development, 26(2), 77–90.PubMedCrossRef Pesce, M., Messina, E., Chimenti, I., & Beltrami, A. P. (2017). Cardiac mechanoperception: a life-long story from early beats to aging and failure. Stem Cells and Development, 26(2), 77–90.PubMedCrossRef
119.
Zurück zum Zitat Boheler, K. R., Czyz, J., Tweedie, D., Yang, H. T., Anisimov, S. V., & Wobus, A. M. (2002). Differentiation of pluripotent embryonic stem cells into cardiomyocytes. Circulation Research, 91(3), 189–201.PubMedCrossRef Boheler, K. R., Czyz, J., Tweedie, D., Yang, H. T., Anisimov, S. V., & Wobus, A. M. (2002). Differentiation of pluripotent embryonic stem cells into cardiomyocytes. Circulation Research, 91(3), 189–201.PubMedCrossRef
120.
Zurück zum Zitat Lin, R. Z., & Chang, H. Y. (2008). Recent advances in three-dimensional multicellular spheroid culture for biomedical research. Biotechnology Journal, 3(9–10), 1172–1184.PubMedCrossRef Lin, R. Z., & Chang, H. Y. (2008). Recent advances in three-dimensional multicellular spheroid culture for biomedical research. Biotechnology Journal, 3(9–10), 1172–1184.PubMedCrossRef
121.
Zurück zum Zitat Gentile, C. (2015). Filling the gaps between the in vivo and in vitro microenvironment: engineering of spheroids for stem cell technology. Curr Stem Cell Res Ther. Gentile, C. (2015). Filling the gaps between the in vivo and in vitro microenvironment: engineering of spheroids for stem cell technology. Curr Stem Cell Res Ther.
122.
Zurück zum Zitat Chen, S. F., Chang, Y. C., Nieh, S., Liu, C. L., Yang, C. Y., & Lin, Y. S. (2012). Nonadhesive culture system as a model of rapid sphere formation with cancer stem cell properties. PloS One, 7(2), e31864.PubMedCrossRefPubMedCentral Chen, S. F., Chang, Y. C., Nieh, S., Liu, C. L., Yang, C. Y., & Lin, Y. S. (2012). Nonadhesive culture system as a model of rapid sphere formation with cancer stem cell properties. PloS One, 7(2), e31864.PubMedCrossRefPubMedCentral
123.
Zurück zum Zitat Su, G., Zhao, Y., Wei, J., Han, J., Chen, L., Xiao, Z., et al. (2013). The effect of forced growth of cells into 3D spheres using low attachment surfaces on the acquisition of stemness properties. Biomaterials, 34(13), 3215–3222.PubMedCrossRef Su, G., Zhao, Y., Wei, J., Han, J., Chen, L., Xiao, Z., et al. (2013). The effect of forced growth of cells into 3D spheres using low attachment surfaces on the acquisition of stemness properties. Biomaterials, 34(13), 3215–3222.PubMedCrossRef
124.
Zurück zum Zitat Bielby, R. C., Boccaccini, A. R., Polak, J. M., & Buttery, L. D. (2004). In vitro differentiation and in vivo mineralization of osteogenic cells derived from human embryonic stem cells. Tissue Engineering, 10(9–10), 1518–1525.PubMedCrossRef Bielby, R. C., Boccaccini, A. R., Polak, J. M., & Buttery, L. D. (2004). In vitro differentiation and in vivo mineralization of osteogenic cells derived from human embryonic stem cells. Tissue Engineering, 10(9–10), 1518–1525.PubMedCrossRef
125.
Zurück zum Zitat Akiyama, M., Nonomura, H., Kamil, S. H., & Ignotz, R. A. (2006). Periosteal cell pellet culture system: a new technique for bone engineering. Cell Transplantation, 15(6), 521–532.PubMedCrossRef Akiyama, M., Nonomura, H., Kamil, S. H., & Ignotz, R. A. (2006). Periosteal cell pellet culture system: a new technique for bone engineering. Cell Transplantation, 15(6), 521–532.PubMedCrossRef
126.
Zurück zum Zitat Ino, K., Ito, A., & Honda, H. (2007). Cell patterning using magnetite nanoparticles and magnetic force. Biotechnology and Bioengineering, 97(5), 1309–1317.PubMedCrossRef Ino, K., Ito, A., & Honda, H. (2007). Cell patterning using magnetite nanoparticles and magnetic force. Biotechnology and Bioengineering, 97(5), 1309–1317.PubMedCrossRef
127.
Zurück zum Zitat Laib, A. M., Bartol, A., Alajati, A., Korff, T., Weber, H., & Augustin, H. G. (2009). Spheroid-based human endothelial cell microvessel formation in vivo. Nature Protocols, 4(8), 1202–1215.PubMedCrossRef Laib, A. M., Bartol, A., Alajati, A., Korff, T., Weber, H., & Augustin, H. G. (2009). Spheroid-based human endothelial cell microvessel formation in vivo. Nature Protocols, 4(8), 1202–1215.PubMedCrossRef
128.
Zurück zum Zitat Ma, H. L., Hung, S. C., Lin, S. Y., Chen, Y. L., & Lo, W. H. (2003). Chondrogenesis of human mesenchymal stem cells encapsulated in alginate beads. Journal of Biomedical Materials Research. Part A, 64(2), 273–281.PubMedCrossRef Ma, H. L., Hung, S. C., Lin, S. Y., Chen, Y. L., & Lo, W. H. (2003). Chondrogenesis of human mesenchymal stem cells encapsulated in alginate beads. Journal of Biomedical Materials Research. Part A, 64(2), 273–281.PubMedCrossRef
129.
Zurück zum Zitat Yao, R., Zhang, R., Luan, J., & Lin, F. (2012). Alginate and alginate/gelatin microspheres for human adipose-derived stem cell encapsulation and differentiation. Biofabrication, 4(2), 025007.PubMedCrossRef Yao, R., Zhang, R., Luan, J., & Lin, F. (2012). Alginate and alginate/gelatin microspheres for human adipose-derived stem cell encapsulation and differentiation. Biofabrication, 4(2), 025007.PubMedCrossRef
130.
Zurück zum Zitat Otsuji, T. G., Bin, J., Yoshimura, A., Tomura, M., Tateyama, D., Minami, I., et al. (2014). A 3D sphere culture system containing functional polymers for large-scale human pluripotent stem cell production. Stem Cell Reports, 2(5), 734–745.PubMedCrossRefPubMedCentral Otsuji, T. G., Bin, J., Yoshimura, A., Tomura, M., Tateyama, D., Minami, I., et al. (2014). A 3D sphere culture system containing functional polymers for large-scale human pluripotent stem cell production. Stem Cell Reports, 2(5), 734–745.PubMedCrossRefPubMedCentral
131.
Zurück zum Zitat Andersen, T., Auk-Emblem, P., & Dornish, M. (2015). 3D cell culture in alginate hydrogels. Microarrays (Basel), 4(2), 133–161.CrossRef Andersen, T., Auk-Emblem, P., & Dornish, M. (2015). 3D cell culture in alginate hydrogels. Microarrays (Basel), 4(2), 133–161.CrossRef
132.
Zurück zum Zitat Knight, E., & Przyborski, S. (2015). Advances in 3D cell culture technologies enabling tissue-like structures to be created in vitro. Journal of Anatomy, 227(6), 746–756.PubMedCrossRef Knight, E., & Przyborski, S. (2015). Advances in 3D cell culture technologies enabling tissue-like structures to be created in vitro. Journal of Anatomy, 227(6), 746–756.PubMedCrossRef
133.
Zurück zum Zitat Rodrigues, C. A., Fernandes, T. G., Diogo, M. M., da Silva, C. L., & Cabral, J. M. (2011). Stem cell cultivation in bioreactors. Biotechnology Advances, 29(6), 815–829.PubMedCrossRef Rodrigues, C. A., Fernandes, T. G., Diogo, M. M., da Silva, C. L., & Cabral, J. M. (2011). Stem cell cultivation in bioreactors. Biotechnology Advances, 29(6), 815–829.PubMedCrossRef
134.
Zurück zum Zitat Jenkins, M. J., & Farid, S. S. (2015). Human pluripotent stem cell-derived products: advances towards robust, scalable and cost-effective manufacturing strategies. Biotechnology Journal, 10(1), 83–95.PubMedCrossRef Jenkins, M. J., & Farid, S. S. (2015). Human pluripotent stem cell-derived products: advances towards robust, scalable and cost-effective manufacturing strategies. Biotechnology Journal, 10(1), 83–95.PubMedCrossRef
135.
Zurück zum Zitat Rungarunlert, S., Techakumphu, M., Pirity, M. K., & Dinnyes, A. (2009). Embryoid body formation from embryonic and induced pluripotent stem cells: benefits of bioreactors. World J Stem Cells, 1(1), 11–21.PubMedCrossRefPubMedCentral Rungarunlert, S., Techakumphu, M., Pirity, M. K., & Dinnyes, A. (2009). Embryoid body formation from embryonic and induced pluripotent stem cells: benefits of bioreactors. World J Stem Cells, 1(1), 11–21.PubMedCrossRefPubMedCentral
136.
Zurück zum Zitat Wu, M. H., Huang, S. B., & Lee, G. B. (2010). Microfluidic cell culture systems for drug research. Lab on a Chip, 10(8), 939–956.PubMedCrossRef Wu, M. H., Huang, S. B., & Lee, G. B. (2010). Microfluidic cell culture systems for drug research. Lab on a Chip, 10(8), 939–956.PubMedCrossRef
137.
Zurück zum Zitat Dahlmann, J., Kensah, G., Kempf, H., Skvorc, D., Gawol, A., Elliott, D. A., et al. (2013). The use of agarose microwells for scalable embryoid body formation and cardiac differentiation of human and murine pluripotent stem cells. Biomaterials, 34(10), 2463–2471.PubMedCrossRef Dahlmann, J., Kensah, G., Kempf, H., Skvorc, D., Gawol, A., Elliott, D. A., et al. (2013). The use of agarose microwells for scalable embryoid body formation and cardiac differentiation of human and murine pluripotent stem cells. Biomaterials, 34(10), 2463–2471.PubMedCrossRef
138.
Zurück zum Zitat Serra, M., Brito, C., Correia, C., & Alves, P. M. (2012). Process engineering of human pluripotent stem cells for clinical application. Trends in Biotechnology, 30(6), 350–359.PubMedCrossRef Serra, M., Brito, C., Correia, C., & Alves, P. M. (2012). Process engineering of human pluripotent stem cells for clinical application. Trends in Biotechnology, 30(6), 350–359.PubMedCrossRef
139.
Zurück zum Zitat Hambor, J. E. (2012). Bioreactor design and bioprocess control for industrialized cell processing. Bioprocess International, 10, 22–33. Hambor, J. E. (2012). Bioreactor design and bioprocess control for industrialized cell processing. Bioprocess International, 10, 22–33.
140.
Zurück zum Zitat dos Santos, F. F., Andrade, P. Z., da Silva, C. L., & Cabral, J. M. (2013). Bioreactor design for clinical-grade expansion of stem cells. Biotechnology Journal, 8(6), 644–654.PubMedCrossRef dos Santos, F. F., Andrade, P. Z., da Silva, C. L., & Cabral, J. M. (2013). Bioreactor design for clinical-grade expansion of stem cells. Biotechnology Journal, 8(6), 644–654.PubMedCrossRef
141.
Zurück zum Zitat Massai, D., Cerino, G., Gallo, D., Pennella, F., Deriu, M. A., Rodriguez, A., et al. (2013). Bioreactors as engineering support to treat cardiac muscle and vascular disease. J Healthc Eng, 4(3), 329–370.PubMedCrossRef Massai, D., Cerino, G., Gallo, D., Pennella, F., Deriu, M. A., Rodriguez, A., et al. (2013). Bioreactors as engineering support to treat cardiac muscle and vascular disease. J Healthc Eng, 4(3), 329–370.PubMedCrossRef
142.
Zurück zum Zitat Kropp, C., Massai, D., & Zweigerdt, R. (2016a). Progress and challenges in large-scale expansion of human pluripotent stem cells. Process Biochemistry, In press. Kropp, C., Massai, D., & Zweigerdt, R. (2016a). Progress and challenges in large-scale expansion of human pluripotent stem cells. Process Biochemistry, In press.
143.
Zurück zum Zitat Perestrelo, A. R., Aguas, A. C., Rainer, A., & Forte, G. (2015). Microfluidic organ/body-on-a-chip devices at the convergence of biology and microengineering. Sensors (Basel), 15(12), 31142–31170.CrossRef Perestrelo, A. R., Aguas, A. C., Rainer, A., & Forte, G. (2015). Microfluidic organ/body-on-a-chip devices at the convergence of biology and microengineering. Sensors (Basel), 15(12), 31142–31170.CrossRef
144.
Zurück zum Zitat Cimetta, E., Figallo, E., Cannizzaro, C., Elvassore, N., & Vunjak-Novakovic, G. (2009). Micro-bioreactor arrays for controlling cellular environments: design principles for human embryonic stem cell applications. Methods, 47(2), 81–89.PubMedCrossRef Cimetta, E., Figallo, E., Cannizzaro, C., Elvassore, N., & Vunjak-Novakovic, G. (2009). Micro-bioreactor arrays for controlling cellular environments: design principles for human embryonic stem cell applications. Methods, 47(2), 81–89.PubMedCrossRef
145.
Zurück zum Zitat Azarin, S. M., & Palecek, S. P. (2010). Development of scalable culture systems for human embryonic stem cells. Biochemical Engineering Journal, 48(3), 378.PubMedCrossRefPubMedCentral Azarin, S. M., & Palecek, S. P. (2010). Development of scalable culture systems for human embryonic stem cells. Biochemical Engineering Journal, 48(3), 378.PubMedCrossRefPubMedCentral
146.
Zurück zum Zitat Patra, B., Chen, Y. H., Peng, C. C., Lin, S. C., Lee, C. H., & Tung, Y. C. (2013). A microfluidic device for uniform-sized cell spheroids formation, culture, harvesting and flow cytometry analysis. Biomicrofluidics, 7(5), 54114.PubMedCrossRef Patra, B., Chen, Y. H., Peng, C. C., Lin, S. C., Lee, C. H., & Tung, Y. C. (2013). A microfluidic device for uniform-sized cell spheroids formation, culture, harvesting and flow cytometry analysis. Biomicrofluidics, 7(5), 54114.PubMedCrossRef
147.
Zurück zum Zitat Kwapiszewska, K., Michalczuk, A., Rybka, M., Kwapiszewski, R., & Brzozka, Z. (2014). A microfluidic-based platform for tumour spheroid culture, monitoring and drug screening. Lab on a Chip, 14(12), 2096–2104.PubMedCrossRef Kwapiszewska, K., Michalczuk, A., Rybka, M., Kwapiszewski, R., & Brzozka, Z. (2014). A microfluidic-based platform for tumour spheroid culture, monitoring and drug screening. Lab on a Chip, 14(12), 2096–2104.PubMedCrossRef
148.
Zurück zum Zitat Sun, D., Lu, J., Chen, Z., Yu, Y., & Li, Y. (2014). A novel three-dimensional microfluidic platform for on chip multicellular tumor spheroid formation and culture. Microfluidics and Nanofluidics, 17(5), 831–542.CrossRef Sun, D., Lu, J., Chen, Z., Yu, Y., & Li, Y. (2014). A novel three-dimensional microfluidic platform for on chip multicellular tumor spheroid formation and culture. Microfluidics and Nanofluidics, 17(5), 831–542.CrossRef
149.
Zurück zum Zitat Occhetta, P., Centola, M., Tonnarelli, B., Redaelli, A., Martin, I., & Rasponi, M. (2015). High-throughput microfluidic platform for 3D cultures of mesenchymal stem cells, towards engineering developmental processes. Scientific Reports, 5, 10288.PubMedCrossRefPubMedCentral Occhetta, P., Centola, M., Tonnarelli, B., Redaelli, A., Martin, I., & Rasponi, M. (2015). High-throughput microfluidic platform for 3D cultures of mesenchymal stem cells, towards engineering developmental processes. Scientific Reports, 5, 10288.PubMedCrossRefPubMedCentral
150.
Zurück zum Zitat Ruppen, J., Wildhaber, F. D., Strub, C., Hall, S. R., Schmid, R. A., Geiser, T., et al. (2015). Towards personalized medicine: chemosensitivity assays of patient lung cancer cell spheroids in a perfused microfluidic platform. Lab on a Chip, 15(14), 3076–3085.PubMedCrossRef Ruppen, J., Wildhaber, F. D., Strub, C., Hall, S. R., Schmid, R. A., Geiser, T., et al. (2015). Towards personalized medicine: chemosensitivity assays of patient lung cancer cell spheroids in a perfused microfluidic platform. Lab on a Chip, 15(14), 3076–3085.PubMedCrossRef
151.
Zurück zum Zitat Frey, O., Misun, P. M., Fluri, D. A., Hengstler, J. G., & Hierlemann, A. (2014). Reconfigurable microfluidic hanging drop network for multi-tissue interaction and analysis. Nature Communications, 5, 4250.PubMedCrossRef Frey, O., Misun, P. M., Fluri, D. A., Hengstler, J. G., & Hierlemann, A. (2014). Reconfigurable microfluidic hanging drop network for multi-tissue interaction and analysis. Nature Communications, 5, 4250.PubMedCrossRef
152.
153.
Zurück zum Zitat Bhatia, S. N., & Ingber, D. E. (2014). Microfluidic organs-on-chips. Nature Biotechnology, 32(8), 760–772.PubMedCrossRef Bhatia, S. N., & Ingber, D. E. (2014). Microfluidic organs-on-chips. Nature Biotechnology, 32(8), 760–772.PubMedCrossRef
154.
Zurück zum Zitat Zweigerdt, R. (2009). Large scale production of stem cells and their derivatives. Advances in Biochemical Engineering/Biotechnology, 114, 201–235.PubMed Zweigerdt, R. (2009). Large scale production of stem cells and their derivatives. Advances in Biochemical Engineering/Biotechnology, 114, 201–235.PubMed
155.
Zurück zum Zitat Ota, H., & Miki, N. (2013). Microtechnology-based three-dimensional spheroid formation. Frontiers in Bioscience (Elite Edition), 5, 37–48.CrossRef Ota, H., & Miki, N. (2013). Microtechnology-based three-dimensional spheroid formation. Frontiers in Bioscience (Elite Edition), 5, 37–48.CrossRef
156.
Zurück zum Zitat Wang, Y., Cheng, L., & Gerecht, S. (2014). Efficient and scalable expansion of human pluripotent stem cells under clinically compliant settings: a view in 2013. Annals of Biomedical Engineering, 42(7), 1357–1372.PubMedCrossRef Wang, Y., Cheng, L., & Gerecht, S. (2014). Efficient and scalable expansion of human pluripotent stem cells under clinically compliant settings: a view in 2013. Annals of Biomedical Engineering, 42(7), 1357–1372.PubMedCrossRef
157.
Zurück zum Zitat Fonoudi, H., Ansari, H., Abbasalizadeh, S., Larijani, M. R., Kiani, S., Hashemizadeh, S., et al. (2015). A universal and robust integrated platform for the scalable production of human cardiomyocytes from pluripotent stem cells. Stem Cells Translational Medicine, 4(12), 1482–1494.PubMedCrossRefPubMedCentral Fonoudi, H., Ansari, H., Abbasalizadeh, S., Larijani, M. R., Kiani, S., Hashemizadeh, S., et al. (2015). A universal and robust integrated platform for the scalable production of human cardiomyocytes from pluripotent stem cells. Stem Cells Translational Medicine, 4(12), 1482–1494.PubMedCrossRefPubMedCentral
158.
Zurück zum Zitat Kempf, H., Kropp, C., Olmer, R., Martin, U., & Zweigerdt, R. (2015). Cardiac differentiation of human pluripotent stem cells in scalable suspension culture. Nature Protocols, 10(9), 1345–1361.PubMedCrossRef Kempf, H., Kropp, C., Olmer, R., Martin, U., & Zweigerdt, R. (2015). Cardiac differentiation of human pluripotent stem cells in scalable suspension culture. Nature Protocols, 10(9), 1345–1361.PubMedCrossRef
159.
Zurück zum Zitat Eibes, G., dos Santos, F., Andrade, P. Z., Boura, J. S., Abecasis, M. M., da Silva, C. L., et al. (2010). Maximizing the ex vivo expansion of human mesenchymal stem cells using a microcarrier-based stirred culture system. Journal of Biotechnology, 146(4), 194–197.PubMedCrossRef Eibes, G., dos Santos, F., Andrade, P. Z., Boura, J. S., Abecasis, M. M., da Silva, C. L., et al. (2010). Maximizing the ex vivo expansion of human mesenchymal stem cells using a microcarrier-based stirred culture system. Journal of Biotechnology, 146(4), 194–197.PubMedCrossRef
160.
Zurück zum Zitat Bauwens, C., Yin, T., Dang, S., Peerani, R., & Zandstra, P. W. (2005). Development of a perfusion fed bioreactor for embryonic stem cell-derived cardiomyocyte generation: oxygen-mediated enhancement of cardiomyocyte output. Biotechnology and Bioengineering, 90(4), 452–461.PubMedCrossRef Bauwens, C., Yin, T., Dang, S., Peerani, R., & Zandstra, P. W. (2005). Development of a perfusion fed bioreactor for embryonic stem cell-derived cardiomyocyte generation: oxygen-mediated enhancement of cardiomyocyte output. Biotechnology and Bioengineering, 90(4), 452–461.PubMedCrossRef
161.
Zurück zum Zitat Chawla, M., Bodnar, C. A., Sen, A., Kallos, M. S., & Behie, L. A. (2006). Production of islet-like structures from neonatal porcine pancreatic tissue in suspension bioreactors. Biotechnology Progress, 22(2), 561–567.PubMedCrossRef Chawla, M., Bodnar, C. A., Sen, A., Kallos, M. S., & Behie, L. A. (2006). Production of islet-like structures from neonatal porcine pancreatic tissue in suspension bioreactors. Biotechnology Progress, 22(2), 561–567.PubMedCrossRef
162.
Zurück zum Zitat Baghbaderani, B. A., Mukhida, K., Sen, A., Kallos, M. S., Hong, M., Mendez, I., et al. (2010). Bioreactor expansion of human neural precursor cells in serum-free media retains neurogenic potential. Biotechnology and Bioengineering, 105(4), 823–833.PubMed Baghbaderani, B. A., Mukhida, K., Sen, A., Kallos, M. S., Hong, M., Mendez, I., et al. (2010). Bioreactor expansion of human neural precursor cells in serum-free media retains neurogenic potential. Biotechnology and Bioengineering, 105(4), 823–833.PubMed
163.
Zurück zum Zitat Zweigerdt, R., Olmer, R., Singh, H., Haverich, A., & Martin, U. (2011). Scalable expansion of human pluripotent stem cells in suspension culture. Nature Protocols, 6(5), 689–700.PubMedCrossRef Zweigerdt, R., Olmer, R., Singh, H., Haverich, A., & Martin, U. (2011). Scalable expansion of human pluripotent stem cells in suspension culture. Nature Protocols, 6(5), 689–700.PubMedCrossRef
164.
Zurück zum Zitat Kropp, C., Kempf, H., Halloin, C., Robles-Diaz, D., Franke, A., Scheper, T., et al. (2016b). Impact of feeding strategies on the scalable expansion of human pluripotent stem cells in single-use stirred tank bioreactors. Stem Cells Translational Medicine, 5(10), 1289–1301.PubMedCrossRef Kropp, C., Kempf, H., Halloin, C., Robles-Diaz, D., Franke, A., Scheper, T., et al. (2016b). Impact of feeding strategies on the scalable expansion of human pluripotent stem cells in single-use stirred tank bioreactors. Stem Cells Translational Medicine, 5(10), 1289–1301.PubMedCrossRef
165.
Zurück zum Zitat Unsworth, B. R., & Lelkes, P. I. (1998). Growing tissues in microgravity. Nature Medicine, 4(8), 901–907.PubMedCrossRef Unsworth, B. R., & Lelkes, P. I. (1998). Growing tissues in microgravity. Nature Medicine, 4(8), 901–907.PubMedCrossRef
166.
Zurück zum Zitat Gerecht-Nir, S., Cohen, S., & Itskovitz-Eldor, J. (2004). Bioreactor cultivation enhances the efficiency of human embryoid body (hEB) formation and differentiation. Biotechnology and Bioengineering, 86(5), 493–502.PubMedCrossRef Gerecht-Nir, S., Cohen, S., & Itskovitz-Eldor, J. (2004). Bioreactor cultivation enhances the efficiency of human embryoid body (hEB) formation and differentiation. Biotechnology and Bioengineering, 86(5), 493–502.PubMedCrossRef
167.
Zurück zum Zitat Song, H., David, O., Clejan, S., Giordano, C. L., Pappas-Lebeau, H., Xu, L., et al. (2004). Spatial composition of prostate cancer spheroids in mixed and static cultures. Tissue Engineering, 10(7–8), 1266–1276.PubMedCrossRef Song, H., David, O., Clejan, S., Giordano, C. L., Pappas-Lebeau, H., Xu, L., et al. (2004). Spatial composition of prostate cancer spheroids in mixed and static cultures. Tissue Engineering, 10(7–8), 1266–1276.PubMedCrossRef
168.
Zurück zum Zitat King, J. A., & Miller, W. M. (2007). Bioreactor development for stem cell expansion and controlled differentiation. Current Opinion in Chemical Biology, 11(4), 394–398.PubMedCrossRefPubMedCentral King, J. A., & Miller, W. M. (2007). Bioreactor development for stem cell expansion and controlled differentiation. Current Opinion in Chemical Biology, 11(4), 394–398.PubMedCrossRefPubMedCentral
169.
Zurück zum Zitat Hwang, Y. S., Cho, J., Tay, F., Heng, J. Y., Ho, R., Kazarian, S. G., et al. (2009). The use of murine embryonic stem cells, alginate encapsulation, and rotary microgravity bioreactor in bone tissue engineering. Biomaterials, 30(4), 499–507.PubMedCrossRef Hwang, Y. S., Cho, J., Tay, F., Heng, J. Y., Ho, R., Kazarian, S. G., et al. (2009). The use of murine embryonic stem cells, alginate encapsulation, and rotary microgravity bioreactor in bone tissue engineering. Biomaterials, 30(4), 499–507.PubMedCrossRef
170.
Zurück zum Zitat Olmer, R., Lange, A., Selzer, S., Kasper, C., Haverich, A., Martin, U., et al. (2012). Suspension culture of human pluripotent stem cells in controlled, stirred bioreactors. Tissue Engineering. Part C, Methods, 18(10), 772–784.PubMedCrossRefPubMedCentral Olmer, R., Lange, A., Selzer, S., Kasper, C., Haverich, A., Martin, U., et al. (2012). Suspension culture of human pluripotent stem cells in controlled, stirred bioreactors. Tissue Engineering. Part C, Methods, 18(10), 772–784.PubMedCrossRefPubMedCentral
171.
Zurück zum Zitat Teo, A., Mantalaris, A., & Lim, M. (2014). Influence of culture pH on proliferation and cardiac differentiation of murine embryonic stem cells. Biochemical Engineering Journal, 90, 8–15.CrossRef Teo, A., Mantalaris, A., & Lim, M. (2014). Influence of culture pH on proliferation and cardiac differentiation of murine embryonic stem cells. Biochemical Engineering Journal, 90, 8–15.CrossRef
172.
Zurück zum Zitat Przybyla, L. M., & Voldman, J. (2012). Attenuation of extrinsic signaling reveals the importance of matrix remodeling on maintenance of embryonic stem cell self-renewal. Proceedings of the National Academy of Sciences of the United States of America, 109(3), 835–840.PubMedCrossRefPubMedCentral Przybyla, L. M., & Voldman, J. (2012). Attenuation of extrinsic signaling reveals the importance of matrix remodeling on maintenance of embryonic stem cell self-renewal. Proceedings of the National Academy of Sciences of the United States of America, 109(3), 835–840.PubMedCrossRefPubMedCentral
173.
Zurück zum Zitat Wolfe, R. P., & Ahsan, T. (2013). Shear stress during early embryonic stem cell differentiation promotes hematopoietic and endothelial phenotypes. Biotechnology and Bioengineering, 110(4), 1231–1242.PubMedCrossRefPubMedCentral Wolfe, R. P., & Ahsan, T. (2013). Shear stress during early embryonic stem cell differentiation promotes hematopoietic and endothelial phenotypes. Biotechnology and Bioengineering, 110(4), 1231–1242.PubMedCrossRefPubMedCentral
174.
Zurück zum Zitat Sart, S., Schneider, Y. J., Li, Y., & Agathos, S. N. (2014). Stem cell bioprocess engineering towards cGMP production and clinical applications. Cytotechnology, 66(5), 709–722.PubMedCrossRefPubMedCentral Sart, S., Schneider, Y. J., Li, Y., & Agathos, S. N. (2014). Stem cell bioprocess engineering towards cGMP production and clinical applications. Cytotechnology, 66(5), 709–722.PubMedCrossRefPubMedCentral
175.
Zurück zum Zitat Massai, D., Isu, G., Madeddu, D., Cerino, G., Falco, A., Frati, C., et al. (2016). A versatile bioreactor for dynamic suspension cell culture. Application to the culture of cancer cell spheroids. PloS One, 11(5), e0154610.PubMedCrossRefPubMedCentral Massai, D., Isu, G., Madeddu, D., Cerino, G., Falco, A., Frati, C., et al. (2016). A versatile bioreactor for dynamic suspension cell culture. Application to the culture of cancer cell spheroids. PloS One, 11(5), e0154610.PubMedCrossRefPubMedCentral
176.
Zurück zum Zitat Allazetta, S., & Lutolf, M. P. (2015). Stem cell niche engineering through droplet microfluidics. Current Opinion in Biotechnology, 35, 86–93.PubMedCrossRef Allazetta, S., & Lutolf, M. P. (2015). Stem cell niche engineering through droplet microfluidics. Current Opinion in Biotechnology, 35, 86–93.PubMedCrossRef
177.
Zurück zum Zitat Carvell, J. P., & Dowd, J. E. (2006). On-line measurements and control of viable cell density in cell culture manufacturing processes using radio-frequency impedance. Cytotechnology, 50(1–3), 35–48.PubMedCrossRefPubMedCentral Carvell, J. P., & Dowd, J. E. (2006). On-line measurements and control of viable cell density in cell culture manufacturing processes using radio-frequency impedance. Cytotechnology, 50(1–3), 35–48.PubMedCrossRefPubMedCentral
178.
Zurück zum Zitat Lorbeer, R. A., Heidrich, M., Lorbeer, C., Ramirez Ojeda, D. F., Bicker, G., Meyer, H., et al. (2011). Highly efficient 3D fluorescence microscopy with a scanning laser optical tomograph. Optics Express, 19(6), 5419–5430.PubMedCrossRef Lorbeer, R. A., Heidrich, M., Lorbeer, C., Ramirez Ojeda, D. F., Bicker, G., Meyer, H., et al. (2011). Highly efficient 3D fluorescence microscopy with a scanning laser optical tomograph. Optics Express, 19(6), 5419–5430.PubMedCrossRef
179.
Zurück zum Zitat Ilin, Y., & Kraft, M. L. (2015). Secondary ion mass spectrometry and Raman spectroscopy for tissue engineering applications. Current Opinion in Biotechnology, 31, 108–116.PubMedCrossRef Ilin, Y., & Kraft, M. L. (2015). Secondary ion mass spectrometry and Raman spectroscopy for tissue engineering applications. Current Opinion in Biotechnology, 31, 108–116.PubMedCrossRef
180.
Zurück zum Zitat Abu-Absi, N. R., Kenty, B. M., Cuellar, M. E., Borys, M. C., Sakhamuri, S., Strachan, D. J., et al. (2011). Real time monitoring of multiple parameters in mammalian cell culture bioreactors using an in-line Raman spectroscopy probe. Biotechnology and Bioengineering, 108(5), 1215–1221.PubMedCrossRef Abu-Absi, N. R., Kenty, B. M., Cuellar, M. E., Borys, M. C., Sakhamuri, S., Strachan, D. J., et al. (2011). Real time monitoring of multiple parameters in mammalian cell culture bioreactors using an in-line Raman spectroscopy probe. Biotechnology and Bioengineering, 108(5), 1215–1221.PubMedCrossRef
181.
Zurück zum Zitat Chen, K. G., Mallon, B. S., McKay, R. D., & Robey, P. G. (2014). Human pluripotent stem cell culture: considerations for maintenance, expansion, and therapeutics. Cell Stem Cell, 14(1), 13–26.PubMedCrossRefPubMedCentral Chen, K. G., Mallon, B. S., McKay, R. D., & Robey, P. G. (2014). Human pluripotent stem cell culture: considerations for maintenance, expansion, and therapeutics. Cell Stem Cell, 14(1), 13–26.PubMedCrossRefPubMedCentral
182.
Zurück zum Zitat Vunjak Novakovic, G., Eschenhagen, T., & Mummery, C. (2014). Myocardial tissue engineering: in vitro models. Cold Spring Harbor Perspectives in Medicine, 4(3). Vunjak Novakovic, G., Eschenhagen, T., & Mummery, C. (2014). Myocardial tissue engineering: in vitro models. Cold Spring Harbor Perspectives in Medicine, 4(3).
183.
Zurück zum Zitat Li, T. S., & Marbán, E. (2010). Physiological levels of reactive oxygen species are required to maintain genomic stability in stem cells. Stem Cells, 28(7), 1178–1185.PubMedPubMedCentral Li, T. S., & Marbán, E. (2010). Physiological levels of reactive oxygen species are required to maintain genomic stability in stem cells. Stem Cells, 28(7), 1178–1185.PubMedPubMedCentral
184.
Zurück zum Zitat Brown, S. A. (2014). Circadian clock-mediated control of stem cell division and differentiation: beyond night and day. Development, 141(16), 3105–3111.PubMedCrossRef Brown, S. A. (2014). Circadian clock-mediated control of stem cell division and differentiation: beyond night and day. Development, 141(16), 3105–3111.PubMedCrossRef
Metadaten
Titel
Stem Cell Spheroids and Ex Vivo Niche Modeling: Rationalization and Scaling-Up
verfasst von
Isotta Chimenti
Diana Massai
Umberto Morbiducci
Antonio Paolo Beltrami
Maurizio Pesce
Elisa Messina
Publikationsdatum
13.03.2017
Verlag
Springer US
Erschienen in
Journal of Cardiovascular Translational Research / Ausgabe 2/2017
Print ISSN: 1937-5387
Elektronische ISSN: 1937-5395
DOI
https://doi.org/10.1007/s12265-017-9741-5

Weitere Artikel der Ausgabe 2/2017

Journal of Cardiovascular Translational Research 2/2017 Zur Ausgabe

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.