Skip to main content
Erschienen in: Journal of Cardiovascular Translational Research 4/2017

01.05.2017 | Original Article

Development and Characterization of a Porcine Mitral Valve Scaffold for Tissue Engineering

verfasst von: M. Granados, L. Morticelli, S. Andriopoulou, P. Kalozoumis, M. Pflaum, P. Iablonskii, B. Glasmacher, M. Harder, J. Hegermann, C. Wrede, I. Tudorache, S. Cebotari, A. Hilfiker, A. Haverich, Sotirios Korossis

Erschienen in: Journal of Cardiovascular Translational Research | Ausgabe 4/2017

Einloggen, um Zugang zu erhalten

Abstract

Decellularized scaffolds represent a promising alternative for mitral valve (MV) replacement. This work developed and characterized a protocol for the decellularization of whole MVs. Porcine MVs were decellularized with 0.5% (w/v) SDS and 0.5% (w/v) SD and sterilized with 0.1% (v/v) PAA. Decellularized samples were seeded with human foreskin fibroblasts and human adipose-derived stem cells to investigate cellular repopulation and infiltration, and with human colony-forming endothelial cells to investigate collagen IV formation. Histology revealed an acellular scaffold with a generally conserved histoarchitecture, but collagen IV loss. Following decellularization, no significant changes were observed in the hydroxyproline content, but there was a significant reduction in the glycosaminoglycan content. SEM/TEM analysis confirmed cellular removal and loss of some extracellular matrix components. Collagen and elastin were generally preserved. The endothelial cells produced newly formed collagen IV on the non-cytotoxic scaffold. The protocol produced acellular scaffolds with generally preserved histoarchitecture, biochemistry, and biomechanics.
Literatur
1.
Zurück zum Zitat Korossis, S. A., Fisher, J., & Ingham, E. (2000). Cardiac valve replacement: a bioengineering approach. Bio-medical Materials and Engineering, 10(2), 83–124.PubMed Korossis, S. A., Fisher, J., & Ingham, E. (2000). Cardiac valve replacement: a bioengineering approach. Bio-medical Materials and Engineering, 10(2), 83–124.PubMed
2.
Zurück zum Zitat Boethig, D., Goerler, H., Westhoff-Bleck, M., Ono, M., Daiber, A., Haverich, A., & Berymann, T. (2007). Evaluation of 188 consecutive homografts implanted in pulmonary position after 20 years. Eur J Cardio-thoracic Surg., 32(1), 133–142.CrossRef Boethig, D., Goerler, H., Westhoff-Bleck, M., Ono, M., Daiber, A., Haverich, A., & Berymann, T. (2007). Evaluation of 188 consecutive homografts implanted in pulmonary position after 20 years. Eur J Cardio-thoracic Surg., 32(1), 133–142.CrossRef
3.
Zurück zum Zitat Da Costa, F. D., Dohmen, P. M., Duarte, D., von Glenn, C., Lopes, S. V., Filho, H. H., da Costa, M. B., & Konertz, W. (2005). Immunological and echocardiographic evaluation of decellularized versus cryopreserved allografts during the Ross operation. Eur J Cardio-thoracic Surg., 27(4), 572–578.CrossRef Da Costa, F. D., Dohmen, P. M., Duarte, D., von Glenn, C., Lopes, S. V., Filho, H. H., da Costa, M. B., & Konertz, W. (2005). Immunological and echocardiographic evaluation of decellularized versus cryopreserved allografts during the Ross operation. Eur J Cardio-thoracic Surg., 27(4), 572–578.CrossRef
4.
Zurück zum Zitat Kalangos, A., Cikirikcioglu, M., Cherian, S., Stimec, B., Jashari, R., & Fasel, J. (2011). Mitral valve replacement using a mitral homograft. Multimed Man Cardiothorac Surg MMCTS / Eur Assoc Cardio-Thoracic Surg, 916. Kalangos, A., Cikirikcioglu, M., Cherian, S., Stimec, B., Jashari, R., & Fasel, J. (2011). Mitral valve replacement using a mitral homograft. Multimed Man Cardiothorac Surg MMCTS / Eur Assoc Cardio-Thoracic Surg, 916.
5.
Zurück zum Zitat Olivito, S., Lalande, S., Nappi, F., Hammoudi, N., D’Alessandro, C., Fouret, P., & Acar, C. (2012). Structural deterioration of the cryopreserved mitral homograft valve. The Journal of Thoracic and Cardiovascular Surgery, 144(2), 313–320.CrossRefPubMed Olivito, S., Lalande, S., Nappi, F., Hammoudi, N., D’Alessandro, C., Fouret, P., & Acar, C. (2012). Structural deterioration of the cryopreserved mitral homograft valve. The Journal of Thoracic and Cardiovascular Surgery, 144(2), 313–320.CrossRefPubMed
6.
Zurück zum Zitat Kumar, A. S., Choudhary, S. K., Mathur, A., Saxena, A., Roy, R., & Chopra, P. (2000). Homograft mitral valve replacement: five years’ results. The Journal of Thoracic and Cardiovascular Surgery, 120(3), 450–458.CrossRefPubMed Kumar, A. S., Choudhary, S. K., Mathur, A., Saxena, A., Roy, R., & Chopra, P. (2000). Homograft mitral valve replacement: five years’ results. The Journal of Thoracic and Cardiovascular Surgery, 120(3), 450–458.CrossRefPubMed
7.
Zurück zum Zitat Gulbins, H., Anderson, I., Kilian, E., Schrepfer, S., Uhlig, A., Kreuzer, E., & Reichart, B. (2002). Five years of experience with mitral valve homografts. The Thoracic and Cardiovascular Surgeon, 50(4), 223–229.CrossRefPubMed Gulbins, H., Anderson, I., Kilian, E., Schrepfer, S., Uhlig, A., Kreuzer, E., & Reichart, B. (2002). Five years of experience with mitral valve homografts. The Thoracic and Cardiovascular Surgeon, 50(4), 223–229.CrossRefPubMed
9.
Zurück zum Zitat Kennamer, A., Sierad, L., Pascal, R., Rierson, N., Albers, C., Harpa, M., Cotoi, O., Harceaga, L., Olah, O., Terezia, P., Simionescu, A., & Simionescu, D. (2016). Bioreactor conditioning of valve scaffolds seeded internally with adult stem cells. Tissue Eng Regen Med., 13(5), 507–515.CrossRef Kennamer, A., Sierad, L., Pascal, R., Rierson, N., Albers, C., Harpa, M., Cotoi, O., Harceaga, L., Olah, O., Terezia, P., Simionescu, A., & Simionescu, D. (2016). Bioreactor conditioning of valve scaffolds seeded internally with adult stem cells. Tissue Eng Regen Med., 13(5), 507–515.CrossRef
10.
Zurück zum Zitat Deborde, C., Simionescu, D. T., Wright, C., Liao, J., Sierad, L. N., & Simionescu, A. (2016). Stabilized collagen and elastin-based scaffolds for mitral valve tissue engineering. Tissue Engineering. Part A, 22(21–22), 1241–1251.CrossRefPubMed Deborde, C., Simionescu, D. T., Wright, C., Liao, J., Sierad, L. N., & Simionescu, A. (2016). Stabilized collagen and elastin-based scaffolds for mitral valve tissue engineering. Tissue Engineering. Part A, 22(21–22), 1241–1251.CrossRefPubMed
11.
Zurück zum Zitat Hoerstrup, S. P., Sodian, R., Sperling, J. S., Vacanti, J. P., & Mayer Jr., J. E. (2004). New pulsatile bioreactor for in vitro formation of tissue engineered heart valves. Tissue Engineering., 6(1), 75–79.CrossRef Hoerstrup, S. P., Sodian, R., Sperling, J. S., Vacanti, J. P., & Mayer Jr., J. E. (2004). New pulsatile bioreactor for in vitro formation of tissue engineered heart valves. Tissue Engineering., 6(1), 75–79.CrossRef
12.
Zurück zum Zitat Baraki, H., Tudorache, I., Braun, M., Höffler, K., Görler, A., Lichtenberg, A., Bara, C., Calistru, A., Brandes, G., Hewicker-Trautwein, M., Hilfiker, A., Haverich, A., & Cebotari, S. (2009). Orthotopic replacement of the aortic valve with decellularized allograft in a sheep model. Biomaterials, 30(31), 6240–6246.CrossRefPubMed Baraki, H., Tudorache, I., Braun, M., Höffler, K., Görler, A., Lichtenberg, A., Bara, C., Calistru, A., Brandes, G., Hewicker-Trautwein, M., Hilfiker, A., Haverich, A., & Cebotari, S. (2009). Orthotopic replacement of the aortic valve with decellularized allograft in a sheep model. Biomaterials, 30(31), 6240–6246.CrossRefPubMed
13.
Zurück zum Zitat Tudorache, I., Calistru, A., Baraki, H., Meyer, T., Höffler, K., Sarikouch, S., Bara, C., Görler, A., Hartung, D., Hilfiker, A., Haverich, A., & Cebotari, S. (2013). Orthotopic replacement of aortic heart valves with tissue-engineered grafts. Tissue Engineering. Part A, 19(15–16), 1686–1694.CrossRefPubMedPubMedCentral Tudorache, I., Calistru, A., Baraki, H., Meyer, T., Höffler, K., Sarikouch, S., Bara, C., Görler, A., Hartung, D., Hilfiker, A., Haverich, A., & Cebotari, S. (2013). Orthotopic replacement of aortic heart valves with tissue-engineered grafts. Tissue Engineering. Part A, 19(15–16), 1686–1694.CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Cebotari, S., Lichtenberg, A., Tudorache, I., Hilfiker, A., Mertsching, H., Leyh, R., Breymann, T., Kallenbach, K., Maniuc, L., Batrinac, A., Repin, O., Maliga, O., Ciubotaru, A., & Haverich, A. (2006). Clinical application of tissue engineered human heart valves using autologous progenitor cells. Circulation, 114(1 Suppl), I132–I137.PubMed Cebotari, S., Lichtenberg, A., Tudorache, I., Hilfiker, A., Mertsching, H., Leyh, R., Breymann, T., Kallenbach, K., Maniuc, L., Batrinac, A., Repin, O., Maliga, O., Ciubotaru, A., & Haverich, A. (2006). Clinical application of tissue engineered human heart valves using autologous progenitor cells. Circulation, 114(1 Suppl), I132–I137.PubMed
15.
Zurück zum Zitat Cebotari, S., Tudorache, I., Ciubotaru, A., Boethig, D., Sarikouch, S., Goerler, A., Lichtenberg, A., Cheptanaru, E., Barnaciuc, S., Cazacu, A., Maliga, O., Repin, O., Maniuc, L., Breymann, T., & Haverich, A. (2011). Use of fresh decellularized allografts for pulmonary valve replacement may reduce the reoperation rate in children and young adults: early report. Circulation, 124(11 Suppl), S115–S123.CrossRefPubMed Cebotari, S., Tudorache, I., Ciubotaru, A., Boethig, D., Sarikouch, S., Goerler, A., Lichtenberg, A., Cheptanaru, E., Barnaciuc, S., Cazacu, A., Maliga, O., Repin, O., Maniuc, L., Breymann, T., & Haverich, A. (2011). Use of fresh decellularized allografts for pulmonary valve replacement may reduce the reoperation rate in children and young adults: early report. Circulation, 124(11 Suppl), S115–S123.CrossRefPubMed
16.
Zurück zum Zitat da Costa, F. D., Takkenberg, J. J., Fornazari, D., Balbi Filho, E. M., Colatusso, C., Mokhles, M. M., da Costa, A. B., Sagrado, A. G., Ferreira, A. D., Fernandes, T., & Lopes, S. V. (2014). Long-term results of the Ross operation: an 18-year single institutional experience. European Journal of Cardio-Thoracic Surgery, 46, 415–422.CrossRefPubMed da Costa, F. D., Takkenberg, J. J., Fornazari, D., Balbi Filho, E. M., Colatusso, C., Mokhles, M. M., da Costa, A. B., Sagrado, A. G., Ferreira, A. D., Fernandes, T., & Lopes, S. V. (2014). Long-term results of the Ross operation: an 18-year single institutional experience. European Journal of Cardio-Thoracic Surgery, 46, 415–422.CrossRefPubMed
17.
Zurück zum Zitat Zehr, K. J., Yagubyan, M., Connolly, H. M., Nelson, S. M., & Schaff, H. V. (2005). Aortic root replacement with a novel decellularized cryopreserved aortic homograft: postoperative immunoreactivity and early results. The Journal of Thoracic and Cardiovascular Surgery, 130(4), 1010–1015.CrossRefPubMed Zehr, K. J., Yagubyan, M., Connolly, H. M., Nelson, S. M., & Schaff, H. V. (2005). Aortic root replacement with a novel decellularized cryopreserved aortic homograft: postoperative immunoreactivity and early results. The Journal of Thoracic and Cardiovascular Surgery, 130(4), 1010–1015.CrossRefPubMed
18.
Zurück zum Zitat da Costa, F. D., Costa, A. C., Prestes, R., Domanski, A. C., Balbi, E. M., Ferreira, A. D., & Lopes, S. V. (2010). The early and midterm function of decellularized aortic valve allografts. The Annals of Thoracic Surgery, 90(6), 1854–1860.CrossRefPubMed da Costa, F. D., Costa, A. C., Prestes, R., Domanski, A. C., Balbi, E. M., Ferreira, A. D., & Lopes, S. V. (2010). The early and midterm function of decellularized aortic valve allografts. The Annals of Thoracic Surgery, 90(6), 1854–1860.CrossRefPubMed
19.
Zurück zum Zitat Neumann, A., Cebotari, S., Tudorache, I., Haverich, A., & Sarikouch, S. (2013). Heart valve engineering: decellularized allograft matrices in clinical practice. Biomed Tech (Berl)., 58(5), 453–456.CrossRefPubMed Neumann, A., Cebotari, S., Tudorache, I., Haverich, A., & Sarikouch, S. (2013). Heart valve engineering: decellularized allograft matrices in clinical practice. Biomed Tech (Berl)., 58(5), 453–456.CrossRefPubMed
20.
Zurück zum Zitat Sarikouch, S., Horke, A., Tudorache, I., Beerbaum, P., Westhoff-Bleck, M., Boethig, D., Repin, O., Maniuc, L., Ciubotaru, A., Haverich, A., & Cebotari, S. (2016). Decellularized fresh homografts for pulmonary valve replacement: a decade of clinical experience. European Journal of Cardio-Thoracic Surgery, 50(2), 281–290.CrossRefPubMedPubMedCentral Sarikouch, S., Horke, A., Tudorache, I., Beerbaum, P., Westhoff-Bleck, M., Boethig, D., Repin, O., Maniuc, L., Ciubotaru, A., Haverich, A., & Cebotari, S. (2016). Decellularized fresh homografts for pulmonary valve replacement: a decade of clinical experience. European Journal of Cardio-Thoracic Surgery, 50(2), 281–290.CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Iablonskii, P., Cebotari, S., Tudorache, I., Granados, M., Morticelli, L., Goecke, T., Klein, N., Korossis, S., Hilfiker, A., & Haverich, A. (2015). Tissue-engineered mitral valve: morphology and biomechanics. Interactive Cardiovascular and Thoracic Surgery, 20(6), 712–719 discussion 719.CrossRefPubMed Iablonskii, P., Cebotari, S., Tudorache, I., Granados, M., Morticelli, L., Goecke, T., Klein, N., Korossis, S., Hilfiker, A., & Haverich, A. (2015). Tissue-engineered mitral valve: morphology and biomechanics. Interactive Cardiovascular and Thoracic Surgery, 20(6), 712–719 discussion 719.CrossRefPubMed
22.
Zurück zum Zitat Galili, U. (2005). The alpha-gal epitope and the anti-Gal antibody in xenotransplantation and in cancer immunotherapy. Immunology and Cell Biology, 83(6), 674–686.CrossRefPubMed Galili, U. (2005). The alpha-gal epitope and the anti-Gal antibody in xenotransplantation and in cancer immunotherapy. Immunology and Cell Biology, 83(6), 674–686.CrossRefPubMed
23.
Zurück zum Zitat Edwards, C. A., & O’Brien Jr., W. D. (1980). Modified assay for determination of hydroxyproline in a tissue hydrolyzate. Clinica Chimica Acta, 104(2), 161–167.CrossRef Edwards, C. A., & O’Brien Jr., W. D. (1980). Modified assay for determination of hydroxyproline in a tissue hydrolyzate. Clinica Chimica Acta, 104(2), 161–167.CrossRef
24.
Zurück zum Zitat Bank, R. A., Krikken, M., Beekman, B., Stoop, R., Maroudas, A., Lafeber, F. P., & te Koppele, J. M. (1997). A simplified measurement of degraded collagen in tissues: application in healthy, fibrillated and osteoarthritic cartilage. Matrix Biol, 233–243. Bank, R. A., Krikken, M., Beekman, B., Stoop, R., Maroudas, A., Lafeber, F. P., & te Koppele, J. M. (1997). A simplified measurement of degraded collagen in tissues: application in healthy, fibrillated and osteoarthritic cartilage. Matrix Biol, 233–243.
25.
Zurück zum Zitat Farndale, R. W., Buttle, D. J., & Barrett, A. J. (1986). Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochimica et Biophysica Acta, 883(2), 173–177.CrossRefPubMed Farndale, R. W., Buttle, D. J., & Barrett, A. J. (1986). Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochimica et Biophysica Acta, 883(2), 173–177.CrossRefPubMed
26.
Zurück zum Zitat Korossis, S. A., Booth, C., Wilcox, H. E., Watterson, K. G., Kearney, J. N., Fisher, J., & Ingham, I. (2002). Tissue engineering of cardiac valve prostheses II: biomechanical characterization of decellularized porcine aortic heart valves. The Journal of Heart Valve Disease, 11(4), 463–471.PubMed Korossis, S. A., Booth, C., Wilcox, H. E., Watterson, K. G., Kearney, J. N., Fisher, J., & Ingham, I. (2002). Tissue engineering of cardiac valve prostheses II: biomechanical characterization of decellularized porcine aortic heart valves. The Journal of Heart Valve Disease, 11(4), 463–471.PubMed
27.
Zurück zum Zitat Lam, J. H. C., Ranganathan, N., Wigle, E. D., & Silver, M. D. (1970). Morphology of the human mitral valve: I. Chordae tendineae: a new classification. Circulation, 41(3), 449–458.CrossRefPubMed Lam, J. H. C., Ranganathan, N., Wigle, E. D., & Silver, M. D. (1970). Morphology of the human mitral valve: I. Chordae tendineae: a new classification. Circulation, 41(3), 449–458.CrossRefPubMed
28.
Zurück zum Zitat Rudat, C., Grieskamp, T., Rӧhr, C., Airik, R., Wrede, C., Hegermann, J., Herrmann, B. G., Schuster-Gossler, K., & Kispert, A. (2014). Upk3b is dispensable for development and integrity of urothelium and mesothelium. PloS One, 9(11), e112112.CrossRefPubMedPubMedCentral Rudat, C., Grieskamp, T., Rӧhr, C., Airik, R., Wrede, C., Hegermann, J., Herrmann, B. G., Schuster-Gossler, K., & Kispert, A. (2014). Upk3b is dispensable for development and integrity of urothelium and mesothelium. PloS One, 9(11), e112112.CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Gruene, M., Pflaum, M., Deiwick, A., Koch, L., Schlie, S., Unger, C., Wilhelmi, M., Haverich, A., & Chichkov, B. N. (2011). Adipogenic differentiation of laser-printed 3D tissue grafts consisting of human adipose-derived stem cells. Biofabrication, 3(1), 015005.CrossRefPubMed Gruene, M., Pflaum, M., Deiwick, A., Koch, L., Schlie, S., Unger, C., Wilhelmi, M., Haverich, A., & Chichkov, B. N. (2011). Adipogenic differentiation of laser-printed 3D tissue grafts consisting of human adipose-derived stem cells. Biofabrication, 3(1), 015005.CrossRefPubMed
30.
Zurück zum Zitat Pflaum, M., Kühn-Kauffeldt, M., Schmeckebier, S., Dipresa, D., Chauhan, K., Wiegmann, B., Haug, R. J., Schein, J., Haverich, A., & Korossis, S. (2017). Endothelialization and characterization of titanium dioxide-coated gas-exchange membranes for application in the bioartificial lung. Acta Biomaterialia, 50, 510–521.CrossRefPubMed Pflaum, M., Kühn-Kauffeldt, M., Schmeckebier, S., Dipresa, D., Chauhan, K., Wiegmann, B., Haug, R. J., Schein, J., Haverich, A., & Korossis, S. (2017). Endothelialization and characterization of titanium dioxide-coated gas-exchange membranes for application in the bioartificial lung. Acta Biomaterialia, 50, 510–521.CrossRefPubMed
31.
Zurück zum Zitat Crapo, P. M., Gilbert, T. W., & Badylak, S. F. (2011). An overview of tissue and whole organ decellularization processes. Biomaterials, 32(12), 3233–3243.CrossRefPubMedPubMedCentral Crapo, P. M., Gilbert, T. W., & Badylak, S. F. (2011). An overview of tissue and whole organ decellularization processes. Biomaterials, 32(12), 3233–3243.CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat Luo, J., Korossis, S. A., Wilshaw, S., Jennings, L. M., Fisher, J., & Ingham, E. (2014). Development and characterization of acellular porcine pulmonary valve scaffolds for tissue engineering. Tissue Engineering. Part A, 20(21–22), 2963–2974 27.CrossRefPubMedPubMedCentral Luo, J., Korossis, S. A., Wilshaw, S., Jennings, L. M., Fisher, J., & Ingham, E. (2014). Development and characterization of acellular porcine pulmonary valve scaffolds for tissue engineering. Tissue Engineering. Part A, 20(21–22), 2963–2974 27.CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Lichtenberg, A., Cebotari, S., Tudorache, I., Sturz, G., Winterhalter, M., Hilfiker, A., & Haverich, A. (2006). Flow-dependent re-endothelialization of tissue- engineered heart valves. The Journal of Heart Valve Disease, 15(2), 287–293 discussion 293-4.PubMed Lichtenberg, A., Cebotari, S., Tudorache, I., Sturz, G., Winterhalter, M., Hilfiker, A., & Haverich, A. (2006). Flow-dependent re-endothelialization of tissue- engineered heart valves. The Journal of Heart Valve Disease, 15(2), 287–293 discussion 293-4.PubMed
34.
Zurück zum Zitat Tudorache, I., Cebotari, S., Sturz, G., Kirsch, L., Hurschler, C., Hilfiker, A., & Lichtenberg, A. (2007). Tissue engineering of heart valves: biomechanical and morphological properties of decellularized heart valves. The Journal of Heart Valve Disease, 16(5), 567–573 discussion 574.PubMed Tudorache, I., Cebotari, S., Sturz, G., Kirsch, L., Hurschler, C., Hilfiker, A., & Lichtenberg, A. (2007). Tissue engineering of heart valves: biomechanical and morphological properties of decellularized heart valves. The Journal of Heart Valve Disease, 16(5), 567–573 discussion 574.PubMed
35.
Zurück zum Zitat Cebotari, S., Mertsching, H., Kallenbach, K., Kostin, S., Repin, O., Batrinac, A., Kleczka, C., Ciubotaru, A., & Haverich, A. (2002). Construction of autologous human heart valves based on an acellular allograft matrix. Circulation, 106(12 Suppl 1), I63–I68.PubMed Cebotari, S., Mertsching, H., Kallenbach, K., Kostin, S., Repin, O., Batrinac, A., Kleczka, C., Ciubotaru, A., & Haverich, A. (2002). Construction of autologous human heart valves based on an acellular allograft matrix. Circulation, 106(12 Suppl 1), I63–I68.PubMed
36.
Zurück zum Zitat Simon, P. (2003). Early failure of the tissue engineered porcine heart valve SYNERGRAFT™ in pediatric patients. Eur J Cardio-Thoracic Surg., 23(6), 1002–1006.CrossRef Simon, P. (2003). Early failure of the tissue engineered porcine heart valve SYNERGRAFT™ in pediatric patients. Eur J Cardio-Thoracic Surg., 23(6), 1002–1006.CrossRef
37.
Zurück zum Zitat Galili, U. (2015). Avoiding detrimental human immune response against mammalian extracellular matrix implants. Tissue Engineering. Part B, Reviews, 21(2), 231–241.CrossRefPubMed Galili, U. (2015). Avoiding detrimental human immune response against mammalian extracellular matrix implants. Tissue Engineering. Part B, Reviews, 21(2), 231–241.CrossRefPubMed
38.
Zurück zum Zitat Ghaderi, D., Taylor, R. E., Padler-Karavani, V., Diaz, S., & Varki, A. (2010). Implications of the presence of N-glycolylneuraminic acid in recombinant therapeutic glycoproteins. Nature Biotechnology., 28(8), 863–867.CrossRefPubMedPubMedCentral Ghaderi, D., Taylor, R. E., Padler-Karavani, V., Diaz, S., & Varki, A. (2010). Implications of the presence of N-glycolylneuraminic acid in recombinant therapeutic glycoproteins. Nature Biotechnology., 28(8), 863–867.CrossRefPubMedPubMedCentral
39.
Zurück zum Zitat Samraj, A. N., Pearce, O. M., Läubli, H., Crittenden, A. N., Bergfeld, A. K., Banda, K., Gregg, C. J., Bingman, A. E., Secrest, P., Diaz, S. L., Varki, N. M., & Varki, A. (2015). A red meat-derived glycan promotes inflammation and cancer progression. Proceedings of the National Academy of Sciences, 112(2), 542–547.CrossRef Samraj, A. N., Pearce, O. M., Läubli, H., Crittenden, A. N., Bergfeld, A. K., Banda, K., Gregg, C. J., Bingman, A. E., Secrest, P., Diaz, S. L., Varki, N. M., & Varki, A. (2015). A red meat-derived glycan promotes inflammation and cancer progression. Proceedings of the National Academy of Sciences, 112(2), 542–547.CrossRef
40.
Zurück zum Zitat Galili, U., Tibell, A., Samuelsson, B., Rydberg, L., & Groth, C. G. (1995). Increased anti-Gal activity in diabetic patients transplanted with fetal porcine islet cell clusters. Transplantation, 59, 1549–1956.CrossRefPubMed Galili, U., Tibell, A., Samuelsson, B., Rydberg, L., & Groth, C. G. (1995). Increased anti-Gal activity in diabetic patients transplanted with fetal porcine islet cell clusters. Transplantation, 59, 1549–1956.CrossRefPubMed
41.
Zurück zum Zitat Galili, U., LaTemple, D. C., Walgenbach, A. W., & Stone, K. R. (1997). Porcine and bovine cartilage transplants in cynomolgus monkey. II. Changes in anti-Gal response during chronic rejection. Transplantation, 63, 646–651.CrossRefPubMed Galili, U., LaTemple, D. C., Walgenbach, A. W., & Stone, K. R. (1997). Porcine and bovine cartilage transplants in cynomolgus monkey. II. Changes in anti-Gal response during chronic rejection. Transplantation, 63, 646–651.CrossRefPubMed
42.
Zurück zum Zitat Galili, U., LaTemple, D. C., & Radic, M. Z. (1998). A sensitive assay for measuring alpha-Gal epitope expression on cells by a monoclonal anti-Gal antibody. Transplantation, 65(8), 1129–1132.CrossRefPubMed Galili, U., LaTemple, D. C., & Radic, M. Z. (1998). A sensitive assay for measuring alpha-Gal epitope expression on cells by a monoclonal anti-Gal antibody. Transplantation, 65(8), 1129–1132.CrossRefPubMed
43.
Zurück zum Zitat Keane, T. J., Londono, R., Turner, N. J., & Badylak, S. F. (2012). Consequences of ineffective decellularization of biologic scaffolds on the host response. Biomaterials, 33(6), 1771–1781.CrossRefPubMed Keane, T. J., Londono, R., Turner, N. J., & Badylak, S. F. (2012). Consequences of ineffective decellularization of biologic scaffolds on the host response. Biomaterials, 33(6), 1771–1781.CrossRefPubMed
44.
Zurück zum Zitat Gilbert, T. W., Freund, J. M., & Badylak, S. F. (2009). Quantification of DNA in biologic scaffold materials. The Journal of Surgical Research, 152(1), 135–139.CrossRefPubMed Gilbert, T. W., Freund, J. M., & Badylak, S. F. (2009). Quantification of DNA in biologic scaffold materials. The Journal of Surgical Research, 152(1), 135–139.CrossRefPubMed
45.
Zurück zum Zitat Wilshaw, S., Rooney, P., Berry, H., Kearney, J., Homer-Vanniasinkam, S., Fisher, J., & Ingham, E. (2012). Development and characterisation of acellular allogeneic arterial matrices. Tissue Engineering. Part A, 18(5–6), 471.CrossRefPubMed Wilshaw, S., Rooney, P., Berry, H., Kearney, J., Homer-Vanniasinkam, S., Fisher, J., & Ingham, E. (2012). Development and characterisation of acellular allogeneic arterial matrices. Tissue Engineering. Part A, 18(5–6), 471.CrossRefPubMed
46.
Zurück zum Zitat Bennett, R. M., Gabor, G. T., & Merritt, M. M. (1985). DNA binding to human leukocytes. Evidence for a receptor-mediated association, internalization, and degradation of DNA. The Journal of Clinical Investigation, 76(6), 2182–2190.CrossRefPubMedPubMedCentral Bennett, R. M., Gabor, G. T., & Merritt, M. M. (1985). DNA binding to human leukocytes. Evidence for a receptor-mediated association, internalization, and degradation of DNA. The Journal of Clinical Investigation, 76(6), 2182–2190.CrossRefPubMedPubMedCentral
47.
Zurück zum Zitat McCoy, S. L., Kurtz, S. E., Hausman, F. A., Trune, D. R., Bennett, R. M., & Hefeneider, S. H. (2004). Activation of RAW264.7 macrophages by bacterial DNA and lipopolysaccharide increases cell surface DNA binding and internalization. The Journal of Biological Chemistry, 279(17), 17217–17223.CrossRefPubMed McCoy, S. L., Kurtz, S. E., Hausman, F. A., Trune, D. R., Bennett, R. M., & Hefeneider, S. H. (2004). Activation of RAW264.7 macrophages by bacterial DNA and lipopolysaccharide increases cell surface DNA binding and internalization. The Journal of Biological Chemistry, 279(17), 17217–17223.CrossRefPubMed
48.
Zurück zum Zitat Gilbert, T. W., Stewart-Akers, A. M., Simmons-Byrd, A., & Badylak, S. F. (2007). Degradation and remodeling of small intestinal submucosa in canine Achilles tendon repair. The Journal of Bone and Joint Surgery. American Volume, 89(3), 621.PubMed Gilbert, T. W., Stewart-Akers, A. M., Simmons-Byrd, A., & Badylak, S. F. (2007). Degradation and remodeling of small intestinal submucosa in canine Achilles tendon repair. The Journal of Bone and Joint Surgery. American Volume, 89(3), 621.PubMed
49.
Zurück zum Zitat Lis, Y., Burleigh, M. C., Parker, D. J., Child, A. H., Hogg, J., & Davies, M. J. (1987). Biochemical characterization of individual normal, floppy and rheumatic human mitral valves. The Biochemical Journal, 244(3), 597–603.CrossRefPubMedPubMedCentral Lis, Y., Burleigh, M. C., Parker, D. J., Child, A. H., Hogg, J., & Davies, M. J. (1987). Biochemical characterization of individual normal, floppy and rheumatic human mitral valves. The Biochemical Journal, 244(3), 597–603.CrossRefPubMedPubMedCentral
50.
Zurück zum Zitat Rothenburger, M., Völker, W., Vischer, P., Glasmacher, B., Scheld, H. H., & Deiwick, M. (2002). Ultrastructure of proteoglycans in tissue-engineered cardiovascular structures. Tissue Engineering, 8(6), 1049–1056.CrossRefPubMed Rothenburger, M., Völker, W., Vischer, P., Glasmacher, B., Scheld, H. H., & Deiwick, M. (2002). Ultrastructure of proteoglycans in tissue-engineered cardiovascular structures. Tissue Engineering, 8(6), 1049–1056.CrossRefPubMed
51.
Zurück zum Zitat Yoon, J. H., & Halper, J. (2005). Tendon proteoglycans: biochemistry and function. Journal of Musculoskeletal & Neuronal Interactions, 5(1), 22–34. Yoon, J. H., & Halper, J. (2005). Tendon proteoglycans: biochemistry and function. Journal of Musculoskeletal & Neuronal Interactions, 5(1), 22–34.
52.
Zurück zum Zitat Sacks, M.S., Wognum, S., Stella, J., Joyce, E., D’Amore, A. (2011). Heart valve tissues. In: Ducheyne P, Healy K, Hutmacher DE, Grainger DW, Kirkpatrick CJ, editors. Comprehensive Biomaterials. Elsevier. Sacks, M.S., Wognum, S., Stella, J., Joyce, E., D’Amore, A. (2011). Heart valve tissues. In: Ducheyne P, Healy K, Hutmacher DE, Grainger DW, Kirkpatrick CJ, editors. Comprehensive Biomaterials. Elsevier.
53.
Zurück zum Zitat Grande-Allen, K. J., Clabro, A., Gupta, V., Wight, T. N., Hascall, V. C., & Vesely, I. (2004). Glycosaminoglycans and proteoglycans in normal mitral valve leaflets and chordae: association with regions of tensile and compressive loading. Glycobiology, 14(7), 621–633.CrossRefPubMed Grande-Allen, K. J., Clabro, A., Gupta, V., Wight, T. N., Hascall, V. C., & Vesely, I. (2004). Glycosaminoglycans and proteoglycans in normal mitral valve leaflets and chordae: association with regions of tensile and compressive loading. Glycobiology, 14(7), 621–633.CrossRefPubMed
54.
Zurück zum Zitat Williams, C., Liao, J., Joyce, E. M., Wang, B., Leach, J. B., Sacks, M. S., & Wong, J. Y. (2009). Altered structural and mechanical properties in decellularized rabbit carotid arteries. Acta Biomaterialia, 5(4), 993–1005.CrossRefPubMed Williams, C., Liao, J., Joyce, E. M., Wang, B., Leach, J. B., Sacks, M. S., & Wong, J. Y. (2009). Altered structural and mechanical properties in decellularized rabbit carotid arteries. Acta Biomaterialia, 5(4), 993–1005.CrossRefPubMed
55.
Zurück zum Zitat Herbert, A., Jones, G. L., Ingham, E., & Fisher, J. (2015). A biomechanical characterisation of acellular porcine super flexor tendons for use in anterior cruciate ligament replacement: investigation into the effects of fat reduction and bioburden reduction bioprocesses. Journal of Biomechanics, 48(1), 22–29.CrossRefPubMedPubMedCentral Herbert, A., Jones, G. L., Ingham, E., & Fisher, J. (2015). A biomechanical characterisation of acellular porcine super flexor tendons for use in anterior cruciate ligament replacement: investigation into the effects of fat reduction and bioburden reduction bioprocesses. Journal of Biomechanics, 48(1), 22–29.CrossRefPubMedPubMedCentral
56.
Zurück zum Zitat Liao, J., Joyce, E. M., & Sacks, M. S. (2008). Effects of decellularization on the mechanical and structural properties of the porcine aortic valve leaflet. Biomaterials, 29(8), 1065–1074.CrossRefPubMedPubMedCentral Liao, J., Joyce, E. M., & Sacks, M. S. (2008). Effects of decellularization on the mechanical and structural properties of the porcine aortic valve leaflet. Biomaterials, 29(8), 1065–1074.CrossRefPubMedPubMedCentral
57.
Zurück zum Zitat Korossis, S. A., Wilcox, H. E., Watterson, K. G., Kearney, J. N., Ingham, E., & Fisher, J. (2005). In-vitro assessment of the functional performance of the decellularized intact porcine aortic root. The Journal of Heart Valve Disease, 14(3), 408–421.PubMed Korossis, S. A., Wilcox, H. E., Watterson, K. G., Kearney, J. N., Ingham, E., & Fisher, J. (2005). In-vitro assessment of the functional performance of the decellularized intact porcine aortic root. The Journal of Heart Valve Disease, 14(3), 408–421.PubMed
58.
Zurück zum Zitat Kunzelman, K. S., Cochran, R. P., Murphree, S. S., Ring, W. S., Verrier, E. D., & Eberhart, R. C. (1993). Differential collagen distribution in the mitral valve and its influence on miomechanical behaviour. The Journal of Heart Valve Disease, 2(2), 236–244.PubMed Kunzelman, K. S., Cochran, R. P., Murphree, S. S., Ring, W. S., Verrier, E. D., & Eberhart, R. C. (1993). Differential collagen distribution in the mitral valve and its influence on miomechanical behaviour. The Journal of Heart Valve Disease, 2(2), 236–244.PubMed
Metadaten
Titel
Development and Characterization of a Porcine Mitral Valve Scaffold for Tissue Engineering
verfasst von
M. Granados
L. Morticelli
S. Andriopoulou
P. Kalozoumis
M. Pflaum
P. Iablonskii
B. Glasmacher
M. Harder
J. Hegermann
C. Wrede
I. Tudorache
S. Cebotari
A. Hilfiker
A. Haverich
Sotirios Korossis
Publikationsdatum
01.05.2017
Verlag
Springer US
Erschienen in
Journal of Cardiovascular Translational Research / Ausgabe 4/2017
Print ISSN: 1937-5387
Elektronische ISSN: 1937-5395
DOI
https://doi.org/10.1007/s12265-017-9747-z

Weitere Artikel der Ausgabe 4/2017

Journal of Cardiovascular Translational Research 4/2017 Zur Ausgabe

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.