Skip to main content
Log in

Role of cyclophilin a during oncogenesis

  • Review
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Cyclophilins (Cyps) are ubiquitously expressed proteins that are evolutionarily conserved. CypA is the most abundant among the Cyps and is expressed in the cytosol. With its chaperone and PPIase activities, CypA contributes to the maintenance of correct conformation of nascent or denatured proteins and also provides protection against environmental insults. Also, its expression is induced in response to a wide variety of stressors including cancer. Upregulation of CypA in small cell lung cancer, pancreatic cancer, breast cancer, colorectal cancer, squamous cell carcinoma and melanoma has been reported. In some cancers a correlation between CypA overexpression and malignant transformation has been established. While molecular partners of CypA that promote cancer development are yet to be discovered, various mechanisms have been proposed to account for the cytoprotective functions of CypA during cancer development. CypA may promote the survival of cells under the stressful condition of cancer. CypA may well be essential for maintaining the conformation of oncogenic proteins, signalling proteins for cell proliferation, antiapoptotic components, transcription factors, or cell motility regulatory proteins. Antioxidant effects of CypA, which have been suggested by some researchers, may also become critical to reactive oxygen species (ROS) creating an oncogenetic environment. Developing new CypA inhibitors for therapeutics has been surmised from the cytoprotective functions of CypA and its overexpression in many cancer types. Therefore, CypA can be further investigated as a useful tool for early diagnosis, treatment and prevention of human cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Ghoul, M., Brück, T. B., Lauer-Fields, J. L., Asirvatham, V. S., Zapata, C., Kerr, R. G., and Fields, G. B., Comparative proteomic analysis of matched primary and metastatic melanoma cell lines. J. Proteome Res., 7, 4107–4118 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Barth, S., Nesper, J., Hasgall, P. A., Wirthner, R., Nytko, K. J., Edlich, F., Katschinski, D. M., Stiehl, D. P., Wenger, R. H., and Camenisch, G., The peptidyl prolyl cis/trans isomerase FKBP38 determines hypoxia-inducible transcription factor prolyl-4-hydroxylase PHD2 protein stability. Mol. Cell. Biol., 27, 3758–3768 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Bienkowska-Haba, M., Patel, H. D., and Sapp, M., Target cell cyclophilins facilitate human papillomavirus type 16 infection. PLoS Pathog., 5, e1000524 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Biswas, C., Zhang, Y., DeCastro, R., Guo, H., Nakamura, T., Kataoka, H., and Nabeshima, K., The human tumor cell derived collagenase stimulatory factor (renamed EMMPRIN). is a member of the immunoglobulin superfamily. Cancer Res., 55, 434–439 (1995).

    CAS  PubMed  Google Scholar 

  • Boulos, S., Meloni, B. P., Arthur, P. G., Majda, B., Bojarski, C., and Knuckey, N. W., Evidence that intracellular cyclophilin A and cyclophilin A/CD147 receptor-mediated ERK1/2 signalling can protect neurons against in vitro oxidative and ischemic injury. Neurobiol. Dis., 25, 54–64 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Campa, M. J., Wang, M. Z., Howard, B., Fitzgerald, M. C., and Patz, E. F., Jr Protein expression profiling identifies macrophage migration inhibitory factor and cyclophilin a as potential molecular targets in non-small cell lung cancer. Cancer Res., 63, 1652–1656 (2003).

    CAS  PubMed  Google Scholar 

  • Cecconi, D., Astner, H., Donadelli, M., Palmieri, M., Missiaglia, E., Hamdan, M., Scarpa, A., and Righetti, P. G., Proteomic analysis of pancreatic ductal carcinoma cells treated with 5-aza-2′-deoxycytidine. Electrophoresis, 24, 4291–4303 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Chen, J., He, Q. Y., Yuen, A. P., and Chiu, J. F., Proteomics of buccal squamous cell carcinoma: the involvement of multiple pathways in tumorigenesis. Proteomics, 4, 2465–2475 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Choi, K. J., Piao, Y. J., Lim, M. J., Kim, J. H., Ha, J., Choe, W., and Kim, S. S., Overexpressed cyclophilin A in cancer cells renders resistance to hypoxia- and cisplatin-induced cell death. Cancer Res., 67, 3654–3662 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Corton, J. C., Moreno, E. S., Merritt, A., Bocos, C., and Cattley, R. C., Cloning genes responsive to a hepatocarcinogenic peroxisome proliferator chemical reveals novel targets of regulation. Cancer Lett., 134, 61–71 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Fischer, G., Tradler, T., and Zarnt, T., The mode of action of peptidyl prolyl cis/trans isomerase in vivo: Binding vs catalysis. FEBS Lett., 426, 17–20 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Gomi, S., Nakao, M., Niiya, F., Imamura, Y., Kawano, K., Nishizaka, S., Hayashi, A., Sobao, Y., Oizumi, K., and Itoh, K. A., cyclophilin B gene encodes antigenic epitopes recognized by HLA-A24-restricted and tumorspecific CTLs. J. Immunol., 163, 4994–5004 (1999).

    CAS  PubMed  Google Scholar 

  • Gothel, S. F. and Malahiel, M. A., Peptidyl-prolyl cis-trans isomerase, A superfamily of ubiquitous folding catalysts. Cell. Mol. Life Sci., 55, 423–436 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Gu, S., Liu, Z., Pan, S., Jiang, Z., Lu, H., Amit, O., Bradbury, E. M., Hu, C. A., and Chen, X., Global investigation of p53-induced apoptosis through quantitative proteomic profiling using comparative amino acid-coded tagging. Mol. Cell. Proteomics, 3, 998–1008 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Hathout, Y., Riordan, K., Gehrmann, M., and Fenselau, C., Differential protein expression in the cytosol fraction of an MCF-7 breast cancer cell line selected for resistance toward melphalan. J. Proteome Res., 1, 435–442 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Hong, F., Lee, J., Song, J. W., Lee, S. J., Ahn, H., Cho, J. J., Ha, J., and Kim, S. S., Cyclosporin A blocks muscle differentiation by inducing oxidative stress and inhibiting the peptidyl-prolyl-cis-trans isomerase activity of cyclophilin A: cyclophilin A protects myoblasts from cyclosporin A-induced cytotoxicity. FASEB J., 16, 1633–1635 (2002).

    CAS  PubMed  Google Scholar 

  • Howard, B. A., Zheng, Z., Campa, M. J., Wang, M. Z., Sharma, A., Haura, E., Herndon, J. E. 2nd, Fitzgerald, M. C., Bepler, G., and Patz, E. F., Jr Translating biomarkers into clinical practice: prognostic implications of cyclophilin A and macrophage migratory inhibitory factor identified from protein expression profiles in non-small cell lung cancer. Lung Cancer, 46, 313–323 (2004).

    Article  PubMed  Google Scholar 

  • Howard, B. A., Furumai, R., Campa, M. J., Rabbani, Z. N., Vujaskovic, Z., Wang, X. F., and Patz, E. F. Jr, Stable RNA interference-mediated suppression of cyclophilin A diminishes non-small-cell lung tumor growth in vivo. Cancer Res., 65, 8853–8860 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Hunter, T., Prolyl isomerase and nuclear function. Cell, 92, 141–143 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Johnson, J. L. and Craig, E. A., Protein folding in vivo: unraveling complex pathways. Cell, 90, 201–204 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Kim, J., Choi, T. G., Ding, Y., Kim, Y., Ha, K. S., Lee, K. H., Kang, I., Ha, J., Kaufman, R. J., Lee, J., Choe, W., and Kim, S. S., Overexpressed cyclophilin B suppresses apoptosis associated with ROS and Ca2+ homeostasis after ER stress. J. Cell Sci., 121, 3636–3648 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Li, M., Wang, H., Li, F., Fisher, W. E., Chen, C., and Yao, Q., Effect of cyclophilin A on gene expression in human pancreatic cancer cells. Am. J. Surg., 190, 739–745 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Li, M., Zhai, Q., Bharadwaj, U., Wang, H., Li, F., Fisher, W. E., Chen, C., and Yao, Q., Cyclophilin A is overexpressed in human pancreatic cancer cells and stimulates cell proliferation through CD147. Cancer, 106, 2284–2294 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Lim, S. O., Park, S. J., Kim, W., Park, S. G., Kim, H. J., Kim, Y. I., Sohn, T. S., Noh, J. H., and Jung, G., Proteome analysis of hepatocellular carcinoma. Biochem. Biophys. Res. Commun., 291, 1031–1037 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Lin, D. T. and Lechleiter, J. D., Mitochondrial targeted cyclophilin D protects cells from cell death by peptidyl prolyl isomerization. J. Biol. Chem., 277, 31134–31141 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Lou, J., Fatima, N., Xiao, Z., Stauffer, S., Smythers, G., Greenwald, P., and Ali, I. U., Proteomic profiling identifies cyclooxygenase-2-independent global proteomic changes by celecoxib in colorectal cancer cells. Cancer Epidemiol. Biomarkers Prev., 15, 1598–1606 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Mantovani, F., Tocco, F., Girardini, J., Smith, P., Gasco, M., Lu, X., Crook, T,. and Del, Sal. G., The prolyl isomerase Pin1 orchestrates p53 acetylation and dissociation from the apoptosis inhibitor iASPP. Nat. Struct. Mol. Biol., 14, 912–920 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Mark, P. J., Ward, B. K., Kumar, P., Lahooti, H., Minchin, R. F., and Ratajczak, T., Human cyclophilin 40 is a heat shock protein that exhibits altered intracellular localization following heat shock. Cell Stress Chaperones, 6, 59–70 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Marzo, I., Brenner, C., Zamzami, N., Susin, S. A., Beutner, G., Brdiczka, D., Rémy, R., Xie, Z. H., Reed, J. C., and Kroemer, G., The permeability transition pore complex: a target for apoptosis regulation by caspases and bcl-2-related proteins. J. Exp. Med., 187, 1261–1271 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Melle, C., Osterloh, D., Ernst, G., Schimmel, B., Bleul, A., and von Eggeling, F., Identification of proteins from colorectal cancer tissue by two-dimensional gel electrophoresis and SELDI mass spectrometry. Int. J. Mol. Med., 16, 11–17 (2005).

    CAS  PubMed  Google Scholar 

  • Mikuriya, K., Kuramitsu, Y., Ryozawa, S., Fujimoto, M., Mori, S., Oka, M., Hamano, K., Okita, K., Sakaida, I., and Nakamura, K., Expression of glycolytic enzymes is increased in pancreatic cancerous tissues as evidenced by proteomic profiling by two-dimensional electrophoresis and liquid chromatography-mass spectrometry/mass spectrometry. Int. J. Oncol., 30, 849–855 (2007).

    CAS  PubMed  Google Scholar 

  • Nabeshima, K., Iwasaki, H., Koga, K., Hojo, H., Suzumiya, J., and Kikuchi, M., Emmprin (basigin/CD147).: matrix metalloproteinase modulator and multifunctional cell recognition molecule that plays a critical role in cancer progression. Pathol. Int., 56, 359–367 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Pakula, R., Melchior, A., Denys, A., Vanpouille, C., Mazurier, J., Syndecan-1/CD147 association is essential for cyclophilin B-induced activation of p44/42 mitogen-activated protein kinases and promotion of cell adhesion and chemotaxis. Glycobiology, 17, 492–503 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Parsell, D. A. and Lindquist, S., The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu. Rev. Genet., 27, 437–496 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Qi, Y. J., He, Q. Y., Ma, Y. F., Du, Y. W., Liu, G. C., Li, Y. J., Tsao, G. S., Ngai, S. M., and Chiu, J. F., Proteomic identification of malignant transformation-related proteins in esophageal squamous cell carcinoma. J. Cell. Biochem., 104, 1625–1635 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Rutherford, S. L. and Zuker, C. S., Protein folding and the regulation of signaling pathways. Cell, 79, 1129–1132 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Schmid, F., X Protein folding. Prolyl isomerase join the fold. Curr. Biol., 5, 993–994 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Schreiber, S. L., Immunophilin-sensitive protein phosphatase action in cell signaling pathways. Cell, 70, 365–368 (1992).

    Article  CAS  PubMed  Google Scholar 

  • Shen, J., Person, M. D., Zhu, J., Abbruzzese, J. L., and Li, D., Protein expression profiles in pancreatic adenocarcinoma compared with normal pancreatic tissue and tissue affected by pancreatitis as detected by two-dimensional gel electrophoresis and mass spectrometry. Cancer Res., 64, 9018–9026 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Sherry, B., Zybarth, G., Alfano, M., Dubrovsky, L., Mitchell, R., Rich, D., Ulrich, P., Bucala, R., Cerami, A., and Bukrinsky, M., Role of cyclophilin A in the uptake of HIVa by macrophages and T lymphocytes. Proc. Natl. Acad. Sci. U.S.A., 95, 1758–1763 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Tanveer, A., Virji, S., Andreeva, L., Totty, N. F., Hsuan, J. J., Ward, J. M., and Crompton, M., Involvement of cyclophilin D in the activation of a mitochondrial pore by Ca2+ and oxidant stress. Eur. J. Biochem., 238, 166–172 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Towers, G. J., Hatziioannou, T., Cowan, S., Goff, S. P., Luban, J., and Bieniasz, P. D., Cyclophilin A modelates the sensitivity of HIV-1 to host restriction factors. Nat. Med., 9, 1138–1143 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Vanpouille, C., Deligny, A., Delehedde, M., Denys, A., Melchior, A., et al., The heparin/heparan sulfate sequence that interacts with cyclophilin B contains a 3-O-sulfated N-unsubstituted glucosamine residue. J. Biol. Chem., 282, 24416–24429 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Ward, B. K., Mark, P. J., Ingram, D. M., Minchin, R. F., and Ratajczak, T., Expression of the estrogen receptor-associated immunophilins, cyclophilin 40 and FKBP52, in breast cancer. Breast Cancer Res. Treat., 58, 267–280 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Ward, B. K., Kumar, P., Turbett, G. R., Edmondston, J. E., Papadimitriou, J. M., Laing, N. G., Ingram, D. M., Minchin, R. F., and Ratajczak, T., Ratajczak T Allelic loss of cyclophilin 40, an estrogen receptor-associated immunophilin, in breast carcinomas. J. Cancer Res. Clin. Oncol., 127, 109–115 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Wiederrecht, G., Lam, E., Hung, S., Martin, M., and Sigal, N., The mechanism of action of FK- 506 and cyclosporin A. Ann. N.Y. Acad. Sci., 696, 9–19 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Wong, C. S., Wong, V. W., Chan, C. M., Ma, B. B., Hui, E. P., Wong, M. C., Lam, M. Y., Au, T. C., Chan, W. H., Cheuk, W., and Chan, A. T., dentification of 5-fluorouracil response proteins in colorectal carcinoma cell line SW480 by two-dimensional electrophoresis and MALDI-TOF mass spectrometry. Oncol. Rep., 20, 89–98 (2008).

    CAS  PubMed  Google Scholar 

  • Yang, H., Chen, J., Yang, J., Qiao, S., Zhao, S., and Yu, L., Cyclophilin A is upregulated in small cell lung cancer and activates ERK1/2 signal. Biochem. Biophys. Res. Commun., 361, 763–767 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Yu, X., Harris, S. L., and Levine, A. J., The regulation of exosome secretion: a novel function of the p53 protein. Cancer Res., 66, 4795–4801 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Yurchenko, V., Zybarth, G., O’Connor, M., Dai, W. W., Franchin, G., Hao, T., Guo, H., Hung, H. C., Toole, B., Gallay, P., Sherry, B., and Bukrinsky, M., Active site residues of cyclophilin A are crucial for its signaling activity via CD147. J. Biol. Chem., 277, 22959–22965 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Yurchenko, V., Pushkarsky, T., Li, J.H., Dai, W. W., Sherry, B., and Bukrinsky, M. R., Regulation of CD147 cell surface expression: involvement of the proline residue in the CD147 transmembrane domain. J. Biol. Chem., 280, 17013–17019 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Zheng, J., Koblinski, J. E., Dutson, L. V., Feeney, Y. B., and Clevenger, C. V., Prolyl isomerase cyclophilin A regulation of Janus-activated kinase 2 and the progression of human breast cancer. Cancer Res., 68, 7769–7778 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Zou, J., Guo, Y., Guettouche, T., Smith, D. F., and Voellmy, R., Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell, 94, 471–480 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinhwa Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J. Role of cyclophilin a during oncogenesis. Arch. Pharm. Res. 33, 181–187 (2010). https://doi.org/10.1007/s12272-010-0200-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-010-0200-y

Key words

Navigation