Skip to main content
Log in

Activin A secreted by human mesenchymal stem cells induces neuronal development and neurite outgrowth in an in vitro model of Alzheimer’s disease: neurogenesis induced by MSCs via activin A

  • Research Article
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is characterized by progressive loss of memory in addition to cortical atrophy. Cortical atrophy in AD brains begins in the parietal and temporal lobes, which are near the subventricular zone (SVZ). The aim of this study was to activate the neurogenesis in the SVZ of AD brains by human mesenchymal stem cells (hMSCs). Neural stem cells (NSCs) were isolated from SVZ of 4-month-old 5XFAD mice. Co-culture of hMSCs with SVZ-derived NSCs from 5XFAD mice induced neuronal development and neurite outgrowth. To examine the inducing factor of neurogenesis, human cytokine array was performed with co-cultured media, and revealed elevated release of activin A from hMSCs. Also, we confirmed that the mRNA levels of activin A and activin receptor in the SVZ of 5XFAD mice were significantly lower than normal mice. Treatment of human recombinant activin A in SVZ-derived NSCs from 5XFAD mice induced neuronal development and neurite outgrowth. These data suggest that use of hMSCs and activin A to recover neurogenesis in future studies of cortical regeneration to treat AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdipranoto-Cowley A, Park JS, Croucher D, Daniel J, Henshall S, Galbraith S, Mervin K, Vissel B (2009) Activin A is essential for neurogenesis following neurodegeneration. Stem Cells 27:1330–1346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abe Y, Minegishi T, Leung PC (2004) Activin receptor signaling. Growth Factors 22:105–110

    Article  CAS  PubMed  Google Scholar 

  • An K, Jung JH, Jeong AY, Kim HG, Jung SY, Lee K, Kim HJ, Kim SJ, Jeong TY, Son Y, Kim HS, Kim JH (2014) Neuritin can normalize neural deficits of Alzheimer’s disease. Cell Death Dis 5:e1523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartzokis G (2004) Age-related myelin breakdown: a developmental model of cognitive decline and Alzheimer’s disease. Neurobiol Aging 25:5–18

    Article  CAS  PubMed  Google Scholar 

  • Bilkei-Gorzo A (2014) Genetic mouse models of brain ageing and Alzheimer’s disease. Pharmacol Ther 142:244–257

    Article  CAS  PubMed  Google Scholar 

  • Christie KJ, Turnley AM (2012) Regulation of endogenous neural stem/progenitor cells for neural repair-factors that promote neurogenesis and gliogenesis in the normal and damaged brain. Front Cell Neurosci 6:70

    Article  PubMed  Google Scholar 

  • Chuang TT (2010) Neurogenesis in mouse models of Alzheimer’s disease. Biochim Biophys Acta 1802:872–880

    Article  CAS  PubMed  Google Scholar 

  • Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317

    Article  CAS  PubMed  Google Scholar 

  • Donovan MH, Yazdani U, Norris RD, Games D, German DC, Eisch AJ (2006) Decreased adult hippocampal neurogenesis in the PDAPP mouse model of Alzheimer’s disease. J Comp Neurol 495:70–83

    Article  PubMed  Google Scholar 

  • Dowjat WK, Wisniewski T, Efthimiopoulos S, Wisniewski HM (1999) Inhibition of neurite outgrowth by familial Alzheimer’s disease-linked presenilin-1 mutations. Neurosci Lett 267:141–144

    Article  CAS  PubMed  Google Scholar 

  • Eriksson PS, Perfilieva E, Bjork-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH (1998) Neurogenesis in the adult human hippocampus. Nat Med 4:1313–1317

    Article  CAS  PubMed  Google Scholar 

  • Fang L, Wang YN, Cui XL, Fang SY, Ge JY, Sun Y, Liu ZH (2012) The role and mechanism of action of activin A in neurite outgrowth of chicken embryonic dorsal root ganglia. J Cell Sci 125:1500–1507

    Article  CAS  PubMed  Google Scholar 

  • Foster NL, Chase TN, Fedio P, Patronas NJ, Brooks RA, Chiro GD (1983) Alzheimer’s disease: focal cortical changes shown by positron emission tomography. Neurology 33:961–961

    Article  CAS  PubMed  Google Scholar 

  • Gray A, Mason A (1990) Requirement for activin A and transforming growth factor–beta 1 pro-regions in homodimer assembly. Science 247:1328–1330

    Article  CAS  PubMed  Google Scholar 

  • Kan I, Barhum Y, Melamed E, Offen D (2011) Mesenchymal stem cells stimulate endogenous neurogenesis in the subventricular zone of adult mice. Stem Cell Rev 7:404–412

    Article  PubMed  Google Scholar 

  • Kim DH, Lee D, Chang EH, Kim JH, Hwang JW, Kim JY, Kyung JW, Kim SH, Oh JS, Shim SM, Na DL, Oh W, Chang JW (2015) GDF-15 secreted from human umbilical cord blood mesenchymal stem cells delivered through the cerebrospinal fluid promotes hippocampal neurogenesis and synaptic activity in an Alzheimer’s disease model. Stem Cells Dev 24:2378–2390

    Article  CAS  PubMed  Google Scholar 

  • Kim JY, Kim DH, Kim DS, Kim JH, Jeong SY, Jeon HB, Lee EH, Yang YS, Oh W, Chang JW (2010) Galectin-3 secreted by human umbilical cord blood-derived mesenchymal stem cells reduces amyloid-beta42 neurotoxicity in vitro. FEBS Lett 584:3601–3608

    Article  CAS  PubMed  Google Scholar 

  • Kriegstein A, Alvarez-Buylla A (2009) The glial nature of embryonic and adult neural stem cells. Annu Rev Neurosci 32:149–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ming GL, Song H (2005) Adult neurogenesis in the mammalian central nervous system. Annu Rev Neurosci 28:223–250

    Article  CAS  PubMed  Google Scholar 

  • Moon M, Cha MY, Mook-Jung I (2014) Impaired hippocampal neurogenesis and its enhancement with ghrelin in 5XFAD mice. J Alzheimers Dis 41:233–241

    CAS  PubMed  Google Scholar 

  • Mu Y, Gage FH (2011) Adult hippocampal neurogenesis and its role in Alzheimer’s disease. Mol Neurodegener 6:85

    Article  PubMed  PubMed Central  Google Scholar 

  • Oakley H, Cole SL, Logan S, Maus E, Shao P, Craft J, Guillozet-Bongaarts A, Ohno M, Disterhoft J, Van Eldik L, Berry R, Vassar R (2006) Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: potential factors in amyloid plaque formation. J Neurosci 26:10129–10140

    Article  CAS  PubMed  Google Scholar 

  • Oh SH, Kim HN, Park HJ, Shin JY, Lee PH (2015) Mesenchymal stem cells increase hippocampal neurogenesis and neuronal differentiation by enhancing the Wnt signaling pathway in an Alzheimer’s disease Model. Cell Transpl 24:1097–1109

    Google Scholar 

  • Ohira K, Takeuchi R, Shoji H, Miyakawa T (2013) Fluoxetine-induced cortical adult neurogenesis. Neuropsychopharmacology 38:909–920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park SE, Lee NK, Lee J, Hwang JW, Choi SJ, Hwang H, Hyung B, Chang JW, Na DL (2016) Distribution of human umbilical cord blood-derived mesenchymal stem cells in the Alzheimer’s disease transgenic mouse after a single intravenous injection. NeuroReport 27:235–241

    Article  CAS  PubMed  Google Scholar 

  • Petsa A, Gargani S, Felesakis A, Grigoriadis N, Grigoriadis I (2009) Effectiveness of protocol for the isolation of Wharton’s Jelly stem cells in large-scale applications. In Vitro Cell Dev Biol Anim 45:573–576

    Article  PubMed  Google Scholar 

  • Pigino G, Pelsman A, Mori H, Busciglio J (2001) Presenilin-1 mutations reduce cytoskeletal association, deregulate neurite growth, and potentiate neuronal dystrophy and tau phosphorylation. J Neurosci 21:834–842

    CAS  PubMed  Google Scholar 

  • Poluch S, Juliano SL (2015) Fine-tuning of neurogenesis is essential for the evolutionary expansion of the cerebral cortex. Cereb Cortex 25:346–364

    Article  PubMed  Google Scholar 

  • Pool M, Thiemann J, Bar-Or A, Fournier AE (2008) NeuriteTracer: a novel ImageJ plugin for automated quantification of neurite outgrowth. J Neurosci Methods 168:134–139

    Article  PubMed  Google Scholar 

  • Reynolds B, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255:1707–1710

    Article  CAS  PubMed  Google Scholar 

  • Richards LJ, Kilpatrick TJ, Bartlett PF (1992) De novo generation of neuronal cells from the adult mouse brain. Proc Natl Acad Sci 89:8591–8595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Martinez G, Molina-Hernandez A, Velasco I (2012) Activin A promotes neuronal differentiation of cerebrocortical neural progenitor cells. PLoS One 7:e43797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez JJ, Verkhratsky A (2011) Neurogenesis in Alzheimer’s disease. J Anat 219:78–89

    Article  PubMed  PubMed Central  Google Scholar 

  • Saha B, Jaber M, Gaillard A (2012) Potentials of endogenous neural stem cells in cortical repair. Front Cell Neurosci 6:14

    PubMed  PubMed Central  Google Scholar 

  • Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81:741–766

    CAS  PubMed  Google Scholar 

  • Seo SW, Im K, Lee JM, Kim ST, Ahn HJ, Go SM, Kim SH, Na DL (2011) Effects of demographic factors on cortical thickness in Alzheimer’s disease. Neurobiol Aging 32:200–209

    Article  PubMed  Google Scholar 

  • Tfilin M, Sudai E, Merenlender A, Gispan I, Yadid G, Turgeman G (2010) Mesenchymal stem cells increase hippocampal neurogenesis and counteract depressive-like behavior. Mol Psychiatry 15:1164–1175

    Article  CAS  PubMed  Google Scholar 

  • Timmer J, Chesnutt C, Niswander L (2005) The activin signaling pathway promotes differentiation of dI3 interneurons in the spinal neural tube. Dev Biol 285:1–10

    Article  CAS  PubMed  Google Scholar 

  • Walker TL, Kempermann G (2014) One mouse, two cultures: isolation and culture of adult neural stem cells from the two neurogenic zones of individual mice. J Vis Exp 84:e51225

    PubMed  Google Scholar 

  • Weiss A, Attisano L (2013) The TGFbeta superfamily signaling pathway. Wiley Interdiscip Rev Dev Biol 2:47–63

    Article  CAS  PubMed  Google Scholar 

  • Zou L, Jin G, Zhang X, Qin J, Zhu H, Tian M, Tan X (2010) Proliferation, migration, and neuronal differentiation of the endogenous neural progenitors in hippocampus after fimbria fornix transection. Int J Neurosci 120:192–200

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the Korean Health Technology R&D Project, Ministry of Health and Welfare, Republic of Korea (HI14C3484, HI14C2746), by Basic Research Program through the National Research Foundation of South Korea (NRF) funded by the Ministry of Education (NRF-2014R1A2A1A11050576).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Duk L. Na or Jong Wook Chang.

Ethics declarations

Conflict of interest

None.

Additional information

Sang Eon Park and Jeongmin Lee have contributed equally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 12 kb)

Supplementary material 2 (PPTX 12289 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, S.E., Lee, J., Chang, E.H. et al. Activin A secreted by human mesenchymal stem cells induces neuronal development and neurite outgrowth in an in vitro model of Alzheimer’s disease: neurogenesis induced by MSCs via activin A. Arch. Pharm. Res. 39, 1171–1179 (2016). https://doi.org/10.1007/s12272-016-0799-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-016-0799-4

Keywords

Navigation