Skip to main content
Log in

DPP-4 inhibitors in diabetic complications: role of DPP-4 beyond glucose control

  • Review
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

An Erratum to this article was published on 07 September 2016

Abstract

Dipeptidyl peptidase-4 (DPP-4) inhibitors (gliptins) are an emerging class of antidiabetic drugs that constitutes approximately fifty percent of the market share of the oral hypoglycemic drugs. Its mechanism of action for lowering blood glucose is essentially via inhibition of the rapid degradation of incretin hormones, such as glucagon-like peptide (GLP)-1 and gastric inhibitory polypeptide (GIP), thus the plasma concentration of GLP-1 increases, which promotes insulin secretion from the pancreatic β cells and suppresses glucagon secretion from the α cells. In addition to the direct actions on the pancreas, GLP-1 exhibits diverse actions on different tissues through its action on GLP-1 receptor, which is expressed ubiquitously. Moreover, DPP-4 has multiple substrates besides GLP-1 and GIP, including cytokines, chemokines, neuropeptides, and growth factors, which are involved in many pathophysiological conditions. Recently, it was suggested that DPP-4 is a new adipokine secreted from the adipose tissue, which plays an important role in the regulation of the endocrine function in obesity-associated type 2 diabetes. Consequently, DPP-4 inhibitors have been reported to exhibit cytoprotective functions against various diabetic complications affecting the liver, heart, kidneys, retina, and neurons. This review outlines the current understanding of the effect of DPP-4 inhibitors on the complications associated with type 2 diabetes, such as liver steatosis and inflammation, dysfunction of the adipose tissue and pancreas, cardiovascular diseases, nephropathy, and neuropathy in preclinical and clinical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aghili N, Devaney JM, Alderman LO, Zukowska Z, Epstein SE, Burnett MS (2012) Polymorphisms in dipeptidyl peptidase IV gene are associated with the risk of myocardial infarction in patients with atherosclerosis. Neuropeptides 46:367–371

    Article  CAS  PubMed  Google Scholar 

  • Akarte AS, Srinivasan BP, Gandhi S (2012) A novel long acting DPP-IV inhibitor PKF-275-055 stimulates beta-cell proliferation resulting in improved glucose homeostasis in diabetic rats. Biochem Pharmacol 83:241–252

    Article  CAS  PubMed  Google Scholar 

  • Alter ML, Ott IM, von Websky K, Tsuprykov O, Sharkovska Y, Krause-Relle K, Raila J, Henze A, Klein T, Hocher B (2012) DPP-4 inhibition on top of angiotensin receptor blockade offers a new therapeutic approach for diabetic nephropathy. Kidney Blood Press Res 36:119–130

    Article  CAS  PubMed  Google Scholar 

  • Arakawa M, Mita T, Azuma K, Ebato C, Goto H, Nomiyama T, Fujitani Y, Hirose T, Kawamori R, Watada H (2010) Inhibition of monocyte adhesion to endothelial cells and attenuation of atherosclerotic lesion by a glucagon-like peptide-1 receptor agonist, exendin-4. Diabetes 59:1030–1037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arkan MC, Hevener AL, Greten FR, Maeda S, Li ZW, Long JM, Wynshaw-Boris A, Poli G, Olefsky J, Karin M (2005) IKK-beta links inflammation to obesity-induced insulin resistance. Nat Med 11:191–198

    Article  CAS  PubMed  Google Scholar 

  • Aroor AR, Sowers JR, Bender SB, Nistala R, Garro M, Mugerfeld I, Hayden MR, Johnson MS, Salam M, Whaley-Connell A, Demarco VG (2013) Dipeptidylpeptidase inhibition is associated with improvement in blood pressure and diastolic function in insulin-resistant male Zucker obese rats. Endocrinology 154:2501–2513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aviv V, Meivar-Levy I, Rachmut IH, Rubinek T, Mor E, Ferber S (2009) Exendin-4 promotes liver cell proliferation and enhances the PDX-1-induced liver to pancreas transdifferentiation process. J Biol Chem 284:33509–33520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ayaori M, Iwakami N, Uto-Kondo H, Sato H, Sasaki M, Komatsu T, Iizuka M, Takiguchi S, Yakushiji E, Nakaya K, Yogo M, Ogura M, Takase B, Murakami T, Ikewaki K (2013) Dipeptidyl peptidase-4 inhibitors attenuate endothelial function as evaluated by flow-mediated vasodilatation in type 2 diabetic patients. J Am Heart Assoc 2:e003277

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Balaban YH, Korkusuz P, Simsek H, Gokcan H, Gedikoglu G, Pinar A, Hascelik G, Asan E, Hamaloglu E, Tatar G (2007) Dipeptidyl peptidase IV (DDP IV) in NASH patients. Ann Hepatol 6:242–250

    CAS  PubMed  Google Scholar 

  • Balas B, Baig MR, Watson C, Dunning BE, Ligueros-Saylan M, Wang Y, He YL, Darland C, Holst JJ, Deacon CF, Cusi K, Mari A, Foley JE, DeFronzo RA (2007) The dipeptidyl peptidase IV inhibitor vildagliptin suppresses endogenous glucose production and enhances islet function after single-dose administration in type 2 diabetic patients. J Clin Endocrinol Metab 92:1249–1255

    Article  CAS  PubMed  Google Scholar 

  • Ben-Shlomo S, Zvibel I, Shnell M, Shlomai A, Chepurko E, Halpern Z, Barzilai N, Oren R, Fishman S (2011) Glucagon-like peptide-1 reduces hepatic lipogenesis via activation of AMP-activated protein kinase. J Hepatol 54:1214–1223

    Article  CAS  PubMed  Google Scholar 

  • Bianchi R, Cervellini I, Porretta-Serapiglia C, Oggioni N, Burkey B, Ghezzi P, Cavaletti G, Lauria G (2012) Beneficial effects of PKF275-055, a novel, selective, orally bioavailable, long-acting dipeptidyl peptidase IV inhibitor in streptozotocin-induced diabetic peripheral neuropathy. J Pharmacol Exp Ther 340:64–72

    Article  CAS  PubMed  Google Scholar 

  • Boschmann M, Engeli S, Dobberstein K, Budziarek P, Strauss A, Boehnke J, Sweep FC, Luft FC, He Y, Foley JE, Jordan J (2009) Dipeptidyl-peptidase-IV inhibition augments postprandial lipid mobilization and oxidation in type 2 diabetic patients. J Clin Endocrinol Metab 94:846–852

    Article  CAS  PubMed  Google Scholar 

  • Brunton S (2014) GLP-1 receptor agonists vs. DPP-4 inhibitors for type 2 diabetes: is one approach more successful or preferable than the other? Int J Clin Pract 68:557–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bullock BP, Heller RS, Habener JF (1996) Tissue distribution of messenger ribonucleic acid encoding the rat glucagon-like peptide-1 receptor. Endocrinology 137:2968–2978

    CAS  PubMed  Google Scholar 

  • Capuano A, Sportiello L, Maiorino MI, Rossi F, Giugliano D, Esposito K (2013) Dipeptidyl peptidase-4 inhibitors in type 2 diabetes therapy–focus on alogliptin. Drug Des Devel Ther 7:989–1001

    PubMed  PubMed Central  Google Scholar 

  • Cho JM, Jang HW, Cheon H, Jeong YT, Kim DH, Lim YM, Choi SH, Yang EK, Shin CY, Son MH, Kim SH, Kim HJ, Lee MS (2011) A novel dipeptidyl peptidase IV inhibitor DA-1229 ameliorates streptozotocin-induced diabetes by increasing beta-cell replication and neogenesis. Diabetes Res Clin Pract 91:72–79

    Article  CAS  PubMed  Google Scholar 

  • Chon S, Gautier JF (2016) An update on the effect of incretin-based therapies on beta-cell function and mass. Diabetes Metab J 40:99–114

    Article  PubMed  PubMed Central  Google Scholar 

  • Conarello SL, Li Z, Ronan J, Roy RS, Zhu L, Jiang G, Liu F, Woods J, Zycband E, Moller DE, Thornberry NA, Zhang BB (2003) Mice lacking dipeptidyl peptidase IV are protected against obesity and insulin resistance. Proc Natl Acad Sci USA 100:6825–6830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cordero OJ, Salgado FJ, Nogueira M (2009) On the origin of serum CD26 and its altered concentration in cancer patients. Cancer Immunol Immunother 58:1723–1747

    Article  CAS  PubMed  Google Scholar 

  • Derosa G, Maffioli P (2012) Dipeptidyl peptidase-4 inhibitors: 3 years of experience. Diabetes Technol Ther 14:350–364

    Article  CAS  PubMed  Google Scholar 

  • Ding X, Saxena NK, Lin S, Gupta NA, Anania FA (2006) Exendin-4, a glucagon-like protein-1 (GLP-1) receptor agonist, reverses hepatic steatosis in ob/ob mice. Hepatology 43:173–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duttaroy A, Voelker F, Merriam K, Zhang X, Ren X, Subramanian K, Hughes TE, Burkey BF (2011) The DPP-4 inhibitor vildagliptin increases pancreatic beta cell mass in neonatal rats. Eur J Pharmacol 650:703–707

    Article  CAS  PubMed  Google Scholar 

  • Ferreira L, Teixeira-de-Lemos E, Pinto F, Parada B, Mega C, Vala H, Pinto R, Garrido P, Sereno J, Fernandes R, Santos P, Velada I, Melo A, Nunes S, Teixeira F, Reis F (2010) Effects of sitagliptin treatment on dysmetabolism, inflammation, and oxidative stress in an animal model of type 2 diabetes (ZDF rat). Mediators Inflamm 2010:592760

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Firneisz G, Varga T, Lengyel G, Feher J, Ghyczy D, Wichmann B, Selmeci L, Tulassay Z, Racz K, Somogyi A (2010) Serum dipeptidyl peptidase-4 activity in insulin resistant patients with non-alcoholic fatty liver disease: a novel liver disease biomarker. PLoS One 5:e12226

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Flock G, Baggio LL, Longuet C, Drucker DJ (2007) Incretin receptors for glucagon-like peptide 1 and glucose-dependent insulinotropic polypeptide are essential for the sustained metabolic actions of vildagliptin in mice. Diabetes 56:3006–3013

    Article  CAS  PubMed  Google Scholar 

  • Focosi D, Kast RE, Galimberti S, Petrini M (2008) Conditioning response to granulocyte colony-stimulating factor via the dipeptidyl peptidase IV-adenosine deaminase complex. J Leukoc Biol 84:331–337

    Article  CAS  PubMed  Google Scholar 

  • Forst T, Dworak M, Berndt-Zipfel C, Loffler A, Klamp I, Mitry M, Pfutzner A (2013) Effect of vildagliptin compared to glimepiride on postprandial proinsulin processing in the beta cell of patients with type 2 diabetes mellitus. Diabetes Obes Metab 15:576–579

    Article  CAS  PubMed  Google Scholar 

  • Fukuda-Tsuru S, Kakimoto T, Utsumi H, Kiuchi S, Ishii S (2014) The novel dipeptidyl peptidase-4 inhibitor teneligliptin prevents high-fat diet-induced obesity accompanied with increased energy expenditure in mice. Eur J Pharmacol 723:207–215

    Article  CAS  PubMed  Google Scholar 

  • Fukui Y, Yamamoto A, Kyoden T, Kato K, Tashiro Y (1990) Quantitative immunogold localization of dipeptidyl peptidase IV (DPP IV) in rat liver cells. Cell Struct Funct 15:117–125

    Article  CAS  PubMed  Google Scholar 

  • Gaetaniello L, Fiore M, de Filippo S, Pozzi N, Tamasi S, Pignata C (1998) Occupancy of dipeptidyl peptidase IV activates an associated tyrosine kinase and triggers an apoptotic signal in human hepatocarcinoma cells. Hepatology 27:934–942

    Article  CAS  PubMed  Google Scholar 

  • Gitt AK, Bramlage P, Binz C, Krekler M, Deeg E, Tschope D (2013) Prognostic implications of DPP-4 inhibitor vs. sulfonylurea use on top of metformin in a real world setting–results of the 1 year follow-up of the prospective DiaRegis registry. Int J Clin Pract 67:1005–1014

    Article  CAS  PubMed  Google Scholar 

  • Glass CK, Olefsky JM (2012) Inflammation and lipid signaling in the etiology of insulin resistance. Cell Metab 15:635–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorrell MD (2005) Dipeptidyl peptidase IV and related enzymes in cell biology and liver disorders. Clin Sci (Lond) 108:277–292

    Article  CAS  Google Scholar 

  • Gorrell MD, Gysbers V, McCaughan GW (2001) CD26: a multifunctional integral membrane and secreted protein of activated lymphocytes. Scand J Immunol 54:249–264

    Article  CAS  PubMed  Google Scholar 

  • Gorrell MD, Wang XM, Park J, Ajami K, Yu DM, Knott H, Seth D, McCaughan GW (2006) Structure and function in dipeptidyl peptidase IV and related proteins. Adv Exp Med Biol 575:45–54

    Article  CAS  PubMed  Google Scholar 

  • Groop PH, Cooper ME, Perkovic V, Emser A, Woerle HJ, von Eynatten M (2013) Linagliptin lowers albuminuria on top of recommended standard treatment in patients with type 2 diabetes and renal dysfunction. Diabetes Care 36:3460–3468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu N, Park MK, Kim TE, Bahng MY, Lim KS, Cho SH, Yoon SH, Cho JY, Jang IJ, Yu KS (2014) Multiple-dose pharmacokinetics and pharmacodynamics of evogliptin (DA-1229), a novel dipeptidyl peptidase IV inhibitor, in healthy volunteers. Drug Des Devel Ther 8:1709–1721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta NA, Mells J, Dunham RM, Grakoui A, Handy J, Saxena NK, Anania FA (2010) Glucagon-like peptide-1 receptor is present on human hepatocytes and has a direct role in decreasing hepatic steatosis in vitro by modulating elements of the insulin signaling pathway. Hepatology 51:1584–1592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutzwiller JP, Tschopp S, Bock A, Zehnder CE, Huber AR, Kreyenbuehl M, Gutmann H, Drewe J, Henzen C, Goeke B, Beglinger C (2004) Glucagon-like peptide 1 induces natriuresis in healthy subjects and in insulin-resistant obese men. J Clin Endocrinol Metab 89:3055–3061

    Article  CAS  PubMed  Google Scholar 

  • Han SJ, Choi SE, Kang Y, Jung JG, Yi SA, Kim HJ, Lee KW, Kim DJ (2011) Effect of sitagliptin plus metformin on beta-cell function, islet integrity and islet gene expression in Zucker diabetic fatty rats. Diabetes Res Clin Pract 92:213–222

    Article  CAS  PubMed  Google Scholar 

  • Hirata K, Kume S, Araki S, Sakaguchi M, Chin-Kanasaki M, Isshiki K, Sugimoto T, Nishiyama A, Koya D, Haneda M, Kashiwagi A, Uzu T (2009) Exendin-4 has an anti-hypertensive effect in salt-sensitive mice model. Biochem Biophys Res Commun 380:44–49

    Article  CAS  PubMed  Google Scholar 

  • Horie A, Tokuyama Y, Ishizuka T, Suzuki Y, Marumo K, Oshikiri K, Ide K, Sunaga M, Kanatsuka A (2014) The dipeptidyl peptidase-4 inhibitor vildagliptin has the capacity to repair beta-cell dysfunction and insulin resistance. Horm Metab Res 46:814–818

    Article  CAS  PubMed  Google Scholar 

  • Hsieh J, Longuet C, Baker CL, Qin B, Federico LM, Drucker DJ, Adeli K (2010) The glucagon-like peptide 1 receptor is essential for postprandial lipoprotein synthesis and secretion in hamsters and mice. Diabetologia 53:552–561

    Article  CAS  PubMed  Google Scholar 

  • Huang TJ, Price SA, Chilton L, Calcutt NA, Tomlinson DR, Verkhratsky A, Fernyhough P (2003) Insulin prevents depolarization of the mitochondrial inner membrane in sensory neurons of type 1 diabetic rats in the presence of sustained hyperglycemia. Diabetes 52:2129–2136

    Article  CAS  PubMed  Google Scholar 

  • Ideta T, Shirakami Y, Miyazaki T, Kochi T, Sakai H, Moriwaki H, Shimizu M (2015) The dipeptidyl peptidase-4 inhibitor teneligliptin attenuates hepatic lipogenesis via AMPK activation in non-alcoholic fatty liver disease model mice. Int J Mol Sci 16:29207–29218

    Article  PubMed  PubMed Central  Google Scholar 

  • Itou M, Kawaguchi T, Taniguchi E, Oriishi T, Sata M (2012) Dipeptidyl peptidase IV inhibitor improves insulin resistance and steatosis in a refractory nonalcoholic fatty liver disease patient: a case report. Case Rep Gastroenterol 6:538–544

    Article  PubMed  PubMed Central  Google Scholar 

  • Iwasaki T, Yoneda M, Inamori M, Shirakawa J, Higurashi T, Maeda S, Terauchi Y, Nakajima A (2010) Sitagliptin as a novel treatment agent for non-alcoholic fatty liver disease patients with type 2 diabetes mellitus. Hepatogastroenterology 58:2103–2105

    Google Scholar 

  • Jin HY, Liu WJ, Park JH, Baek HS, Park TS (2009) Effect of dipeptidyl peptidase-IV (DPP-IV) inhibitor (Vildagliptin) on peripheral nerves in streptozotocin-induced diabetic rats. Arch Med Res 40:536–544

    Article  CAS  PubMed  Google Scholar 

  • Jolivalt C, Fineman M, Deacon CF, Carr R, Calcutt N (2011) GLP-1 signals via ERK in peripheral nerve and prevents nerve dysfunction in diabetic mice. Diabetes Obes Metab 13:990–1000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung YA, Choi YK, Jung GS, Seo HY, Kim HS, Jang BK, Kim JG, Lee IK, Kim MK, Park KG (2014) Sitagliptin attenuates methionine/choline-deficient diet-induced steatohepatitis. Diabetes Res Clin Pract 105:47–57

    Article  CAS  PubMed  Google Scholar 

  • Kaji K, Yoshiji H, Ikenaka Y, Noguchi R, Aihara Y, Douhara A, Moriya K, Kawaratani H, Shirai Y, Yoshii J, Yanase K, Kitade M, Namisaki T, Fukui H (2014) Dipeptidyl peptidase-4 inhibitor attenuates hepatic fibrosis via suppression of activated hepatic stellate cell in rats. J Gastroenterol 49:481–491

    Article  CAS  PubMed  Google Scholar 

  • Kanasaki K, Shi S, Kanasaki M, He J, Nagai T, Nakamura Y, Ishigaki Y, Kitada M, Srivastava SP, Koya D (2014) Linagliptin-mediated DPP-4 inhibition ameliorates kidney fibrosis in streptozotocin-induced diabetic mice by inhibiting endothelial-to-mesenchymal transition in a therapeutic regimen. Diabetes 63:2120–2131

    Article  CAS  PubMed  Google Scholar 

  • Karagiannis T, Paschos P, Paletas K, Matthews DR, Tsapas A (2012) Dipeptidyl peptidase-4 inhibitors for treatment of type 2 diabetes mellitus in the clinical setting: systematic review and meta-analysis. BMJ 344:e1369

    Article  PubMed  CAS  Google Scholar 

  • Kato N, Oka M, Murase T, Yoshida M, Sakairi M, Yamashita S, Yasuda Y, Yoshikawa A, Hayashi Y, Makino M, Takeda M, Mirensha Y, Kakigami T (2011) Discovery and pharmacological characterization of N-[2-({2-[(2S)-2-cyanopyrrolidin-1-yl]-2-oxoethyl}amino)-2-methylpropyl]-2-methyl pyrazolo[1,5-a]pyrimidine-6-carboxamide hydrochloride (anagliptin hydrochloride salt) as a potent and selective DPP-IV inhibitor. Bioorg Med Chem 19:7221–7227

    Article  CAS  PubMed  Google Scholar 

  • Kato H, Nagai Y, Ohta A, Tenjin A, Nakamura Y, Tsukiyama H, Sasaki Y, Fukuda H, Ohshige T, Terashima Y, Sada Y, Kondo A, Sasaoka T, Tanaka Y (2015) Effect of sitagliptin on intrahepatic lipid content and body fat in patients with type 2 diabetes. Diabetes Res Clin Pract 109:199–205

    Article  CAS  PubMed  Google Scholar 

  • Kern M, Kloting N, Niessen HG, Thomas L, Stiller D, Mark M, Klein T, Bluher M (2012) Linagliptin improves insulin sensitivity and hepatic steatosis in diet-induced obesity. PLoS One 7:e38744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kershaw EE, Flier JS (2004) Adipose tissue as an endocrine organ. J Clin Endocrinol Metab 89:2548–2556

    Article  CAS  PubMed  Google Scholar 

  • Kim M, Platt MJ, Shibasaki T, Quaggin SE, Backx PH, Seino S, Simpson JA, Drucker DJ (2013a) GLP-1 receptor activation and Epac2 link atrial natriuretic peptide secretion to control of blood pressure. Nat Med 19:567–575

    Article  CAS  PubMed  Google Scholar 

  • Kim SH, Lee SH, Yim HJ (2013b) Gemigliptin, a novel dipeptidyl peptidase 4 inhibitor: first new anti-diabetic drug in the history of Korean pharmaceutical industry. Arch Pharm Res 36:1185–1188

    Article  CAS  PubMed  Google Scholar 

  • Kim YG, Hahn S, Oh TJ, Kwak SH, Park KS, Cho YM (2013c) Differences in the glucose-lowering efficacy of dipeptidyl peptidase-4 inhibitors between Asians and non-Asians: a systematic review and meta-analysis. Diabetologia 56:696–708

    Article  CAS  PubMed  Google Scholar 

  • Kim TH, Kim MK, Cheong YH, Chae YN, Lee Y, Ka SO, Jung IH, Shin CY, Bae EJ, Son MH (2016) Hepatic role in an early glucose-lowering effect by a novel dipeptidyl peptidase 4 inhibitor, evogliptin, in a rodent model of type 2 diabetes. Eur J Pharmacol 771:65–76

    Article  CAS  PubMed  Google Scholar 

  • Kissow H, Hartmann B, Holst JJ, Viby NE, Hansen LS, Rosenkilde MM, Hare KJ, Poulsen SS (2012) Glucagon-like peptide-1 (GLP-1) receptor agonism or DPP-4 inhibition does not accelerate neoplasia in carcinogen treated mice. Regul Pept 179:91–100

    Article  CAS  PubMed  Google Scholar 

  • Klein T, Fujii M, Sandel J, Shibazaki Y, Wakamatsu K, Mark M, Yoneyama H (2014) Linagliptin alleviates hepatic steatosis and inflammation in a mouse model of non-alcoholic steatohepatitis. Med Mol Morphol 47:137–149

    Article  CAS  PubMed  Google Scholar 

  • Kos K, Baker AR, Jernas M, Harte AL, Clapham JC, O’Hare JP, Carlsson L, Kumar S, McTernan PG (2009) DPP-IV inhibition enhances the antilipolytic action of NPY in human adipose tissue. Diabetes Obes Metab 11:285–292

    Article  CAS  PubMed  Google Scholar 

  • Lambeir AM, Durinx C, Scharpe S, De Meester I (2003) Dipeptidyl-peptidase IV from bench to bedside: an update on structural properties, functions, and clinical aspects of the enzyme DPP IV. Crit Rev Clin Lab Sci 40:209–294

    Article  CAS  PubMed  Google Scholar 

  • Lamers D, Famulla S, Wronkowitz N, Hartwig S, Lehr S, Ouwens DM, Eckardt K, Kaufman JM, Ryden M, Muller S, Hanisch FG, Ruige J, Arner P, Sell H, Eckel J (2011) Dipeptidyl peptidase 4 is a novel adipokine potentially linking obesity to the metabolic syndrome. Diabetes 60:1917–1925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee YS, Shin S, Shigihara T, Hahm E, Liu MJ, Han J, Yoon JW, Jun HS (2007) Glucagon-like peptide-1 gene therapy in obese diabetic mice results in long-term cure of diabetes by improving insulin sensitivity and reducing hepatic gluconeogenesis. Diabetes 56:1671–1679

    Article  CAS  PubMed  Google Scholar 

  • Li L, Li S, Deng K, Liu J, Vandvik PO, Zhao P, Zhang L, Shen J, Bala MM, Sohani ZN, Wong E, Busse JW, Ebrahim S, Malaga G, Rios LP, Wang Y, Chen Q, Guyatt GH, Sun X (2016) Dipeptidyl peptidase-4 inhibitors and risk of heart failure in type 2 diabetes: systematic review and meta-analysis of randomised and observational studies. BMJ 352:i610

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu WJ, Jin HY, Lee KA, Xie SH, Baek HS, Park TS (2011) Neuroprotective effect of the glucagon-like peptide-1 receptor agonist, synthetic exendin-4, in streptozotocin-induced diabetic rats. Br J Pharmacol 164:1410–1420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu WJ, Xie SH, Liu YN, Kim W, Jin HY, Park SK, Shao YM, Park TS (2012) Dipeptidyl peptidase IV inhibitor attenuates kidney injury in streptozotocin-induced diabetic rats. J Pharmacol Exp Ther 340:248–255

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Omar B, Marchetti P, Ahren B (2014) Dipeptidyl peptidase-4 (DPP-4): Localization and activity in human and rodent islets. Biochem Biophys Res Commun 453:398–404

    Article  CAS  PubMed  Google Scholar 

  • Lu YL, Zhou DQ, Zhai HL, Wu H, Guo ZK (2012) Decreased hepatic glucose production in obese rats by dipeptidyl peptidase-IV inhibitor sitagliptin. Chin Med J (Engl) 125:1690–1694

    CAS  Google Scholar 

  • Makdissi A, Ghanim H, Vora M, Green K, Abuaysheh S, Chaudhuri A, Dhindsa S, Dandona P (2012) Sitagliptin exerts an antinflammatory action. J Clin Endocrinol Metab 97:3333–3341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marques C, Mega C, Goncalves A, Rodrigues-Santos P, Teixeira-Lemos E, Teixeira F, Fontes-Ribeiro C, Reis F, Fernandes R (2014) Sitagliptin prevents inflammation and apoptotic cell death in the kidney of type 2 diabetic animals. Mediators Inflamm 2014:538737

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Matsubara J, Sugiyama S, Sugamura K, Nakamura T, Fujiwara Y, Akiyama E, Kurokawa H, Nozaki T, Ohba K, Konishi M, Maeda H, Izumiya Y, Kaikita K, Sumida H, Jinnouchi H, Matsui K, Kim-Mitsuyama S, Takeya M, Ogawa H (2012) A dipeptidyl peptidase-4 inhibitor, des-fluoro-sitagliptin, improves endothelial function and reduces atherosclerotic lesion formation in apolipoprotein E-deficient mice. J Am Coll Cardiol 59:265–276

    Article  CAS  PubMed  Google Scholar 

  • Matsubara J, Sugiyama S, Akiyama E, Iwashita S, Kurokawa H, Ohba K, Maeda H, Fujisue K, Yamamoto E, Kaikita K, Hokimoto S, Jinnouchi H, Ogawa H (2013) Dipeptidyl peptidase-4 inhibitor, sitagliptin, improves endothelial dysfunction in association with its anti-inflammatory effects in patients with coronary artery disease and uncontrolled diabetes. Circ J 77:1337–1344

    Article  CAS  PubMed  Google Scholar 

  • Matsui T, Nishino Y, Takeuchi M, Yamagishi S (2011) Vildagliptin blocks vascular injury in thoracic aorta of diabetic rats by suppressing advanced glycation end product-receptor axis. Pharmacol Res 63:383–388

    Article  CAS  PubMed  Google Scholar 

  • Mazza A, Fruci B, Garinis GA, Giuliano S, Malaguarnera R, Belfiore A (2012) The role of metformin in the management of NAFLD. Exp Diabetes Res 2012:716404

    Article  PubMed  CAS  Google Scholar 

  • McCaughan GW, Siah CL, Abbott C, Wickson J, Ballesteros M, Bishop GA (1993) Dipeptidyl peptidase IV is down-regulated in rat hepatoma cells at the mRNA level. J Gastroenterol Hepatol 8:142–145

    Article  CAS  PubMed  Google Scholar 

  • McNelis JC, Olefsky JM (2014) Macrophages, immunity, and metabolic disease. Immunity 41:36–48

    Article  CAS  PubMed  Google Scholar 

  • Mentzel S, Dijkman HB, Van Son JP, Koene RA, Assmann KJ (1996) Organ distribution of aminopeptidase A and dipeptidyl peptidase IV in normal mice. J Histochem Cytochem 44:445–461

    Article  CAS  PubMed  Google Scholar 

  • Miyagawa K, Kondo T, Goto R, Matsuyama R, Ono K, Kitano S, Kawasaki S, Igata M, Kawashima J, Matsumura T, Motoshima H, Araki E (2013) Effects of combination therapy with vildagliptin and valsartan in a mouse model of type 2 diabetes. Cardiovasc Diabetol 12:160

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Miyazaki M, Kato M, Tanaka K, Tanaka M, Kohjima M, Nakamura K, Enjoji M, Nakamuta M, Kotoh K, Takayanagi R (2012) Increased hepatic expression of dipeptidyl peptidase-4 in non-alcoholic fatty liver disease and its association with insulin resistance and glucose metabolism. Mol Med Rep 5:729–733

    CAS  PubMed  Google Scholar 

  • Moon JY, Woo JS, Seo JW, Lee A, Kim DJ, Kim YG, Kim SY, Lee KH, Lim SJ, Cheng XW, Lee SH, Kim W (2016) The dose-dependent organ-specific effects of a dipeptidyl peptidase-4 inhibitor on cardiovascular complications in a model of type 2 diabetes. PLoS One 11:e0150745

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Morishita R, Nakagami H (2015) Teneligliptin: expectations for its pleiotropic action. Expert Opin Pharmacother 16:417–426

    CAS  PubMed  Google Scholar 

  • Mu J, Woods J, Zhou YP, Roy RS, Li Z, Zycband E, Feng Y, Zhu L, Li C, Howard AD, Moller DE, Thornberry NA, Zhang BB (2006) Chronic inhibition of dipeptidyl peptidase-4 with a sitagliptin analog preserves pancreatic beta-cell mass and function in a rodent model of type 2 diabetes. Diabetes 55:1695–1704

    Article  CAS  PubMed  Google Scholar 

  • Murase H, Kuno A, Miki T, Tanno M, Yano T, Kouzu H, Ishikawa S, Tobisawa T, Ogasawara M, Nishizawa K, Miura T (2015) Inhibition of DPP-4 reduces acute mortality after myocardial infarction with restoration of autophagic response in type 2 diabetic rats. Cardiovasc Diabetol 14:103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nabeno M, Akahoshi F, Kishida H, Miyaguchi I, Tanaka Y, Ishii S, Kadowaki T (2013) A comparative study of the binding modes of recently launched dipeptidyl peptidase IV inhibitors in the active site. Biochem Biophys Res Commun 434:191–196

    Article  CAS  PubMed  Google Scholar 

  • Nakamura K, Oe H, Kihara H, Shimada K, Fukuda S, Watanabe K, Takagi T, Yunoki K, Miyoshi T, Hirata K, Yoshikawa J, Ito H (2014) DPP-4 inhibitor and alpha-glucosidase inhibitor equally improve endothelial function in patients with type 2 diabetes: EDGE study. Cardiovasc Diabetol 13:110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nathan DM (2007) Finding new treatments for diabetes–how many, how fast… how good? N Engl J Med 356:437–440

    Article  CAS  PubMed  Google Scholar 

  • Nistala R, Habibi J, Aroor A, Sowers JR, Hayden MR, Meuth A, Knight W, Hancock T, Klein T, DeMarco VG, Whaley-Connell A (2014) DPP4 inhibition attenuates filtration barrier injury and oxidant stress in the zucker obese rat. Obesity (Silver Spring) 22:2172–2179

    Article  CAS  Google Scholar 

  • Ohyama T, Sato K, Yamazaki Y, Hashizume H, Horiguchi N, Kakizaki S, Mori M, Kusano M, Yamada M (2014) MK-0626, a selective DPP-4 inhibitor, attenuates hepatic steatosis in ob/ob mice. World J Gastroenterol 20:16227–16235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Omar BA, Vikman J, Winzell MS, Voss U, Ekblad E, Foley JE, Ahren B (2013) Enhanced beta cell function and anti-inflammatory effect after chronic treatment with the dipeptidyl peptidase-4 inhibitor vildagliptin in an advanced-aged diet-induced obesity mouse model. Diabetologia 56:1752–1760

    Article  CAS  PubMed  Google Scholar 

  • Omar BA, Liehua L, Yamada Y, Seino Y, Marchetti P, Ahren B (2014) Dipeptidyl peptidase 4 (DPP-4) is expressed in mouse and human islets and its activity is decreased in human islets from individuals with type 2 diabetes. Diabetologia 57:1876–1883

    Article  CAS  PubMed  Google Scholar 

  • Ommen ES, Xu L, O’Neill EA, Goldstein BJ, Kaufman KD, Engel SS (2015) Comparison of treatment with sitagliptin or sulfonylurea in patients with type 2 diabetes mellitus and mild renal impairment: a post hoc analysis of clinical trials. Diabetes Ther 6:29–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oyadomari S, Harding HP, Zhang Y, Oyadomari M, Ron D (2008) Dephosphorylation of translation initiation factor 2alpha enhances glucose tolerance and attenuates hepatosteatosis in mice. Cell Metab 7:520–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pacheco R, Martinez-Navio JM, Lejeune M, Climent N, Oliva H, Gatell JM, Gallart T, Mallol J, Lluis C, Franco R (2005) CD26, adenosine deaminase, and adenosine receptors mediate costimulatory signals in the immunological synapse. Proc Natl Acad Sci USA 102:9583–9588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panjwani N, Mulvihill EE, Longuet C, Yusta B, Campbell JE, Brown TJ, Streutker C, Holland D, Cao X, Baggio LL, Drucker DJ (2013) GLP-1 receptor activation indirectly reduces hepatic lipid accumulation but does not attenuate development of atherosclerosis in diabetic male ApoE (–/–) mice. Endocrinology 154:127–139

    Article  CAS  PubMed  Google Scholar 

  • Park CW, Kim HW, Ko SH, Lim JH, Ryu GR, Chung HW, Han SW, Shin SJ, Bang BK, Breyer MD, Chang YS (2007) Long-term treatment of glucagon-like peptide-1 analog exendin-4 ameliorates diabetic nephropathy through improving metabolic anomalies in db/db mice. J Am Soc Nephrol 18:1227–1238

    Article  CAS  PubMed  Google Scholar 

  • Piazza GA, Callanan HM, Mowery J, Hixson DC (1989) Evidence for a role of dipeptidyl peptidase IV in fibronectin-mediated interactions of hepatocytes with extracellular matrix. Biochem J 262:327–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prasad-Reddy L, Isaacs D (2015) A clinical review of GLP-1 receptor agonists: efficacy and safety in diabetes and beyond. Drugs Context 4:212283

    Article  PubMed  PubMed Central  Google Scholar 

  • Pratley RE, Salsali A (2007) Inhibition of DPP-4: a new therapeutic approach for the treatment of type 2 diabetes. Curr Med Res Opin 23:919–931

    Article  CAS  PubMed  Google Scholar 

  • Romanovsky D, Cruz NF, Dienel GA, Dobretsov M (2006) Mechanical hyperalgesia correlates with insulin deficiency in normoglycemic streptozotocin-treated rats. Neurobiol Dis 24:384–394

    Article  CAS  PubMed  Google Scholar 

  • Rosmaninho-Salgado J, Marques AP, Estrada M, Santana M, Cortez V, Grouzmann E, Cavadas C (2012) Dipeptidyl-peptidase-IV by cleaving neuropeptide Y induces lipid accumulation and PPAR-gamma expression. Peptides 37:49–54

    Article  CAS  PubMed  Google Scholar 

  • Ryan G (2015) Dipeptidyl peptidase-4 inhibitor use in patients with type 2 diabetes and cardiovascular disease or risk factors. Postgrad Med 127:842–854

    Article  PubMed  Google Scholar 

  • Scarpini E, Bianchi R, Moggio M, Sciacco M, Fiori MG, Scarlato G (1993) Decrease of nerve Na+ , K(+)-ATPase activity in the pathogenesis of human diabetic neuropathy. J Neurol Sci 120:159–167

    Article  CAS  PubMed  Google Scholar 

  • Scirica BM, Bhatt DL, Braunwald E, Steg PG, Davidson J, Hirshberg B, Ohman P, Frederich R, Wiviott SD, Hoffman EB, Cavender MA, Udell JA, Desai NR, Mosenzon O, McGuire DK, Ray KK, Leiter LA, Raz I, Committee S-TS, Investigators (2013) Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med 369:1317–1326

    Article  CAS  PubMed  Google Scholar 

  • Sell H, Bluher M, Kloting N, Schlich R, Willems M, Ruppe F, Knoefel WT, Dietrich A, Fielding BA, Arner P, Frayn KN, Eckel J (2013) Adipose dipeptidyl peptidase-4 and obesity: correlation with insulin resistance and depot-specific release from adipose tissue in vivo and in vitro. Diabetes Care 36:4083–4090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shah Z, Pineda C, Kampfrath T, Maiseyeu A, Ying Z, Racoma I, Deiuliis J, Xu X, Sun Q, Moffatt-Bruce S, Villamena F, Rajagopalan S (2011) Acute DPP-4 inhibition modulates vascular tone through GLP-1 independent pathways. Vascul Pharmacol 55:2–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shah P, Ardestani A, Dharmadhikari G, Laue S, Schumann DM, Kerr-Conte J, Pattou F, Klein T, Maedler K (2013) The DPP-4 inhibitor linagliptin restores beta-cell function and survival in human isolated islets through GLP-1 stabilization. J Clin Endocrinol Metab 98:E1163–E1172

    Article  CAS  PubMed  Google Scholar 

  • Sharkovska Y, Reichetzeder C, Alter M, Tsuprykov O, Bachmann S, Secher T, Klein T, Hocher B (2014) Blood pressure and glucose independent renoprotective effects of dipeptidyl peptidase-4 inhibition in a mouse model of type-2 diabetic nephropathy. J Hypertens 32:2211–2223

    Article  CAS  PubMed  Google Scholar 

  • Shimasaki T, Masaki T, Mitsutomi K, Ueno D, Gotoh K, Chiba S, Kakuma T, Yoshimatsu H (2013) The dipeptidyl peptidase-4 inhibitor des-fluoro-sitagliptin regulates brown adipose tissue uncoupling protein levels in mice with diet-induced obesity. PLoS One 8:e63626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shirakawa J, Amo K, Ohminami H, Orime K, Togashi Y, Ito Y, Tajima K, Koganei M, Sasaki H, Takeda E, Terauchi Y (2011a) Protective effects of dipeptidyl peptidase-4 (DPP-4) inhibitor against increased beta cell apoptosis induced by dietary sucrose and linoleic acid in mice with diabetes. J Biol Chem 286:25467–25476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shirakawa J, Fujii H, Ohnuma K, Sato K, Ito Y, Kaji M, Sakamoto E, Koganei M, Sasaki H, Nagashima Y, Amo K, Aoki K, Morimoto C, Takeda E, Terauchi Y (2011b) Diet-induced adipose tissue inflammation and liver steatosis are prevented by DPP-4 inhibition in diabetic mice. Diabetes 60:1246–1257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shirakawa J, Okuyama T, Kyohara M, Yoshida E, Togashi Y, Tajima K, Yamazaki S, Kaji M, Koganei M, Sasaki H, Terauchi Y (2016) DPP-4 inhibition improves early mortality, beta cell function, and adipose tissue inflammation in db/db mice fed a diet containing sucrose and linoleic acid. Diabetol Metab Syndr 8:16

    Article  PubMed  PubMed Central  Google Scholar 

  • Sivertsen J, Rosenmeier J, Holst JJ, Vilsboll T (2012) The effect of glucagon-like peptide 1 on cardiovascular risk. Nat Rev Cardiol 9:209–222

    Article  CAS  PubMed  Google Scholar 

  • Solinas G, Vilcu C, Neels JG, Bandyopadhyay GK, Luo JL, Naugler W, Grivennikov S, Wynshaw-Boris A, Scadeng M, Olefsky JM, Karin M (2007) JNK1 in hematopoietically derived cells contributes to diet-induced inflammation and insulin resistance without affecting obesity. Cell Metab 6:386–397

    Article  CAS  PubMed  Google Scholar 

  • Stecca BA, Nardo B, Chieco P, Mazziotti A, Bolondi L, Cavallari A (1997) Aberrant dipeptidyl peptidase IV (DPP IV/CD26) expression in human hepatocellular carcinoma. J Hepatol 27:337–345

    Article  CAS  PubMed  Google Scholar 

  • Stonehouse AH, Darsow T, Maggs DG (2012) Incretin-based therapies. J. Diabetes 4:55–67

    Article  CAS  Google Scholar 

  • Stumvoll M, Goldstein BJ, van Haeften TW (2005) Type 2 diabetes: principles of pathogenesis and therapy. Lancet 365:1333–1346

    Article  CAS  PubMed  Google Scholar 

  • Sugimoto K, Rashid IB, Shoji M, Suda T, Yasujima M (2008) Early changes in insulin receptor signaling and pain sensation in streptozotocin-induced diabetic neuropathy in rats. J Pain 9:237–245

    Article  CAS  PubMed  Google Scholar 

  • Svegliati-Baroni G, Saccomanno S, Rychlicki C, Agostinelli L, De Minicis S, Candelaresi C, Faraci G, Pacetti D, Vivarelli M, Nicolini D, Garelli P, Casini A, Manco M, Mingrone G, Risaliti A, Frega GN, Benedetti A, Gastaldelli A (2011) Glucagon-like peptide-1 receptor activation stimulates hepatic lipid oxidation and restores hepatic signalling alteration induced by a high-fat diet in nonalcoholic steatohepatitis. Liver Int 31:1285–1297

    Article  CAS  PubMed  Google Scholar 

  • Takeda Y, Fujita Y, Honjo J, Yanagimachi T, Sakagami H, Takiyama Y, Makino Y, Abiko A, Kieffer TJ, Haneda M (2012) Reduction of both beta cell death and alpha cell proliferation by dipeptidyl peptidase-4 inhibition in a streptozotocin-induced model of diabetes in mice. Diabetologia 55:404–412

    Article  CAS  PubMed  Google Scholar 

  • Terasaki M, Nagashima M, Watanabe T, Nohtomi K, Mori Y, Miyazaki A, Hirano T (2012) Effects of PKF275-055, a dipeptidyl peptidase-4 inhibitor, on the development of atherosclerotic lesions in apolipoprotein E-null mice. Metabolism 61:974–977

    Article  CAS  PubMed  Google Scholar 

  • Terawaki Y, Nomiyama T, Takahashi H, Tsutsumi Y, Murase K, Nagaishi R, Tanabe M, Kudo T, Kobayashi K, Yasuno T, Nakashima H, Yanase T (2015) Efficacy of dipeptidyl peptidase-4 inhibitor linagliptin in patients with type 2 diabetes undergoing hemodialysis. Diabetol Metab Syndr 7:44

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tsuchiya S, Friedman E, Addy C, Wakana A, Tatosian D, Matsumoto Y, Suzuki H, Kauh E (2016) Single and multiple dose pharmacokinetics and pharmacodynamics of omarigliptin, a novel, once-weekly dipeptidyl peptidase-4 inhibitor, in healthy Japanese male subjects. J Diabetes Investig

  • Ussher JR, Drucker DJ (2014) Cardiovascular actions of incretin-based therapies. Circ Res 114:1788–1803

    Article  CAS  PubMed  Google Scholar 

  • van Genugten RE, van Raalte DH, Diamant M (2012) Dipeptidyl peptidase-4 inhibitors and preservation of pancreatic islet-cell function: a critical appraisal of the evidence. Diabetes Obes Metab 14:101–111

    Article  PubMed  Google Scholar 

  • van Poppel PC, Netea MG, Smits P, Tack CJ (2011) Vildagliptin improves endothelium-dependent vasodilatation in type 2 diabetes. Diabetes Care 34:2072–2077

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vittone F, Liberman A, Vasic D, Ostertag R, Esser M, Walcher D, Ludwig A, Marx N, Burgmaier M (2012) Sitagliptin reduces plaque macrophage content and stabilises arteriosclerotic lesions in Apoe (–/–) mice. Diabetologia 55:2267–2275

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto S, Tokuhara T, Nishikawa M, Nishizawa S, Nishioka T, Nozawa A, Takahashi A, Watanabe Y, Wada R, Wakasa K (2012) Spontaneous regression of hepatocellular carcinoma after improving diabetes mellitus: possibly responsible for immune system. Kanzo 53:164–167

    Article  Google Scholar 

  • Yang L, Colditz GA (2015) Prevalence of overweight and obesity in the United States, 2007-2012. JAMA Intern Med 175:1412–1413

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang TY, Liaw YP, Huang JY, Chang HR, Chang KW, Ueng KC (2016) Association of Sitagliptin with cardiovascular outcome in diabetic patients: a nationwide cohort study. Acta Diabetol 53:461–468

  • Yazbeck R, Howarth GS, Abbott CA (2009) Dipeptidyl peptidase inhibitors, an emerging drug class for inflammatory disease? Trends Pharmacol Sci 30:600–607

    Article  CAS  PubMed  Google Scholar 

  • Yilmaz Y, Yonal O, Deyneli O, Celikel CA, Kalayci C, Duman DG (2012) Effects of sitagliptin in diabetic patients with nonalcoholic steatohepatitis. Acta Gastroenterol Belg 75:240–244

    PubMed  Google Scholar 

  • Yoshida T, Akahoshi F, Sakashita H, Kitajima H, Nakamura M, Sonda S, Takeuchi M, Tanaka Y, Ueda N, Sekiguchi S, Ishige T, Shima K, Nabeno M, Abe Y, Anabuki J, Soejima A, Yoshida K, Takashina Y, Ishii S, Kiuchi S, Fukuda S, Tsutsumiuchi R, Kosaka K, Murozono T, Nakamaru Y, Utsumi H, Masutomi N, Kishida H, Miyaguchi I, Hayashi Y (2012) Discovery and preclinical profile of teneligliptin (3-[(2S,4S)-4-[4-(3-methyl-1-phenyl-1H-pyrazol-5-yl)piperazin-1-yl]pyrrolidin-2-y lcarbonyl]thiazolidine): a highly potent, selective, long-lasting and orally active dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes. Bioorg Med Chem 20:5705–5719

    Article  CAS  PubMed  Google Scholar 

  • Zheng T, Liu Y, Qin S, Liu H, Zhang X, Zhao H (2016) Increased plasma dipeptidyl peptidase-4 activities are associated with high prevalence of diabetic nephropathy in Chinese patients with newly diagnosed type 2 diabetes: a cross-sectional study. Diab Vasc Dis Res 13:127–136

    Article  PubMed  Google Scholar 

  • Zhong J, Rao X, Deiuliis J, Braunstein Z, Narula V, Hazey J, Mikami D, Needleman B, Satoskar AR, Rajagopalan S (2013a) A potential role for dendritic cell/macrophage-expressing DPP4 in obesity-induced visceral inflammation. Diabetes 62:149–157

    Article  CAS  PubMed  Google Scholar 

  • Zhong J, Rao X, Rajagopalan S (2013b) An emerging role of dipeptidyl peptidase 4 (DPP4) beyond glucose control: potential implications in cardiovascular disease. Atherosclerosis 226:305–314

    Article  CAS  PubMed  Google Scholar 

  • Zillessen P, Celner J, Kretschmann A, Pfeifer A, Racke K, Mayer P (2016) Metabolic role of dipeptidyl peptidase 4 (DPP4) in primary human (pre)adipocytes. Sci Rep 6:23074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmet P, Alberti KG, Shaw J (2001) Global and societal implications of the diabetes epidemic. Nature 414:782–787

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eun Ju Bae.

Ethics declarations

Conflict of interest

None.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s12272-016-0832-7.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bae, E.J. DPP-4 inhibitors in diabetic complications: role of DPP-4 beyond glucose control. Arch. Pharm. Res. 39, 1114–1128 (2016). https://doi.org/10.1007/s12272-016-0813-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-016-0813-x

Keywords

Navigation