Skip to main content
Log in

Function of VP2 protein in the stability of the secondary structure of virus-like particles of genogroup II norovirus at different pH levels: Function of VP2 protein in the stability of NoV VLPs

  • Virology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

VP2 is the minor structural protein of noroviruses (NoV) and may function in NoV particle stability. To determine the function of VP2 in the stability of the NoV particle, we constructed and purified two kinds of virus-like particles (VLPs), namely, VLPs (VP1) and VLPs (VP1+VP2), from Sf9 cells infected with recombinant baculoviruses by using a Bac-to-Bac® baculovirus expression system. The two kinds of VLPs were treated with different phosphate buffers (pH 2 to pH 8); the secondary structure was then analyzed by far UV circular dichroism (CD) spectroscopy. Results showed that significant disruptions of the secondary structure of proteins were not observed at pH 2 to pH 7. At pH 8, the percentages of a-helix, β-sheet, and β-turn in VLPs (VP1) were decreased from 11% to 8%, from 37% to 32%, and from 20% to 16%, respectively. The percentage of coil was increased from 32% to 44%. By contrast, the percentages of α-helix, β-sheet, and β-turn in VLPs (VP1+VP2) were decreased from 11% to 10%, from 37% to 35%, and from 20% to 19%, respectively. The percentage of coil was increased from 32% to 36%. VLPs (VP1+VP2) was likely more stable than VLPs (VP1), as indicated by the percentage of the secondary structures analyzed by CD. These results suggested that VP2 could stabilize the secondary structure of VLPs under alkaline pH conditions. This study provided novel insights into the molecular mechanism of the function of VP2 in the stability of NoV particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ando T., Noel J.S., and Fankhauser R.L. 2000. Genetic classification of “Norwalk-like viruses”. J. Infect. Dis. 181, 336–348.

    Article  Google Scholar 

  • Atmar R.L. and Estes M.K. 2006. The epidemiologic and clinical importance of norovirus infection. Gastroenterol. Clin. N. Am. 35, 275–290.

    Article  Google Scholar 

  • Ausar S.F., Foubert T.R., Hudson M.H., Vedvick T.S., and Middaugh C.R. 2006. Conformational stability and disassembly of Norwalk virus-like particles: Effect of pH and temperature. J. Biol. Chem. 281, 19478–19488.

    Article  CAS  PubMed  Google Scholar 

  • Bertolotti-Ciarlet A., Crawford S.E., Hutson A.M., and Estes M.K. 2003. The 3' end of Norwalk virus mRNA contains determinants that regulate the expression and stability of the viral capsid protein VP1: a novel function for the VP2 protein. J. Virol. 77, 11603–11605.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bertolotti-Ciarlet A., White L.J., Chen R., Prasad B.V., and Estes M.K. 2002. Structural requirements for the assembly of Norwalk virus-like particles. J. Virol. 76, 4044–4055.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Culver J.N. 2002. Tobacco mosaic virus assembly and disassembly: determinants in pathogenicity and resistance. Annu. Rev. Phytopathol. 40, 287–308.

    Article  CAS  PubMed  Google Scholar 

  • Doultree J.C., Druce J.D., Birch C.J., Bowden D.S., and Marshall J.A. 1999. Inactivation of feline calicivirus, a Norwalk virus surrogate. J. Hosp. Infect. 41, 51–57.

    Article  CAS  PubMed  Google Scholar 

  • Glass P.J., White L.J., Ball J.M., Leparc-Goffart I., Hardy M.E., and Estes M.K. 2000. Norwalk virus open reading frame 3 encodes a minor structural protein. J. Virol. 74, 6581–6591.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Green K.Y., Kapikian A.Z., Valdesuso J., Sosnovtsev S., Treanor J.J., and Lew J.F. 1997. Expression and self-assembly of recombinant capsid protein from the antigenically distinct Hawaii human calicivirus. J. Clin. Microbiol. 35, 1909–1914.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hale A.D., Crawford S.E., Ciarlet M., Green J., Gallimore C., Brown D.W., Jiang X., and Estes M.K. 1999. Expression and self-assembly of Grimsby virus: antigenic distinction from Norwalk and Mexico viruses. Clin. Diagn. Lab. Immunol. 6, 142–145.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jiang X., Matson D.O., Ruiz-Palacios G.M., Hu J., Treanor J., and Pickering L.K. 1995. Expression, self-assembly, and antigenicity of a snow mountain agent-like calicivirus capsid protein. J. Clin. Microbiol. 33, 1452–1455.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jiang X., Wang M., Graham D.Y., and Estes M.K. 1992. Expression, self-assembly, and antigenicity of the Norwalk virus capsid protein. J. Virol. 66, 6527–6532.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jiang X., Wang M., Wang K., and Estes M.K. 1993. Sequence and genomic organization of Norwalk virus. Virology 195, 51–61.

    Article  CAS  PubMed  Google Scholar 

  • Karst S.M., Wobus C.E., Lay M., Davidson J., and Virgin H.W.IV. 2003. STAT1-dependent innate immunity to a Norwalk-like virus. Science 299, 1575–1578.

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi S., Sakae K., Suzuki Y., Shinozaki K., Okada M., Ishiko H., Kamata K., Suzuki K., Natori K., Miyamura T., and Takeda N. 2000. Molecular cloning, expression, and antigenicity of Seto virus belonging to genogroup I Norwalk-like viruses. J. Clin. Microbiol. 38, 3492–3494.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kroneman A., Harris J.R., Vennema H., Duizer E., van Duynhoven Y., Gray J., Iturriza M., Bottiger B., Falkenhorst G., Johnsen C., and et al. 2008. Data quality of 5 years of central norovirus outbreak reporting in the European Network for food-borne viruses. J. Public Health 30, 82–90.

    Article  CAS  Google Scholar 

  • Lindesmith L., Moe C., Marionneau S., Ruvoen N., Jiang X., Lindblad L., Stewart P., LePendu J., and Baric R. 2003. Human susceptibility and resistance to Norwalk virus infection. Nat. Med. 9, 548–553.

    Article  CAS  PubMed  Google Scholar 

  • Luttermann C. and Meyers G. 2007. A bipartite sequence motif induces translation reinitiation in feline calicivirus RNA. J. Biol. Chem. 282, 7056–7065.

    Article  CAS  PubMed  Google Scholar 

  • Marionneau S., Ruvoën N., Le Moullac-Vaidye B., Clement M., Cailleau-Thomas A., Ruiz-Palacois G., Huang P., Jiang X., and Le Pendu J. 2002. Norwalk virus binds to histo-blood group antigens present on gastroduodenal epithelial cells of secretor individuals. Gastroenterology 122, 1967–1977.

    Article  CAS  PubMed  Google Scholar 

  • Pirtle E.C. and Beran G.W. 1991. Virus survival in the environment. Rev. Sci. Tech. 10, 733–748.

    CAS  PubMed  Google Scholar 

  • Prasad B.V., Hardy M.E., Dokland T., Bella J., Rossmann M.G., and Estes M.K. 1999. X-ray crystallographic structure of the Norwalk virus capsid. Science 286, 287–290.

    Article  CAS  PubMed  Google Scholar 

  • Sosnovtsev S.V., Belliot G., Chang K.O., Onwudiwe O., and Green K.Y. 2005. Feline calicivirus VP2 is essential for the production of infectious virions. J. Virol. 79, 4012–4024.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Svraka S., Duizer E., Vennema H., de Bruin E., van der Veer B., Dorresteijn B., and Koopmans M. 2007. Etiological role of viruses in outbreaks of acute gastroenteritis in The Netherlands from 1994 through 2005. J. Clin. Microbiol. 45, 1389–1394.

    Article  PubMed Central  PubMed  Google Scholar 

  • Vongpunsawad S., Venkataram Prasad B.V., and Estes M.K. 2013. Norwalk virus minor capsid protein VP2 associates within the VP1 shell domain. J. Virol. 87, 4818–4825.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang D., Wu Q., Kou X., Yao L., and Zhang J. 2008. Distribution of norovirus in oyster tissues. J. Appl. Microbiol. 105, 1966–1972.

    Article  CAS  PubMed  Google Scholar 

  • White L.J., Hardy M.E., and Estes M.K. 1997. Biochemical characterization of a smaller form of recombinant Norwalk virus capsids assembled in insect cells. J. Virol. 71, 8066–8072.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Widdowson M.A., Monroe S.S., and Glass R.I. 2005. Are noroviruses emerging? Emerg. Infect. Dis. 11, 735–737.

    Article  PubMed Central  PubMed  Google Scholar 

  • Yang J.T., Wu C.S.C., and Martinez H.M. 1986. Calculation of protein conformation from circular dichroism. Methods Enzymol. 130, 208–269.

    Article  CAS  PubMed  Google Scholar 

  • Zheng D.P., Ando T., Fankhauser R.L., Beard R.S., Glass R.I., and Monroe S.S. 2006. Norovirus classification and proposed strain nomenclature. Virology 346, 312–323.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang Yanhua.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Y., Fengling, L., Lianzhu, W. et al. Function of VP2 protein in the stability of the secondary structure of virus-like particles of genogroup II norovirus at different pH levels: Function of VP2 protein in the stability of NoV VLPs. J Microbiol. 52, 970–975 (2014). https://doi.org/10.1007/s12275-014-4323-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-014-4323-6

Keywords

Navigation