Skip to main content
Erschienen in: Breast Cancer 5/2017

30.01.2017 | Original Article

miR-668 enhances the radioresistance of human breast cancer cell by targeting IκBα

verfasst von: Ming Luo, Ling Ding, Qingjian Li, Herui Yao

Erschienen in: Breast Cancer | Ausgabe 5/2017

Einloggen, um Zugang zu erhalten

Abstract

Background

A large proportion of breast cancer patients are resistant to radiotherapy, which is a mainstay treatment for this malignancy, but the mechanisms of radioresistance remain unclear.

Methods and materials

To evaluate the role of miRNAs in radioresistance, we established two radioresistant breast cancer cell lines MCF-7R and T-47DR derived from parental MCF-7 and T-47D. Moreover, miRNA microarray, quantitative RT-PCR analysis, luciferase reporter assay and western blotting were used.

Results

We found that miR-668 was most abundantly expressed in radioresistant cells MCF-7R and T-47DR. miR-668 knockdown reversed radioresistance of MCF-7R and T-47DR, miR-668 overexpression enhanced radioresistance of MCF-7 and T-47D cells. Mechanically, bioinformatics analysis combined with experimental analysis demonstrated IκBα, a tumor-suppressor as well as an NF-κB inhibitor, was a direct target of miR-668. Further, miR-668 overexpression inhibited IκBα expression, activated NF-κB, thus, increased radioresistance of MCF-7 and T-47D cells. Conversely, miR-668 knockdown restored IκBα expression, suppressed NF-κB, increased radiosensitivity of MCF-7R and T-47DR cells.

Conclusion

Our findings suggest miR-668 is involved in the radioresistance of breast cancer cells and miR-668-IκBα-NF-κB axis may be a novel candidate for developing rational therapeutic strategies for human breast cancer treatment.
Literatur
1.
Zurück zum Zitat Ahn SJ, Choi C, Choi YD, Kim YC, Kim KS, Oh IJ, et al. Microarray analysis of gene expression in lung cancer cell lines treated by fractionated irradiation. Anticancer Res. 2014;34(9):4939–48.PubMed Ahn SJ, Choi C, Choi YD, Kim YC, Kim KS, Oh IJ, et al. Microarray analysis of gene expression in lung cancer cell lines treated by fractionated irradiation. Anticancer Res. 2014;34(9):4939–48.PubMed
2.
Zurück zum Zitat Burstein HJ, Morrow M. Nodal irradiation after breast-cancer surgery in the era of effective adjuvant therapy. N Engl J Med. 2015;373(4):379–81.CrossRefPubMed Burstein HJ, Morrow M. Nodal irradiation after breast-cancer surgery in the era of effective adjuvant therapy. N Engl J Med. 2015;373(4):379–81.CrossRefPubMed
3.
Zurück zum Zitat But-Hadzic J, Bilban-Jakopin C, Hadzic V. The role of radiation therapy in locally advanced breast cancer. Breast J. 2010;16(2):183–8.CrossRefPubMed But-Hadzic J, Bilban-Jakopin C, Hadzic V. The role of radiation therapy in locally advanced breast cancer. Breast J. 2010;16(2):183–8.CrossRefPubMed
4.
Zurück zum Zitat Chen XY, Wang Z, Li B, Zhang YJ, Li YY. Pim-3 contributes to radioresistance through regulation of the cell cycle and DNA damage repair in pancreatic cancer cells. Biochem Biophys Res Commun. 2016;473(1):296–302.CrossRefPubMed Chen XY, Wang Z, Li B, Zhang YJ, Li YY. Pim-3 contributes to radioresistance through regulation of the cell cycle and DNA damage repair in pancreatic cancer cells. Biochem Biophys Res Commun. 2016;473(1):296–302.CrossRefPubMed
6.
Zurück zum Zitat Fu ZC, Wang FM, Cai JM. Gene expression changes in residual advanced cervical cancer after radiotherapy: indicators of poor prognosis and radioresistance? Med Sci Monit. 2015;21:1276–87.CrossRefPubMedPubMedCentral Fu ZC, Wang FM, Cai JM. Gene expression changes in residual advanced cervical cancer after radiotherapy: indicators of poor prognosis and radioresistance? Med Sci Monit. 2015;21:1276–87.CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Gong C, Nie Y, Qu S, Liao JY, Cui X, Yao H, et al. miR-21 induces myofibroblast differentiation and promotes the malignant progression of breast phyllodes tumors. Cancer Res. 2014;74(16):4341–52.CrossRefPubMed Gong C, Nie Y, Qu S, Liao JY, Cui X, Yao H, et al. miR-21 induces myofibroblast differentiation and promotes the malignant progression of breast phyllodes tumors. Cancer Res. 2014;74(16):4341–52.CrossRefPubMed
8.
Zurück zum Zitat Gong C, Yao Y, Wang Y, Liu B, Wu W, Chen J, et al. Up-regulation of miR-21 mediates resistance to trastuzumab therapy for breast cancer. J Biol Chem. 2011;286(21):19127–37.CrossRefPubMedPubMedCentral Gong C, Yao Y, Wang Y, Liu B, Wu W, Chen J, et al. Up-regulation of miR-21 mediates resistance to trastuzumab therapy for breast cancer. J Biol Chem. 2011;286(21):19127–37.CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Hein AL, Post CM, Sheinin YM, Lakshmanan I, Natarajan A, Enke CA, et al. RAC1 GTPase promotes the survival of breast cancer cells in response to hyper-fractionated radiation treatment. Oncogene. 2016;35(49):6319–29.CrossRefPubMedPubMedCentral Hein AL, Post CM, Sheinin YM, Lakshmanan I, Natarajan A, Enke CA, et al. RAC1 GTPase promotes the survival of breast cancer cells in response to hyper-fractionated radiation treatment. Oncogene. 2016;35(49):6319–29.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Huang X, Taeb S, Jahangiri S, Korpela E, Cadonic I, Yu N, et al. miR-620 promotes tumor radioresistance by targeting 15-hydroxyprostaglandin dehydrogenase (HPGD). Oncotarget. 2015;6(26):22439–51.CrossRefPubMedPubMedCentral Huang X, Taeb S, Jahangiri S, Korpela E, Cadonic I, Yu N, et al. miR-620 promotes tumor radioresistance by targeting 15-hydroxyprostaglandin dehydrogenase (HPGD). Oncotarget. 2015;6(26):22439–51.CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Kim W, Youn H, Kang C, Youn B. Inflammation-induced radioresistance is mediated by ROS-dependent inactivation of protein phosphatase 1 in non-small cell lung cancer cells. Apoptosis. 2015;20(9):1242–52.CrossRefPubMed Kim W, Youn H, Kang C, Youn B. Inflammation-induced radioresistance is mediated by ROS-dependent inactivation of protein phosphatase 1 in non-small cell lung cancer cells. Apoptosis. 2015;20(9):1242–52.CrossRefPubMed
12.
Zurück zum Zitat Kurth I, Hein L, Mabert K, Peitzsch C, Koi L, Cojoc M, et al. Cancer stem cell related markers of radioresistance in head and neck squamous cell carcinoma. Oncotarget. 2015;6(33):34494–509.PubMedPubMedCentral Kurth I, Hein L, Mabert K, Peitzsch C, Koi L, Cojoc M, et al. Cancer stem cell related markers of radioresistance in head and neck squamous cell carcinoma. Oncotarget. 2015;6(33):34494–509.PubMedPubMedCentral
13.
Zurück zum Zitat Lan F, Yue X, Ren G, Li H, Ping L, Wang Y, et al. miR-15a/16 enhances radiation sensitivity of non-small cell lung cancer cells by targeting the TLR1/NF-kappaB signaling pathway. Int J Radiat Oncol Biol Phys. 2015;91(1):73–81.CrossRefPubMed Lan F, Yue X, Ren G, Li H, Ping L, Wang Y, et al. miR-15a/16 enhances radiation sensitivity of non-small cell lung cancer cells by targeting the TLR1/NF-kappaB signaling pathway. Int J Radiat Oncol Biol Phys. 2015;91(1):73–81.CrossRefPubMed
14.
Zurück zum Zitat Li J, Huang H, Sun L, Yang M, Pan C, Chen W, et al. MiR-21 indicates poor prognosis in tongue squamous cell carcinomas as an apoptosis inhibitor. Clin Cancer Res. 2009;15(12):3998–4008.CrossRefPubMed Li J, Huang H, Sun L, Yang M, Pan C, Chen W, et al. MiR-21 indicates poor prognosis in tongue squamous cell carcinomas as an apoptosis inhibitor. Clin Cancer Res. 2009;15(12):3998–4008.CrossRefPubMed
15.
Zurück zum Zitat Liang DH, El-Zein R, Dave B. Autophagy inhibition to increase radiosensitization in breast cancer. J Nucl Med Radiat Ther. 2015;6(5):1–13.CrossRef Liang DH, El-Zein R, Dave B. Autophagy inhibition to increase radiosensitization in breast cancer. J Nucl Med Radiat Ther. 2015;6(5):1–13.CrossRef
16.
Zurück zum Zitat Liang K, Lu Y, Jin W, Ang KK, Milas L, Fan Z. Sensitization of breast cancer cells to radiation by trastuzumab. Mol Cancer Ther. 2003;2(11):1113–20.PubMed Liang K, Lu Y, Jin W, Ang KK, Milas L, Fan Z. Sensitization of breast cancer cells to radiation by trastuzumab. Mol Cancer Ther. 2003;2(11):1113–20.PubMed
17.
Zurück zum Zitat Liao H, Xiao Y, Hu Y, Xiao Y, Yin Z, Liu L. microRNA-32 induces radioresistance by targeting DAB2IP and regulating autophagy in prostate cancer cells. Oncol Lett. 2015;10(4):2055–62.PubMedPubMedCentral Liao H, Xiao Y, Hu Y, Xiao Y, Yin Z, Liu L. microRNA-32 induces radioresistance by targeting DAB2IP and regulating autophagy in prostate cancer cells. Oncol Lett. 2015;10(4):2055–62.PubMedPubMedCentral
18.
Zurück zum Zitat Mazurik VK, Moroz BB. Problems of radiobiology and p53 protein. Radiat Biol Radioecol. 2001;41(5):548–72. Mazurik VK, Moroz BB. Problems of radiobiology and p53 protein. Radiat Biol Radioecol. 2001;41(5):548–72.
19.
Zurück zum Zitat McIlrath J, Bouffler SD, Samper E, Cuthbert A, Wojcik A, Szumiel I, et al. Telomere length abnormalities in mammalian radiosensitive cells. Cancer Res. 2001;61(3):912–5.PubMed McIlrath J, Bouffler SD, Samper E, Cuthbert A, Wojcik A, Szumiel I, et al. Telomere length abnormalities in mammalian radiosensitive cells. Cancer Res. 2001;61(3):912–5.PubMed
20.
Zurück zum Zitat Mehta M, Basalingappa K, Griffith JN, Andrade D, Babu A, Amreddy N, et al. HuR silencing elicits oxidative stress and DNA damage and sensitizes human triple-negative breast cancer cells to radiotherapy. Oncotarget. 2016;7(40):64820–35.PubMedPubMedCentral Mehta M, Basalingappa K, Griffith JN, Andrade D, Babu A, Amreddy N, et al. HuR silencing elicits oxidative stress and DNA damage and sensitizes human triple-negative breast cancer cells to radiotherapy. Oncotarget. 2016;7(40):64820–35.PubMedPubMedCentral
21.
Zurück zum Zitat Oh ET, Byun MS, Lee H, Park MT, Jue DM, Lee CW, et al. Aurora-A contributes to radioresistance by increasing NF-κB DNA binding. Radiat Res. 2010;174(3):265–73.CrossRefPubMed Oh ET, Byun MS, Lee H, Park MT, Jue DM, Lee CW, et al. Aurora-A contributes to radioresistance by increasing NF-κB DNA binding. Radiat Res. 2010;174(3):265–73.CrossRefPubMed
22.
Zurück zum Zitat Peretz S, Jensen R, Baserga R, Glazer PM. ATM-dependent expression of the insulin-like growth factor-I receptor in a pathway regulating radiation response. Proc Natl Acad Sci USA. 2001;98(4):1676–81.CrossRefPubMedPubMedCentral Peretz S, Jensen R, Baserga R, Glazer PM. ATM-dependent expression of the insulin-like growth factor-I receptor in a pathway regulating radiation response. Proc Natl Acad Sci USA. 2001;98(4):1676–81.CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Qu C, Liang Z, Huang J, Zhao R, Su C, Wang S, et al. MiR-205 determines the radioresistance of human nasopharyngeal carcinoma by directly targeting PTEN. Cell Cycle. 2012;11(4):785–96.CrossRefPubMedPubMedCentral Qu C, Liang Z, Huang J, Zhao R, Su C, Wang S, et al. MiR-205 determines the radioresistance of human nasopharyngeal carcinoma by directly targeting PTEN. Cell Cycle. 2012;11(4):785–96.CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Qu JQ, Yi HM, Ye X, Li LN, Zhu JF, Xiao T, et al. MiR-23a sensitizes nasopharyngeal carcinoma to irradiation by targeting IL-8/Stat3 pathway. Oncotarget. 2015;6(29):28341–56.CrossRefPubMed Qu JQ, Yi HM, Ye X, Li LN, Zhu JF, Xiao T, et al. MiR-23a sensitizes nasopharyngeal carcinoma to irradiation by targeting IL-8/Stat3 pathway. Oncotarget. 2015;6(29):28341–56.CrossRefPubMed
25.
Zurück zum Zitat Rhoads MG, Kandarian SC, Pacelli F, Doglietto GB, Bossola M. Expression of NF-κB and IκB proteins in skeletal muscle of gastric cancer patients. Eur J Cancer. 2010;46(1):191–7.CrossRefPubMedPubMedCentral Rhoads MG, Kandarian SC, Pacelli F, Doglietto GB, Bossola M. Expression of NF-κB and IκB proteins in skeletal muscle of gastric cancer patients. Eur J Cancer. 2010;46(1):191–7.CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Ropars V, Despouy G, Stern MH, Benichou S, Roumestand C, Arold ST. The TCL1A oncoprotein interacts directly with the NF-κB inhibitor IκB. PLoS ONE. 2009;4(8):e6567.CrossRefPubMedPubMedCentral Ropars V, Despouy G, Stern MH, Benichou S, Roumestand C, Arold ST. The TCL1A oncoprotein interacts directly with the NF-κB inhibitor IκB. PLoS ONE. 2009;4(8):e6567.CrossRefPubMedPubMedCentral
27.
28.
Zurück zum Zitat Vandenboom Ii TG, Li Y, Philip PA, Sarkar FH. MicroRNA and cancer: tiny molecules with major implications. Curr Genom. 2008;9(2):97–109.CrossRef Vandenboom Ii TG, Li Y, Philip PA, Sarkar FH. MicroRNA and cancer: tiny molecules with major implications. Curr Genom. 2008;9(2):97–109.CrossRef
29.
Zurück zum Zitat Yu F, Deng H, Yao H, Liu Q, Su F, Song E. Mir-30 reduction maintains self-renewal and inhibits apoptosis in breast tumor-initiating cells. Oncogene. 2010;29(29):4194–204.CrossRefPubMed Yu F, Deng H, Yao H, Liu Q, Su F, Song E. Mir-30 reduction maintains self-renewal and inhibits apoptosis in breast tumor-initiating cells. Oncogene. 2010;29(29):4194–204.CrossRefPubMed
30.
Zurück zum Zitat Yu F, Yao H, Zhu P, Zhang X, Pan Q, Gong C, et al. let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell. 2007;131(6):1109–23.CrossRefPubMed Yu F, Yao H, Zhu P, Zhang X, Pan Q, Gong C, et al. let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell. 2007;131(6):1109–23.CrossRefPubMed
31.
Zurück zum Zitat Zand H, Rahimipour A, Salimi S, Shafiee SM. Docosahexaenoic acid sensitizes Ramos cells to Gamma-irradiation-induced apoptosis through involvement of PPAR-gamma activation and NF-κB suppression. Mol Cell Biochem. 2008;317(1–2):113–20.CrossRefPubMed Zand H, Rahimipour A, Salimi S, Shafiee SM. Docosahexaenoic acid sensitizes Ramos cells to Gamma-irradiation-induced apoptosis through involvement of PPAR-gamma activation and NF-κB suppression. Mol Cell Biochem. 2008;317(1–2):113–20.CrossRefPubMed
32.
Zurück zum Zitat Zhao F, Ming J, Zhou Y, Fan L. Inhibition of Glut1 by WZB117 sensitizes radioresistant breast cancer cells to irradiation. Cancer Chemother Pharmacol. 2016;77(5):963–72.CrossRefPubMed Zhao F, Ming J, Zhou Y, Fan L. Inhibition of Glut1 by WZB117 sensitizes radioresistant breast cancer cells to irradiation. Cancer Chemother Pharmacol. 2016;77(5):963–72.CrossRefPubMed
33.
Zurück zum Zitat Zheng L, Zhang Y, Liu Y, Zhou M, Lu Y, Yuan L, et al. MiR-106b induces cell radioresistance via the PTEN/PI3K/AKT pathways and p21 in colorectal cancer. J Transl Med. 2015;13:252–65.CrossRefPubMedPubMedCentral Zheng L, Zhang Y, Liu Y, Zhou M, Lu Y, Yuan L, et al. MiR-106b induces cell radioresistance via the PTEN/PI3K/AKT pathways and p21 in colorectal cancer. J Transl Med. 2015;13:252–65.CrossRefPubMedPubMedCentral
Metadaten
Titel
miR-668 enhances the radioresistance of human breast cancer cell by targeting IκBα
verfasst von
Ming Luo
Ling Ding
Qingjian Li
Herui Yao
Publikationsdatum
30.01.2017
Verlag
Springer Japan
Erschienen in
Breast Cancer / Ausgabe 5/2017
Print ISSN: 1340-6868
Elektronische ISSN: 1880-4233
DOI
https://doi.org/10.1007/s12282-017-0756-1

Weitere Artikel der Ausgabe 5/2017

Breast Cancer 5/2017 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.