Skip to main content

Advertisement

Log in

Protective Role of Terminalia bellirica (Gaertn.) Roxb Fruits Against CCl4 Induced Oxidative Stress and Liver Injury in Rodent Model

  • Original Research Article
  • Published:
Indian Journal of Clinical Biochemistry Aims and scope Submit manuscript

Abstract

The medicinal plant, Terminalia bellirica (Gaertn.) Roxb. is widely used in the traditional Indian system of medicine like Ayurveda for centuries in the treatment of various ailments owing to it’s rejuvenating as well as health promoting effects. The present study evaluates protective role of aqueous acetone extract of T. bellirica fruits (AATB) against CCl4 induced liver toxicity in animal model. The liver damage was assessed by liver function markers including ALT, AST, ALP, GGT, LDH, total bilirubin, total protein, albumin, globulin and albumin-globulin ratio. The levels of MDA, ROS, and NO along with the tissue antioxidants were evaluated to assess hepatic oxidative stress and level of lipid peroxidation. Treatment with AATB prior to the exposure of CCl4 significantly reduced the damage when compared to the control rats. The outcome of the present study advocates the traditional use of the plant as ethnic food and health tonic.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39(1):44–84.

    Article  CAS  PubMed  Google Scholar 

  2. Rashed K, Potočnjak I, Giacometti J, Škoda M, Domitrović R. Terminalia bellerica aerial parts ethyl acetate extract exhibits antioxidant, anti-inflammatory and antifibrotic activity in carbon tetrachloride-intoxicated mice. J Funct Foods. 2014;31(8):319–30.

    Article  CAS  Google Scholar 

  3. Jamesdaniel S, Samson A. Herbal antioxidants as rejuvenators in alternative medicine. In: Phytochemicals-bioactivities and impact on health, 2011. p. 297–312.

  4. Wang BS, Lee CP, Chen ZT, Yu HM, Duh PD. Comparison of the hepatoprotective activity between cultured Cordyceps militaris and natural Cordyceps sinensis. J Funct Foods. 2012;4(2):489–95.

    Article  Google Scholar 

  5. Vulić JJ, Ćebović TN, Čanadanović-Brunet JM, Ćetković GS, Čanadanović VM, Djilas SM, et al. In vivo and in vitro antioxidant effects of beetroot pomace extracts. J Funct Foods. 2014;31(6):168–75.

    Article  Google Scholar 

  6. Hou F, Zhang R, Zhang M, Su D, Wei Z, Deng Y, et al. Hepatoprotective and antioxidant activity of anthocyanins in black rice bran on carbon tetrachloride-induced liver injury in mice. J Funct Foods. 2013;5(4):1705–13.

    Article  CAS  Google Scholar 

  7. Chen SY, Chyau CC, Chu CC, Chen YH, Chen TH, Duh PD. Hepatoprotection using sweet orange peel and its bioactive compound, hesperidin, for CCl4-induced liver injury in vivo. J Funct Foods. 2013;5(4):1591–600.

    Article  CAS  Google Scholar 

  8. Jeyadevi R, Sivasudha T, Rameshkumar A, Harnly JM, Lin LZ. Phenolic profiling by UPLC–MS/MS and hepatoprotective activity of Cardiospermum halicacabum against CCl4 induced liver injury in Wistar rats. J Funct Foods. 2013;5(1):289–98.

    Article  CAS  Google Scholar 

  9. Maheshwari DT, Kumar MY, Verma SK, Singh VK, Singh SN. Antioxidant and hepatoprotective activities of phenolic rich fraction of Seabuckthorn (Hippophae rhamnoides L.) leaves. Food Chem Toxicol. 2011;49(9):2422–8.

    Article  CAS  PubMed  Google Scholar 

  10. Patočka J. Biologically active pentacyclic triterpenes and their current medicine signification. J Appl Biomed. 2003;1(1):7–12.

    Article  Google Scholar 

  11. Jagetia GC, Baliga MS, Malagi KJ, Kamath MS. The evaluation of the radioprotective effect of Triphala (an ayurvedic rejuvenating drug) in the mice exposed to γ-radiation. Phytomedicine. 2002;9(2):99–108.

    Article  CAS  Google Scholar 

  12. Gupta R, Gupta A, Singh RL. Hepatoprotective activities of Triphala and its constituents. Int J Pharma Res Rev. 2015;4:34–55.

    CAS  Google Scholar 

  13. Hazra B, Sarkar R, Biswas S, Mandal N. Comparative study of the antioxidant and reactive oxygen species scavenging properties in the extracts of the fruits of Terminalia chebula, Terminalia belerica and Emblica officinalis. BMC Complement Altern Med. 2010;10(1):20.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Meena AK, Bansal P, Kumar S. Plants-herbal wealth as a potential source of ayurvedic drugs. Distribution. 2009;4(4):152–70.

    CAS  Google Scholar 

  15. Chalise JP, Acharya K, Gurung N, Bhusal RP, Gurung R, Skalko-Basnet N, et al. Antioxidant activity and polyphenol content in edible wild fruits from Nepal. Int J Food Sci Nutr. 2010;61(4):425–32.

    Article  CAS  PubMed  Google Scholar 

  16. Deb A, Choudhury G, Barua S, Das B, Anindita C, Choudhury DG. Pharmacological activities of Baheda (Terminalia bellerica): a review. J Pharmacogn Phytochem. 2016;5(1):2278–4136.

    Google Scholar 

  17. Jayesh K, Helen LR, Vysakh A, Binil E, Latha MS. Ethyl acetate fraction of Terminalia bellirica (Gaertn.) Roxb. fruits inhibits proinflammatory mediators via down regulating nuclear factor-κB in LPS stimulated Raw 264.7 cells. Biomed Pharmacother. 2017;95:1654–60.

    Article  CAS  PubMed  Google Scholar 

  18. Jayesh K, Helen LR, Vysakh A, Binil E, Latha MS. In vivo toxicity evaluation of aqueous acetone extract of Terminalia bellirica (Gaertn.) Roxb. fruit. Regul Toxicol Pharmacol. 2017;86:349–55.

    Article  CAS  PubMed  Google Scholar 

  19. Jayesh K, Raisa Helen L, Vysakh A, Binil E, Latha. Cytotoxicity evaluation of bioactive fraction from Terminalia bellirica (Gaertn.) Roxb. Fruits in L929 cells. Int J Adv Res. 2016;5(9):2320–5407.

    Google Scholar 

  20. Jayesh K, Helen LR, Binil E, Latha M, Latha MS. Comparative antioxidant properties of Terminalia bellirica. IjpprHuman. 2016;7(74):310–20.

    CAS  Google Scholar 

  21. Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959;82(1):70–7.

    Article  CAS  PubMed  Google Scholar 

  22. Kakkar P, Das B, Viswanathan PN. A modified spectrophotometric assay of superoxide dismutase. Indian J Biochem Biophys. 1984;21(2):130–2.

    CAS  Google Scholar 

  23. Aebi H. [13] Catalase in vitro. Methods Enzymol. 1984;105:121–6.

    Article  CAS  PubMed  Google Scholar 

  24. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95(2):351–8.

    Article  CAS  PubMed  Google Scholar 

  25. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR. Analysis of nitrate, nitrite, and [15 N] nitrate in biological fluids. Anal Biochem. 1982;126(1):131–8.

    Article  CAS  PubMed  Google Scholar 

  26. Vrablic A, Albright C, Craciunescu C, Salganik R, Warrell D. Chapter 26: Clinical toxicology of snakebite in Africa and the Middle East/Arabian peninsula. In: Handbook of clinical toxicology of animal venoms and poisons; 1995. p. 433–92.

  27. Jamshidzadeh A, Baghban M, Azarpira N, Bardbori AM, Niknahad H. Effects of tomato extract on oxidative stress induced toxicity in different organs of rats. Food Chem Toxicol. 2008;46(12):3612–5.

    Article  CAS  PubMed  Google Scholar 

  28. Ishak K, Baptista A, Bianchi L, Callea F, De Groote J, Gudat F, et al. Histological grading and staging of chronic hepatitis. J Hepatol. 1995;22(6):696–9.

    Article  CAS  PubMed  Google Scholar 

  29. Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature. 2000;408(6809):239–47.

    Article  CAS  PubMed  Google Scholar 

  30. Firuzi O, Miri R, Tavakkoli M, Saso L. Antioxidant therapy: current status and future prospects. Curr Med Chem. 2011;18(25):3871–88.

    Article  CAS  PubMed  Google Scholar 

  31. Szymonik-Lesiuk S, Czechowska G, Stryjecka-Zimmer M, SŁomka M, Mądro A, CeliŃski K, et al. Catalase, superoxide dismutase, and glutathione peroxidase activities in various rat tissues after carbon tetrachloride intoxication. J Hepato Biliary Pancreat Sci. 2003;10(4):309–15.

    Article  Google Scholar 

  32. Ozer J, Ratner M, Shaw M, Bailey W, Schomaker S. The current state of serum biomarkers of hepatotoxicity. Toxicology. 2008;245(3):194–205.

    Article  CAS  PubMed  Google Scholar 

  33. Ramaiah SK. A toxicologist guide to the diagnostic interpretation of hepatic biochemical parameters. Food Chem Toxicol. 2007;45(9):1551–7.

    Article  CAS  PubMed  Google Scholar 

  34. Thapa BR, Walia A. Liver function tests and their interpretation. Indian J Pediatr. 2007;74(7):663–71.

    Article  CAS  PubMed  Google Scholar 

  35. David AS. Intelligence and schizophrenia. Acta Psychiatr Scand. 1999;100(1):1–2.

    Article  CAS  PubMed  Google Scholar 

  36. Yakubu MT, Bilbis LS, Lawal M, Akanji MA. Evaluation of selected parameters of rat liver and kidney function following repeated administration of yohimbine. Biokemistri. 2003;15(2):50–6.

    Google Scholar 

  37. Hong KW, Jin HS, Song D, Kwak HK, Soo Kim S, Kim Y. Genome-wide association study of serum albumin: globulin ratio in Korean populations. J Human Genet. 2013;58(3):174.

    Article  CAS  Google Scholar 

  38. Khan RA, Khan MR, Sahreen S. CCl4-induced hepatotoxicity: protective effect of rutin on p53, CYP2E1 and the antioxidative status in rat. BMC Complement Altern Med. 2012;12(1):178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pham-Huy LA, He H, Pham-Huy C. Free radicals, antioxidants in disease and health. Int J Biomed Sci IJBS. 2008;4(2):89.

    CAS  PubMed  Google Scholar 

  40. Sharma P, Jha AB, Dubey RS, Pessarakli M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot. 2012;24:2012.

    Google Scholar 

  41. Radi RB, Beckman JS, Bush KM, Freeman BA. Peroxynitrite oxidation of sulfhydryls: the cytotoxic potential of superoxide and nitric oxide. J Biol Chem. 1991;266(7):4244–50.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to School of Biosciences and DBT-MSUB-IPLS (BUILDER) programme for providing the research facilities required for the study. J.K. gratefully acknowledges UGC for providing teacher fellowship under the UGC-FDP scheme. Authors acknowledge Dr. K.C. Pillai, Scientist, KFRI, Peechi, Kerala, India for providing the plant material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Latha.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Informed Consent

This article does not contain any studies with human performed by any of the authors.

Ethical Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jayesh, K., Helen, L.R., Vysakh, A. et al. Protective Role of Terminalia bellirica (Gaertn.) Roxb Fruits Against CCl4 Induced Oxidative Stress and Liver Injury in Rodent Model. Ind J Clin Biochem 34, 155–163 (2019). https://doi.org/10.1007/s12291-017-0732-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12291-017-0732-8

Keywords

Navigation