Skip to main content
Erschienen in: Cancer Microenvironment 3/2012

01.12.2012 | Original Article

Molecular Regulation of Lymphangiogenesis in Development and Tumor Microenvironment

verfasst von: Taotao Li, Jianfeng Yang, Quansheng Zhou, Yulong He

Erschienen in: Cancer Microenvironment | Ausgabe 3/2012

Einloggen, um Zugang zu erhalten

Abstract

A rapid progress has been made in the field of lymphatic research during the last 15 years. This includes better understanding of the cellular events and molecular players involved in the lymphatic vessel formation and remodeling in development. The key players identified in developmental lymphangiogenesis, including vascular endothelial cell growth factor-C (VEGF-C) / VEGFR-3 and angiopoietins (ANGPTs)/ TIE pathways, are also crucial for pathological lymphatic vessel growth. In solid tumor, tumor cells as well as tumor-associated stromal cells, such as tumor-infiltrating leukocytes, contribute to intra- and peri-tumoral lymphangiogenesis via secreting lymphangiogenic growth factors. Tumor-associated lymphatic endothelial cells also interact actively with tumor cells and leukocytes via secreting various chemokines. It has been well established that tumor lymphangiogenesis promotes tumor cell dissemination to regional lymph nodes. Thus manipulation of lymphangiogenic microenvironment could become another valuable approach in the combat of tumor progression.
Literatur
Zurück zum Zitat Abtahian F, Guerriero A et al (2003) Regulation of blood and lymphatic vascular separation by signaling proteins SLP-76 and Syk. Science 299(5604):247–251PubMedCrossRef Abtahian F, Guerriero A et al (2003) Regulation of blood and lymphatic vascular separation by signaling proteins SLP-76 and Syk. Science 299(5604):247–251PubMedCrossRef
Zurück zum Zitat Adams RH, Wilkinson GA et al (1999) Roles of ephrinB ligands and EphB receptors in cardiovascular development: demarcation of arterial/venous domains, vascular morphogenesis, and sprouting angiogenesis. Genes Dev 13(3):295–306PubMedCrossRef Adams RH, Wilkinson GA et al (1999) Roles of ephrinB ligands and EphB receptors in cardiovascular development: demarcation of arterial/venous domains, vascular morphogenesis, and sprouting angiogenesis. Genes Dev 13(3):295–306PubMedCrossRef
Zurück zum Zitat Albuquerque RJ, Hayashi T et al (2009) Alternatively spliced vascular endothelial growth factor receptor-2 is an essential endogenous inhibitor of lymphatic vessel growth. Nat Med 15(9):1023–1030PubMedCrossRef Albuquerque RJ, Hayashi T et al (2009) Alternatively spliced vascular endothelial growth factor receptor-2 is an essential endogenous inhibitor of lymphatic vessel growth. Nat Med 15(9):1023–1030PubMedCrossRef
Zurück zum Zitat Angeli V, Ginhoux F et al (2006) B cell-driven lymphangiogenesis in inflamed lymph nodes enhances dendritic cell mobilization. Immunity 24(2):203–215PubMedCrossRef Angeli V, Ginhoux F et al (2006) B cell-driven lymphangiogenesis in inflamed lymph nodes enhances dendritic cell mobilization. Immunity 24(2):203–215PubMedCrossRef
Zurück zum Zitat Augustin HG, Young Koh G et al (2009) Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system. Nat Rev Mol Cell Biol 10(3):165–177PubMedCrossRef Augustin HG, Young Koh G et al (2009) Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system. Nat Rev Mol Cell Biol 10(3):165–177PubMedCrossRef
Zurück zum Zitat Backhed F, Crawford PA et al (2007) Postnatal lymphatic partitioning from the blood vasculature in the small intestine requires fasting-induced adipose factor. Proc Natl Acad Sci USA 104(2):606–611PubMedCrossRef Backhed F, Crawford PA et al (2007) Postnatal lymphatic partitioning from the blood vasculature in the small intestine requires fasting-induced adipose factor. Proc Natl Acad Sci USA 104(2):606–611PubMedCrossRef
Zurück zum Zitat Baldwin ME, Halford MM et al (2005) Vascular endothelial growth factor D is dispensable for development of the lymphatic system. Mol Cell Biol 25(6):2441–2449PubMedCrossRef Baldwin ME, Halford MM et al (2005) Vascular endothelial growth factor D is dispensable for development of the lymphatic system. Mol Cell Biol 25(6):2441–2449PubMedCrossRef
Zurück zum Zitat Baluk P, Tammela T et al (2005) Pathogenesis of persistent lymphatic vessel hyperplasia in chronic airway inflammation. J Clin Invest 115(2):247–257PubMed Baluk P, Tammela T et al (2005) Pathogenesis of persistent lymphatic vessel hyperplasia in chronic airway inflammation. J Clin Invest 115(2):247–257PubMed
Zurück zum Zitat Baluk P, Fuxe J et al (2007) Functionally specialized junctions between endothelial cells of lymphatic vessels. J Exp Med 204(10):2349–2362PubMedCrossRef Baluk P, Fuxe J et al (2007) Functionally specialized junctions between endothelial cells of lymphatic vessels. J Exp Med 204(10):2349–2362PubMedCrossRef
Zurück zum Zitat Baluk P, Yao LC et al (2009) TNF-alpha drives remodeling of blood vessels and lymphatics in sustained airway inflammation in mice. J Clin Invest 119(10):2954–2964PubMed Baluk P, Yao LC et al (2009) TNF-alpha drives remodeling of blood vessels and lymphatics in sustained airway inflammation in mice. J Clin Invest 119(10):2954–2964PubMed
Zurück zum Zitat Bazigou E, Xie S et al (2009) Integrin-alpha9 is required for fibronectin matrix assembly during lymphatic valve morphogenesis. Dev Cell 17(2):175–186PubMedCrossRef Bazigou E, Xie S et al (2009) Integrin-alpha9 is required for fibronectin matrix assembly during lymphatic valve morphogenesis. Dev Cell 17(2):175–186PubMedCrossRef
Zurück zum Zitat Beasley NJ, Prevo R et al (2002) Intratumoral lymphangiogenesis and lymph node metastasis in head and neck cancer. Cancer Res 62(5):1315–1320PubMed Beasley NJ, Prevo R et al (2002) Intratumoral lymphangiogenesis and lymph node metastasis in head and neck cancer. Cancer Res 62(5):1315–1320PubMed
Zurück zum Zitat Bertozzi CC, Schmaier AA et al (2010) Platelets regulate lymphatic vascular development through CLEC-2-SLP-76 signaling. Blood 116(4):661–670PubMedCrossRef Bertozzi CC, Schmaier AA et al (2010) Platelets regulate lymphatic vascular development through CLEC-2-SLP-76 signaling. Blood 116(4):661–670PubMedCrossRef
Zurück zum Zitat Bos FL, Caunt M et al (2011) CCBE1 is essential for mammalian lymphatic vascular development and enhances the lymphangiogenic effect of vascular endothelial growth factor-C in vivo. Circ Res 109(5):486–491PubMedCrossRef Bos FL, Caunt M et al (2011) CCBE1 is essential for mammalian lymphatic vascular development and enhances the lymphangiogenic effect of vascular endothelial growth factor-C in vivo. Circ Res 109(5):486–491PubMedCrossRef
Zurück zum Zitat Bowles J, Schepers G et al (2000) Phylogeny of the SOX family of developmental transcription factors based on sequence and structural indicators. Dev Biol 227(2):239–255PubMedCrossRef Bowles J, Schepers G et al (2000) Phylogeny of the SOX family of developmental transcription factors based on sequence and structural indicators. Dev Biol 227(2):239–255PubMedCrossRef
Zurück zum Zitat Carramolino L, Fuentes J et al (2010) Platelets play an essential role in separating the blood and lymphatic vasculatures during embryonic angiogenesis. Circ Res 106(7):1197–1201PubMedCrossRef Carramolino L, Fuentes J et al (2010) Platelets play an essential role in separating the blood and lymphatic vasculatures during embryonic angiogenesis. Circ Res 106(7):1197–1201PubMedCrossRef
Zurück zum Zitat Caunt M, Mak J et al (2008) Blocking neuropilin-2 function inhibits tumor cell metastasis. Cancer Cell 13(4):331–342PubMedCrossRef Caunt M, Mak J et al (2008) Blocking neuropilin-2 function inhibits tumor cell metastasis. Cancer Cell 13(4):331–342PubMedCrossRef
Zurück zum Zitat Chen L, Mupo A et al (2010) Tbx1 regulates Vegfr3 and is required for lymphatic vessel development. J Cell Biol 189(3):417–424PubMedCrossRef Chen L, Mupo A et al (2010) Tbx1 regulates Vegfr3 and is required for lymphatic vessel development. J Cell Biol 189(3):417–424PubMedCrossRef
Zurück zum Zitat Chen CY, Bertozzi C et al (2012) Blood flow reprograms lymphatic vessels to blood vessels. J Clin Invest 122(6):2006–2017PubMedCrossRef Chen CY, Bertozzi C et al (2012) Blood flow reprograms lymphatic vessels to blood vessels. J Clin Invest 122(6):2006–2017PubMedCrossRef
Zurück zum Zitat Clavin NW, Avraham T et al (2008) TGF-beta1 is a negative regulator of lymphatic regeneration during wound repair. Am J Physiol Heart Circ Physiol 295(5):H2113–2127PubMedCrossRef Clavin NW, Avraham T et al (2008) TGF-beta1 is a negative regulator of lymphatic regeneration during wound repair. Am J Physiol Heart Circ Physiol 295(5):H2113–2127PubMedCrossRef
Zurück zum Zitat Condeelis J, Pollard JW (2006) Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 124(2):263–266PubMedCrossRef Condeelis J, Pollard JW (2006) Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 124(2):263–266PubMedCrossRef
Zurück zum Zitat Cueni LN, Chen L et al (2010) Podoplanin-Fc reduces lymphatic vessel formation in vitro and in vivo and causes disseminated intravascular coagulation when transgenically expressed in the skin. Blood 116(20):4376–4384PubMedCrossRef Cueni LN, Chen L et al (2010) Podoplanin-Fc reduces lymphatic vessel formation in vitro and in vivo and causes disseminated intravascular coagulation when transgenically expressed in the skin. Blood 116(20):4376–4384PubMedCrossRef
Zurück zum Zitat Dellinger M, Hunter R et al (2008) Defective remodeling and maturation of the lymphatic vasculature in Angiopoietin-2 deficient mice. Dev Biol 319(2):309–320PubMedCrossRef Dellinger M, Hunter R et al (2008) Defective remodeling and maturation of the lymphatic vasculature in Angiopoietin-2 deficient mice. Dev Biol 319(2):309–320PubMedCrossRef
Zurück zum Zitat Dummler B, Hemmings BA (2007) Physiological roles of PKB/Akt isoforms in development and disease. Biochem Soc Trans 35(Pt 2):231–235PubMed Dummler B, Hemmings BA (2007) Physiological roles of PKB/Akt isoforms in development and disease. Biochem Soc Trans 35(Pt 2):231–235PubMed
Zurück zum Zitat Dumont DJ, Jussila L et al (1998) Cardiovascular failure in mouse embryos deficient in VEGF receptor-3. Science 282(5390):946–949PubMedCrossRef Dumont DJ, Jussila L et al (1998) Cardiovascular failure in mouse embryos deficient in VEGF receptor-3. Science 282(5390):946–949PubMedCrossRef
Zurück zum Zitat Fagiani E, Lorentz P et al (2011) Angiopoietin-1 and −2 exert antagonistic functions in tumor angiogenesis, yet both induce lymphangiogenesis. Cancer Res 71(17):5717–5727PubMedCrossRef Fagiani E, Lorentz P et al (2011) Angiopoietin-1 and −2 exert antagonistic functions in tumor angiogenesis, yet both induce lymphangiogenesis. Cancer Res 71(17):5717–5727PubMedCrossRef
Zurück zum Zitat Fischer C, Jonckx B et al (2007) Anti-PlGF inhibits growth of VEGF(R)-inhibitor-resistant tumors without affecting healthy vessels. Cell 131(3):463–475PubMedCrossRef Fischer C, Jonckx B et al (2007) Anti-PlGF inhibits growth of VEGF(R)-inhibitor-resistant tumors without affecting healthy vessels. Cell 131(3):463–475PubMedCrossRef
Zurück zum Zitat Flister MJ, Wilber A et al (2010) Inflammation induces lymphangiogenesis through up-regulation of VEGFR-3 mediated by NF-kappaB and Prox1. Blood 115(2):418–429PubMedCrossRef Flister MJ, Wilber A et al (2010) Inflammation induces lymphangiogenesis through up-regulation of VEGFR-3 mediated by NF-kappaB and Prox1. Blood 115(2):418–429PubMedCrossRef
Zurück zum Zitat Forster R, Schubel A et al (1999) CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell 99(1):23–33PubMedCrossRef Forster R, Schubel A et al (1999) CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell 99(1):23–33PubMedCrossRef
Zurück zum Zitat Francois M, Caprini A et al (2008) Sox18 induces development of the lymphatic vasculature in mice. Nature 456(7222):643–647PubMedCrossRef Francois M, Caprini A et al (2008) Sox18 induces development of the lymphatic vasculature in mice. Nature 456(7222):643–647PubMedCrossRef
Zurück zum Zitat Fu J, Gerhardt H et al (2008) Endothelial cell O-glycan deficiency causes blood/lymphatic misconnections and consequent fatty liver disease in mice. J Clin Invest 118(11):3725–3737PubMedCrossRef Fu J, Gerhardt H et al (2008) Endothelial cell O-glycan deficiency causes blood/lymphatic misconnections and consequent fatty liver disease in mice. J Clin Invest 118(11):3725–3737PubMedCrossRef
Zurück zum Zitat Fukumura D, Duda DG et al (2010) Tumor microvasculature and microenvironment: novel insights through intravital imaging in pre-clinical models. Microcirculation 17(3):206–225PubMedCrossRef Fukumura D, Duda DG et al (2010) Tumor microvasculature and microenvironment: novel insights through intravital imaging in pre-clinical models. Microcirculation 17(3):206–225PubMedCrossRef
Zurück zum Zitat Gale N, Thurston G et al (2002) Angiopoietin-2 is required for postnatal angiogenesis and lymphatic patterning, and only the latter role is rescued by angiopoietin-1. Dev Cell 3(3):411PubMedCrossRef Gale N, Thurston G et al (2002) Angiopoietin-2 is required for postnatal angiogenesis and lymphatic patterning, and only the latter role is rescued by angiopoietin-1. Dev Cell 3(3):411PubMedCrossRef
Zurück zum Zitat Geudens I, Herpers R et al (2010) Role of delta-like-4/Notch in the formation and wiring of the lymphatic network in zebrafish. Arterioscler Thromb Vasc Biol 30(9):1695–1702PubMedCrossRef Geudens I, Herpers R et al (2010) Role of delta-like-4/Notch in the formation and wiring of the lymphatic network in zebrafish. Arterioscler Thromb Vasc Biol 30(9):1695–1702PubMedCrossRef
Zurück zum Zitat Gjini E, Hekking LH et al (2011) Zebrafish Tie-2 shares a redundant role with Tie-1 in heart development and regulates vessel integrity. Dis Model Mech 4(1):57–66PubMedCrossRef Gjini E, Hekking LH et al (2011) Zebrafish Tie-2 shares a redundant role with Tie-1 in heart development and regulates vessel integrity. Dis Model Mech 4(1):57–66PubMedCrossRef
Zurück zum Zitat Gunn MD, Tangemann K et al (1998) A chemokine expressed in lymphoid high endothelial venules promotes the adhesion and chemotaxis of naive T lymphocytes. Proc Natl Acad Sci USA 95(1):258–263PubMedCrossRef Gunn MD, Tangemann K et al (1998) A chemokine expressed in lymphoid high endothelial venules promotes the adhesion and chemotaxis of naive T lymphocytes. Proc Natl Acad Sci USA 95(1):258–263PubMedCrossRef
Zurück zum Zitat Hamada K, Oike Y et al (2000) VEGF-C signaling pathways through VEGFR-2 and VEGFR-3 in vasculoangiogenesis and hematopoiesis. Blood 96(12):3793–3800PubMed Hamada K, Oike Y et al (2000) VEGF-C signaling pathways through VEGFR-2 and VEGFR-3 in vasculoangiogenesis and hematopoiesis. Blood 96(12):3793–3800PubMed
Zurück zum Zitat Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674PubMedCrossRef Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674PubMedCrossRef
Zurück zum Zitat He Y, Kozaki K et al (2002) Suppression of tumor lymphangiogenesis and lymph node metastasis by blocking vascular endothelial growth factor receptor 3 signaling. J Natl Cancer Inst 94(11):819–825PubMedCrossRef He Y, Kozaki K et al (2002) Suppression of tumor lymphangiogenesis and lymph node metastasis by blocking vascular endothelial growth factor receptor 3 signaling. J Natl Cancer Inst 94(11):819–825PubMedCrossRef
Zurück zum Zitat He Y, Karpanen T et al (2004a) Role of lymphangiogenic factors in tumor metastasis. Biochim Biophys Acta 1654(1):3–12PubMed He Y, Karpanen T et al (2004a) Role of lymphangiogenic factors in tumor metastasis. Biochim Biophys Acta 1654(1):3–12PubMed
Zurück zum Zitat He Y, Rajantie I et al (2004b) Preexisting lymphatic endothelium but not endothelial progenitor cells are essential for tumor lymphangiogenesis and lymphatic metastasis. Cancer Res 64(11):3737–3740PubMedCrossRef He Y, Rajantie I et al (2004b) Preexisting lymphatic endothelium but not endothelial progenitor cells are essential for tumor lymphangiogenesis and lymphatic metastasis. Cancer Res 64(11):3737–3740PubMedCrossRef
Zurück zum Zitat He Y, Rajantie I et al (2005) Vascular endothelial cell growth factor receptor 3-mediated activation of lymphatic endothelium is crucial for tumor cell entry and spread via lymphatic vessels. Cancer Res 65(11):4739–4746PubMedCrossRef He Y, Rajantie I et al (2005) Vascular endothelial cell growth factor receptor 3-mediated activation of lymphatic endothelium is crucial for tumor cell entry and spread via lymphatic vessels. Cancer Res 65(11):4739–4746PubMedCrossRef
Zurück zum Zitat Hedrick JA, Zlotnik A (1997) Identification and characterization of a novel beta chemokine containing six conserved cysteines. J Immunol 159(4):1589–1593PubMed Hedrick JA, Zlotnik A (1997) Identification and characterization of a novel beta chemokine containing six conserved cysteines. J Immunol 159(4):1589–1593PubMed
Zurück zum Zitat Hellstrom M, Kalen M et al (1999) Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development 126(14):3047–3055PubMed Hellstrom M, Kalen M et al (1999) Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development 126(14):3047–3055PubMed
Zurück zum Zitat Hidalgo A, Peired AJ et al (2007) Complete identification of E-selectin ligands on neutrophils reveals distinct functions of PSGL-1, ESL-1, and CD44. Immunity 26(4):477–489PubMedCrossRef Hidalgo A, Peired AJ et al (2007) Complete identification of E-selectin ligands on neutrophils reveals distinct functions of PSGL-1, ESL-1, and CD44. Immunity 26(4):477–489PubMedCrossRef
Zurück zum Zitat Hirakawa S, Kodama S et al (2005) VEGF-A induces tumor and sentinel lymph node lymphangiogenesis and promotes lymphatic metastasis. J Exp Med 201(7):1089–1099PubMedCrossRef Hirakawa S, Kodama S et al (2005) VEGF-A induces tumor and sentinel lymph node lymphangiogenesis and promotes lymphatic metastasis. J Exp Med 201(7):1089–1099PubMedCrossRef
Zurück zum Zitat Hogan BM, Bos FL et al (2009) Ccbe1 is required for embryonic lymphangiogenesis and venous sprouting. Nat Genet 41(4):396–398PubMedCrossRef Hogan BM, Bos FL et al (2009) Ccbe1 is required for embryonic lymphangiogenesis and venous sprouting. Nat Genet 41(4):396–398PubMedCrossRef
Zurück zum Zitat Holopainen T, Huang H et al (2009) Angiopoietin-1 overexpression modulates vascular endothelium to facilitate tumor cell dissemination and metastasis establishment. Cancer Res 69(11):4656–4664PubMedCrossRef Holopainen T, Huang H et al (2009) Angiopoietin-1 overexpression modulates vascular endothelium to facilitate tumor cell dissemination and metastasis establishment. Cancer Res 69(11):4656–4664PubMedCrossRef
Zurück zum Zitat Holopainen T, Saharinen P et al (2012) Effects of angiopoietin-2-blocking antibody on endothelial cell-cell junctions and lung metastasis. J Natl Cancer Inst 104(6):461–475PubMedCrossRef Holopainen T, Saharinen P et al (2012) Effects of angiopoietin-2-blocking antibody on endothelial cell-cell junctions and lung metastasis. J Natl Cancer Inst 104(6):461–475PubMedCrossRef
Zurück zum Zitat Hong YK, Harvey N et al (2002) Prox1 is a master control gene in the program specifying lymphatic endothelial cell fate. Dev Dyn 225(3):351–357PubMedCrossRef Hong YK, Harvey N et al (2002) Prox1 is a master control gene in the program specifying lymphatic endothelial cell fate. Dev Dyn 225(3):351–357PubMedCrossRef
Zurück zum Zitat Horiguchi A, Ito K et al (2008) Intratumoral lymphatics and lymphatic invasion are associated with tumor aggressiveness and poor prognosis in renal cell carcinoma. Urology 71(5):928–932PubMedCrossRef Horiguchi A, Ito K et al (2008) Intratumoral lymphatics and lymphatic invasion are associated with tumor aggressiveness and poor prognosis in renal cell carcinoma. Urology 71(5):928–932PubMedCrossRef
Zurück zum Zitat Hromas R, Kim CH et al (1997) Isolation and characterization of Exodus-2, a novel C-C chemokine with a unique 37-amino acid carboxyl-terminal extension. J Immunol 159(6):2554–2558PubMed Hromas R, Kim CH et al (1997) Isolation and characterization of Exodus-2, a novel C-C chemokine with a unique 37-amino acid carboxyl-terminal extension. J Immunol 159(6):2554–2558PubMed
Zurück zum Zitat Hu B, Guo P et al (2003) Angiopoietin-2 induces human glioma invasion through the activation of matrix metalloprotease-2. Proc Natl Acad Sci USA 100(15):8904–8909PubMedCrossRef Hu B, Guo P et al (2003) Angiopoietin-2 induces human glioma invasion through the activation of matrix metalloprotease-2. Proc Natl Acad Sci USA 100(15):8904–8909PubMedCrossRef
Zurück zum Zitat Hu B, Jarzynka MJ et al (2006) Angiopoietin 2 induces glioma cell invasion by stimulating matrix metalloprotease 2 expression through the alphavbeta1 integrin and focal adhesion kinase signaling pathway. Cancer Res 66(2):775–783PubMedCrossRef Hu B, Jarzynka MJ et al (2006) Angiopoietin 2 induces glioma cell invasion by stimulating matrix metalloprotease 2 expression through the alphavbeta1 integrin and focal adhesion kinase signaling pathway. Cancer Res 66(2):775–783PubMedCrossRef
Zurück zum Zitat Ichise H, Ichise T et al (2009) Phospholipase Cgamma2 is necessary for separation of blood and lymphatic vasculature in mice. Development 136(2):191–195PubMedCrossRef Ichise H, Ichise T et al (2009) Phospholipase Cgamma2 is necessary for separation of blood and lymphatic vasculature in mice. Development 136(2):191–195PubMedCrossRef
Zurück zum Zitat Imanishi Y, Hu B et al (2007) Angiopoietin-2 stimulates breast cancer metastasis through the alpha(5)beta(1) integrin-mediated pathway. Cancer Res 67(9):4254–4263PubMedCrossRef Imanishi Y, Hu B et al (2007) Angiopoietin-2 stimulates breast cancer metastasis through the alpha(5)beta(1) integrin-mediated pathway. Cancer Res 67(9):4254–4263PubMedCrossRef
Zurück zum Zitat Imanishi Y, Hu B et al (2011) Angiopoietin-2, an angiogenic regulator, promotes initial growth and survival of breast cancer metastases to the lung through the integrin-linked kinase (ILK)-AKT-B cell lymphoma 2 (Bcl-2) pathway. J Biol Chem 286(33):29249–29260PubMedCrossRef Imanishi Y, Hu B et al (2011) Angiopoietin-2, an angiogenic regulator, promotes initial growth and survival of breast cancer metastases to the lung through the integrin-linked kinase (ILK)-AKT-B cell lymphoma 2 (Bcl-2) pathway. J Biol Chem 286(33):29249–29260PubMedCrossRef
Zurück zum Zitat Irigoyen M, Anso E et al (2007) Hypoxia alters the adhesive properties of lymphatic endothelial cells. A transcriptional and functional study. Biochim Biophys Acta 1773(6):880–890PubMedCrossRef Irigoyen M, Anso E et al (2007) Hypoxia alters the adhesive properties of lymphatic endothelial cells. A transcriptional and functional study. Biochim Biophys Acta 1773(6):880–890PubMedCrossRef
Zurück zum Zitat Irjala H, Johansson EL et al (2001) Mannose receptor is a novel ligand for L-selectin and mediates lymphocyte binding to lymphatic endothelium. J Exp Med 194(8):1033–1042PubMedCrossRef Irjala H, Johansson EL et al (2001) Mannose receptor is a novel ligand for L-selectin and mediates lymphocyte binding to lymphatic endothelium. J Exp Med 194(8):1033–1042PubMedCrossRef
Zurück zum Zitat Issa A, Le TX et al (2009) Vascular endothelial growth factor-C and C-C chemokine receptor 7 in tumor cell-lymphatic cross-talk promote invasive phenotype. Cancer Res 69(1):349–357PubMedCrossRef Issa A, Le TX et al (2009) Vascular endothelial growth factor-C and C-C chemokine receptor 7 in tumor cell-lymphatic cross-talk promote invasive phenotype. Cancer Res 69(1):349–357PubMedCrossRef
Zurück zum Zitat Iwata C, Kano MR et al (2007) Inhibition of cyclooxygenase-2 suppresses lymph node metastasis via reduction of lymphangiogenesis. Cancer Res 67(21):10181–10189PubMedCrossRef Iwata C, Kano MR et al (2007) Inhibition of cyclooxygenase-2 suppresses lymph node metastasis via reduction of lymphangiogenesis. Cancer Res 67(21):10181–10189PubMedCrossRef
Zurück zum Zitat Jiang S, Bailey AS et al (2008) Hematopoietic stem cells contribute to lymphatic endothelium. PLoS One 3(11):e3812PubMedCrossRef Jiang S, Bailey AS et al (2008) Hematopoietic stem cells contribute to lymphatic endothelium. PLoS One 3(11):e3812PubMedCrossRef
Zurück zum Zitat Johnson LA, Jackson DG (2008) Cell traffic and the lymphatic endothelium. Ann N Y Acad Sci 1131:119–133PubMedCrossRef Johnson LA, Jackson DG (2008) Cell traffic and the lymphatic endothelium. Ann N Y Acad Sci 1131:119–133PubMedCrossRef
Zurück zum Zitat Johnson LA, Clasper S et al (2006) An inflammation-induced mechanism for leukocyte transmigration across lymphatic vessel endothelium. J Exp Med 203(12):2763–2777PubMedCrossRef Johnson LA, Clasper S et al (2006) An inflammation-induced mechanism for leukocyte transmigration across lymphatic vessel endothelium. J Exp Med 203(12):2763–2777PubMedCrossRef
Zurück zum Zitat Jurisic G, Maby-El Hajjami H et al (2012) “An Unexpected Role of Semaphorin3A/Neuropilin-1 Signaling in Lymphatic Vessel Maturation and Valve Formation”. Circ Res 2012 Jun 20. doi:10.1161/CIRCRESAHA.112.269399 Jurisic G, Maby-El Hajjami H et al (2012) “An Unexpected Role of Semaphorin3A/Neuropilin-1 Signaling in Lymphatic Vessel Maturation and Valve Formation”. Circ Res 2012 Jun 20. doi:10.​1161/​CIRCRESAHA.​112.​269399
Zurück zum Zitat Kabashima K, Shiraishi N et al (2007) CXCL12-CXCR4 engagement is required for migration of cutaneous dendritic cells. Am J Pathol 171(4):1249–1257PubMedCrossRef Kabashima K, Shiraishi N et al (2007) CXCL12-CXCR4 engagement is required for migration of cutaneous dendritic cells. Am J Pathol 171(4):1249–1257PubMedCrossRef
Zurück zum Zitat Kaipainen A, Korhonen J et al (1995) Expression of the fms-like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development. Proc Natl Acad Sci USA 92(8):3566–3570PubMedCrossRef Kaipainen A, Korhonen J et al (1995) Expression of the fms-like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development. Proc Natl Acad Sci USA 92(8):3566–3570PubMedCrossRef
Zurück zum Zitat Kanady JD, Dellinger MT et al (2011) Connexin37 and Connexin43 deficiencies in mice disrupt lymphatic valve development and result in lymphatic disorders including lymphedema and chylothorax. Dev Biol 354(2):253–266PubMedCrossRef Kanady JD, Dellinger MT et al (2011) Connexin37 and Connexin43 deficiencies in mice disrupt lymphatic valve development and result in lymphatic disorders including lymphedema and chylothorax. Dev Biol 354(2):253–266PubMedCrossRef
Zurück zum Zitat Kang S, Lee SP et al (2009) Toll-like receptor 4 in lymphatic endothelial cells contributes to LPS-induced lymphangiogenesis by chemotactic recruitment of macrophages. Blood 113(11):2605–2613PubMedCrossRef Kang S, Lee SP et al (2009) Toll-like receptor 4 in lymphatic endothelial cells contributes to LPS-induced lymphangiogenesis by chemotactic recruitment of macrophages. Blood 113(11):2605–2613PubMedCrossRef
Zurück zum Zitat Karkkainen MJ, Ferrell RE et al (2000) Missense mutations interfere with VEGFR-3 signalling in primary lymphoedema. Nat Genet 25(2):153–159PubMedCrossRef Karkkainen MJ, Ferrell RE et al (2000) Missense mutations interfere with VEGFR-3 signalling in primary lymphoedema. Nat Genet 25(2):153–159PubMedCrossRef
Zurück zum Zitat Karkkainen MJ, Saaristo A et al (2001) A model for gene therapy of human hereditary lymphedema. Proc Natl Acad Sci USA 98(22):12677–12682PubMedCrossRef Karkkainen MJ, Saaristo A et al (2001) A model for gene therapy of human hereditary lymphedema. Proc Natl Acad Sci USA 98(22):12677–12682PubMedCrossRef
Zurück zum Zitat Karkkainen MJ, Haiko P et al (2004) Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat Immunol 5(1):74–80PubMedCrossRef Karkkainen MJ, Haiko P et al (2004) Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat Immunol 5(1):74–80PubMedCrossRef
Zurück zum Zitat Karpanen T, Egeblad M et al (2001) Vascular endothelial growth factor C promotes tumor lymphangiogenesis and intralymphatic tumor growth. Cancer Res 61(5):1786–1790PubMed Karpanen T, Egeblad M et al (2001) Vascular endothelial growth factor C promotes tumor lymphangiogenesis and intralymphatic tumor growth. Cancer Res 61(5):1786–1790PubMed
Zurück zum Zitat Karpanen T, Heckman CA et al (2006) Functional interaction of VEGF-C and VEGF-D with neuropilin receptors. FASEB J 20(9):1462–1472PubMedCrossRef Karpanen T, Heckman CA et al (2006) Functional interaction of VEGF-C and VEGF-D with neuropilin receptors. FASEB J 20(9):1462–1472PubMedCrossRef
Zurück zum Zitat Kataru RP, Jung K et al (2009) Critical role of CD11b + macrophages and VEGF in inflammatory lymphangiogenesis, antigen clearance, and inflammation resolution. Blood 113(22):5650–5659PubMedCrossRef Kataru RP, Jung K et al (2009) Critical role of CD11b + macrophages and VEGF in inflammatory lymphangiogenesis, antigen clearance, and inflammation resolution. Blood 113(22):5650–5659PubMedCrossRef
Zurück zum Zitat Kataru RP, Kim H et al (2011) T lymphocytes negatively regulate lymph node lymphatic vessel formation. Immunity 34(1):96–107PubMedCrossRef Kataru RP, Kim H et al (2011) T lymphocytes negatively regulate lymph node lymphatic vessel formation. Immunity 34(1):96–107PubMedCrossRef
Zurück zum Zitat Kazenwadel J, Secker GA et al (2012) “Loss-of-function germline GATA2 mutations in patients with MDS/AML or MonoMAC syndrome and primary lymphedema reveal a key role for GATA2 in the lymphatic vasculature”. Blood 119(5):1283–1291PubMedCrossRef Kazenwadel J, Secker GA et al (2012) “Loss-of-function germline GATA2 mutations in patients with MDS/AML or MonoMAC syndrome and primary lymphedema reveal a key role for GATA2 in the lymphatic vasculature”. Blood 119(5):1283–1291PubMedCrossRef
Zurück zum Zitat Kerjaschki D (2005) The crucial role of macrophages in lymphangiogenesis. J Clin Invest 115(9):2316–2319PubMedCrossRef Kerjaschki D (2005) The crucial role of macrophages in lymphangiogenesis. J Clin Invest 115(9):2316–2319PubMedCrossRef
Zurück zum Zitat Kerjaschki D, Regele HM et al (2004) Lymphatic neoangiogenesis in human kidney transplants is associated with immunologically active lymphocytic infiltrates. J Am Soc Nephrol 15(3):603–612PubMedCrossRef Kerjaschki D, Regele HM et al (2004) Lymphatic neoangiogenesis in human kidney transplants is associated with immunologically active lymphocytic infiltrates. J Am Soc Nephrol 15(3):603–612PubMedCrossRef
Zurück zum Zitat Kim I, Kim HG et al (2000) Angiopoietin-1 regulates endothelial cell survival through the phosphatidylinositol 3′-Kinase/Akt signal transduction pathway. Circ Res 86(1):24–29PubMedCrossRef Kim I, Kim HG et al (2000) Angiopoietin-1 regulates endothelial cell survival through the phosphatidylinositol 3′-Kinase/Akt signal transduction pathway. Circ Res 86(1):24–29PubMedCrossRef
Zurück zum Zitat Kim H, Nguyen VP et al (2010a) Embryonic vascular endothelial cells are malleable to reprogramming via Prox1 to a lymphatic gene signature. BMC Dev Biol 10:72PubMedCrossRef Kim H, Nguyen VP et al (2010a) Embryonic vascular endothelial cells are malleable to reprogramming via Prox1 to a lymphatic gene signature. BMC Dev Biol 10:72PubMedCrossRef
Zurück zum Zitat Kim M, Koh YJ et al (2010b) CXCR4 signaling regulates metastasis of chemoresistant melanoma cells by a lymphatic metastatic niche. Cancer Res 70(24):10411–10421PubMedCrossRef Kim M, Koh YJ et al (2010b) CXCR4 signaling regulates metastasis of chemoresistant melanoma cells by a lymphatic metastatic niche. Cancer Res 70(24):10411–10421PubMedCrossRef
Zurück zum Zitat Kim H, Kataru RP et al (2012) Regulation and implications of inflammatory lymphangiogenesis. Trends Immunol 33(7):350–356PubMedCrossRef Kim H, Kataru RP et al (2012) Regulation and implications of inflammatory lymphangiogenesis. Trends Immunol 33(7):350–356PubMedCrossRef
Zurück zum Zitat Kozaki K, Miyaishi O et al (2000) Establishment and characterization of a human lung cancer cell line NCI- H460-LNM35 with consistent lymphogenous metastasis via both subcutaneous and orthotopic propagation. Cancer Res 60(9):2535–2540PubMed Kozaki K, Miyaishi O et al (2000) Establishment and characterization of a human lung cancer cell line NCI- H460-LNM35 with consistent lymphogenous metastasis via both subcutaneous and orthotopic propagation. Cancer Res 60(9):2535–2540PubMed
Zurück zum Zitat Kozaki K, Koshikawa K et al (2001) Multi-faceted analyses of a highly metastatic human lung cancer cell line NCI-H460-LNM35 suggest mimicry of inflammatory cells in metastasis. Oncogene 20(31):4228–4234PubMedCrossRef Kozaki K, Koshikawa K et al (2001) Multi-faceted analyses of a highly metastatic human lung cancer cell line NCI-H460-LNM35 suggest mimicry of inflammatory cells in metastasis. Oncogene 20(31):4228–4234PubMedCrossRef
Zurück zum Zitat Kraizer Y, Mawasi N et al (2001) Vascular endothelial growth factor and angiopoietin in liver regeneration. Biochem Biophys Res Commun 287(1):209–215PubMedCrossRef Kraizer Y, Mawasi N et al (2001) Vascular endothelial growth factor and angiopoietin in liver regeneration. Biochem Biophys Res Commun 287(1):209–215PubMedCrossRef
Zurück zum Zitat Krishnan J, Kirkin V et al (2003) Differential in vivo and in vitro expression of vascular endothelial growth factor (VEGF)-C and VEGF-D in tumors and its relationship to lymphatic metastasis in immunocompetent rats. Cancer Res 63(3):713–722PubMed Krishnan J, Kirkin V et al (2003) Differential in vivo and in vitro expression of vascular endothelial growth factor (VEGF)-C and VEGF-D in tumors and its relationship to lymphatic metastasis in immunocompetent rats. Cancer Res 63(3):713–722PubMed
Zurück zum Zitat Kumar SR, Singh J et al (2006) Receptor tyrosine kinase EphB4 is a survival factor in breast cancer. Am J Pathol 169(1):279–293PubMedCrossRef Kumar SR, Singh J et al (2006) Receptor tyrosine kinase EphB4 is a survival factor in breast cancer. Am J Pathol 169(1):279–293PubMedCrossRef
Zurück zum Zitat Lapinski PE, Kwon S et al (2012) “RASA1 maintains the lymphatic vasculature in a quiescent functional state in mice”. J Clin Invest 122(2):733–747 Lapinski PE, Kwon S et al (2012) “RASA1 maintains the lymphatic vasculature in a quiescent functional state in mice”. J Clin Invest 122(2):733–747
Zurück zum Zitat Ledgerwood LG, Lal G et al (2008) The sphingosine 1-phosphate receptor 1 causes tissue retention by inhibiting the entry of peripheral tissue T lymphocytes into afferent lymphatics. Nat Immunol 9(1):42–53PubMedCrossRef Ledgerwood LG, Lal G et al (2008) The sphingosine 1-phosphate receptor 1 causes tissue retention by inhibiting the entry of peripheral tissue T lymphocytes into afferent lymphatics. Nat Immunol 9(1):42–53PubMedCrossRef
Zurück zum Zitat Lee K, Park do J et al (2010) Increased intratumoral lymphatic vessel density correlates with lymph node metastasis in early gastric carcinoma. Ann Surg Oncol 17(1):73–80PubMedCrossRef Lee K, Park do J et al (2010) Increased intratumoral lymphatic vessel density correlates with lymph node metastasis in early gastric carcinoma. Ann Surg Oncol 17(1):73–80PubMedCrossRef
Zurück zum Zitat Lin FJ, Chen X et al (2010) Direct transcriptional regulation of neuropilin-2 by COUP-TFII modulates multiple steps in murine lymphatic vessel development. J Clin Invest 120(5):1694–1707PubMedCrossRef Lin FJ, Chen X et al (2010) Direct transcriptional regulation of neuropilin-2 by COUP-TFII modulates multiple steps in murine lymphatic vessel development. J Clin Invest 120(5):1694–1707PubMedCrossRef
Zurück zum Zitat Luther SA, Tang HL et al (2000) Coexpression of the chemokines ELC and SLC by T zone stromal cells and deletion of the ELC gene in the plt/plt mouse. Proc Natl Acad Sci USA 97(23):12694–12699PubMedCrossRef Luther SA, Tang HL et al (2000) Coexpression of the chemokines ELC and SLC by T zone stromal cells and deletion of the ELC gene in the plt/plt mouse. Proc Natl Acad Sci USA 97(23):12694–12699PubMedCrossRef
Zurück zum Zitat Makinen T, Jussila L et al (2001) Inhibition of lymphangiogenesis with resulting lymphedema in transgenic mice expressing soluble VEGF receptor-3. Nat Med 7(2):199–205PubMedCrossRef Makinen T, Jussila L et al (2001) Inhibition of lymphangiogenesis with resulting lymphedema in transgenic mice expressing soluble VEGF receptor-3. Nat Med 7(2):199–205PubMedCrossRef
Zurück zum Zitat Makinen T, Adams RH et al (2005) PDZ interaction site in ephrinB2 is required for the remodeling of lymphatic vasculature. Genes Dev 19(3):397–410PubMedCrossRef Makinen T, Adams RH et al (2005) PDZ interaction site in ephrinB2 is required for the remodeling of lymphatic vasculature. Genes Dev 19(3):397–410PubMedCrossRef
Zurück zum Zitat Maruyama K, Ii M et al (2005) Inflammation-induced lymphangiogenesis in the cornea arises from CD11b-positive macrophages. J Clin Invest 115(9):2363–2372PubMedCrossRef Maruyama K, Ii M et al (2005) Inflammation-induced lymphangiogenesis in the cornea arises from CD11b-positive macrophages. J Clin Invest 115(9):2363–2372PubMedCrossRef
Zurück zum Zitat Miteva DO, Rutkowski JM et al (2010) Transmural flow modulates cell and fluid transport functions of lymphatic endothelium. Circ Res 106(5):920–931PubMedCrossRef Miteva DO, Rutkowski JM et al (2010) Transmural flow modulates cell and fluid transport functions of lymphatic endothelium. Circ Res 106(5):920–931PubMedCrossRef
Zurück zum Zitat Morisada T, Oike, Y et al (2005) “Angiopoietin-1 promotes LYVE-1-positive lymphatic vessel formation”. Blood 105(12):4649–4656PubMedCrossRef Morisada T, Oike, Y et al (2005) “Angiopoietin-1 promotes LYVE-1-positive lymphatic vessel formation”. Blood 105(12):4649–4656PubMedCrossRef
Zurück zum Zitat Mouta-Bellum C, Kirov A et al (2009) Organ-specific lymphangiectasia, arrested lymphatic sprouting, and maturation defects resulting from gene-targeting of the PI3K regulatory isoforms p85alpha, p55alpha, and p50alpha. Dev Dyn 238(10):2670–2679PubMedCrossRef Mouta-Bellum C, Kirov A et al (2009) Organ-specific lymphangiectasia, arrested lymphatic sprouting, and maturation defects resulting from gene-targeting of the PI3K regulatory isoforms p85alpha, p55alpha, and p50alpha. Dev Dyn 238(10):2670–2679PubMedCrossRef
Zurück zum Zitat Muller A, Homey B et al (2001) Involvement of chemokine receptors in breast cancer metastasis. Nature 410(6824):50–56PubMedCrossRef Muller A, Homey B et al (2001) Involvement of chemokine receptors in breast cancer metastasis. Nature 410(6824):50–56PubMedCrossRef
Zurück zum Zitat Nagira M, Imai T et al (1997) Molecular cloning of a novel human CC chemokine secondary lymphoid-tissue chemokine that is a potent chemoattractant for lymphocytes and mapped to chromosome 9p13. J Biol Chem 272(31):19518–19524PubMedCrossRef Nagira M, Imai T et al (1997) Molecular cloning of a novel human CC chemokine secondary lymphoid-tissue chemokine that is a potent chemoattractant for lymphocytes and mapped to chromosome 9p13. J Biol Chem 272(31):19518–19524PubMedCrossRef
Zurück zum Zitat Niessen K, Zhang G et al (2010) ALK1 signaling regulates early postnatal lymphatic vessel development. Blood 115(8):1654–1661PubMedCrossRef Niessen K, Zhang G et al (2010) ALK1 signaling regulates early postnatal lymphatic vessel development. Blood 115(8):1654–1661PubMedCrossRef
Zurück zum Zitat Niessen K, Zhang G et al (2011) The Notch1-Dll4 signaling pathway regulates mouse postnatal lymphatic development. Blood 118(7):1989–1997PubMedCrossRef Niessen K, Zhang G et al (2011) The Notch1-Dll4 signaling pathway regulates mouse postnatal lymphatic development. Blood 118(7):1989–1997PubMedCrossRef
Zurück zum Zitat Nilsson I, Bahram F et al (2010) VEGF receptor 2/-3 heterodimers detected in situ by proximity ligation on angiogenic sprouts. EMBO J 29(8):1377–1388PubMedCrossRef Nilsson I, Bahram F et al (2010) VEGF receptor 2/-3 heterodimers detected in situ by proximity ligation on angiogenic sprouts. EMBO J 29(8):1377–1388PubMedCrossRef
Zurück zum Zitat Norrmen C, Ivanov KI et al (2009) FOXC2 controls formation and maturation of lymphatic collecting vessels through cooperation with NFATc1. J Cell Biol 185(3):439–457PubMedCrossRef Norrmen C, Ivanov KI et al (2009) FOXC2 controls formation and maturation of lymphatic collecting vessels through cooperation with NFATc1. J Cell Biol 185(3):439–457PubMedCrossRef
Zurück zum Zitat Norrmen C, Tammela T et al (2011) Biological basis of therapeutic lymphangiogenesis. Circulation 123(12):1335–1351PubMedCrossRef Norrmen C, Tammela T et al (2011) Biological basis of therapeutic lymphangiogenesis. Circulation 123(12):1335–1351PubMedCrossRef
Zurück zum Zitat Oka M, Iwata C et al (2008) Inhibition of endogenous TGF-beta signaling enhances lymphangiogenesis. Blood 111(9):4571–4579PubMedCrossRef Oka M, Iwata C et al (2008) Inhibition of endogenous TGF-beta signaling enhances lymphangiogenesis. Blood 111(9):4571–4579PubMedCrossRef
Zurück zum Zitat Okazaki T, Ni A et al (2009) alpha5beta1 Integrin blockade inhibits lymphangiogenesis in airway inflammation. Am J Pathol 174(6):2378–2387PubMedCrossRef Okazaki T, Ni A et al (2009) alpha5beta1 Integrin blockade inhibits lymphangiogenesis in airway inflammation. Am J Pathol 174(6):2378–2387PubMedCrossRef
Zurück zum Zitat Oliver G, Detmar M (2002) The rediscovery of the lymphatic system: old and new insights into the development and biological function of the lymphatic vasculature. Genes Dev 16(7):773–783PubMedCrossRef Oliver G, Detmar M (2002) The rediscovery of the lymphatic system: old and new insights into the development and biological function of the lymphatic vasculature. Genes Dev 16(7):773–783PubMedCrossRef
Zurück zum Zitat Paavonen K, Puolakkainen P et al (2000) Vascular endothelial growth factor receptor-3 in lymphangiogenesis in wound healing. Am J Pathol 156(5):1499–1504PubMedCrossRef Paavonen K, Puolakkainen P et al (2000) Vascular endothelial growth factor receptor-3 in lymphangiogenesis in wound healing. Am J Pathol 156(5):1499–1504PubMedCrossRef
Zurück zum Zitat Padera TP, Kadambi A et al (2002) Lymphatic metastasis in the absence of functional intratumor lymphatics. Science 296(5574):1883–1886PubMedCrossRef Padera TP, Kadambi A et al (2002) Lymphatic metastasis in the absence of functional intratumor lymphatics. Science 296(5574):1883–1886PubMedCrossRef
Zurück zum Zitat Pajusola K, Aprelikova O et al (1992) FLT4 receptor tyrosine kinase contains seven immunoglobulin-like loops and is expressed in multiple human tissues and cell lines [published erratum appears in Cancer Res 1993 Aug 15;53(16):3845]. Cancer Res 52(20):5738–5743PubMed Pajusola K, Aprelikova O et al (1992) FLT4 receptor tyrosine kinase contains seven immunoglobulin-like loops and is expressed in multiple human tissues and cell lines [published erratum appears in Cancer Res 1993 Aug 15;53(16):3845]. Cancer Res 52(20):5738–5743PubMed
Zurück zum Zitat Papapetropoulos A, Fulton D et al (2000) Angiopoietin-1 inhibits endothelial cell apoptosis via the Akt/survivin pathway. J Biol Chem 275(13):9102–9105PubMedCrossRef Papapetropoulos A, Fulton D et al (2000) Angiopoietin-1 inhibits endothelial cell apoptosis via the Akt/survivin pathway. J Biol Chem 275(13):9102–9105PubMedCrossRef
Zurück zum Zitat Pennisi D, Gardner J et al (2000) Mutations in Sox18 underlie cardiovascular and hair follicle defects in ragged mice. Nat Genet 24(4):434–437PubMedCrossRef Pennisi D, Gardner J et al (2000) Mutations in Sox18 underlie cardiovascular and hair follicle defects in ragged mice. Nat Genet 24(4):434–437PubMedCrossRef
Zurück zum Zitat Petrova TV, Makinen T et al (2002) Lymphatic endothelial reprogramming of vascular endothelial cells by the Prox-1 homeobox transcription factor. EMBO J 21(17):4593–4599PubMedCrossRef Petrova TV, Makinen T et al (2002) Lymphatic endothelial reprogramming of vascular endothelial cells by the Prox-1 homeobox transcription factor. EMBO J 21(17):4593–4599PubMedCrossRef
Zurück zum Zitat Petrova TV, Karpanen T et al (2004) Defective valves and abnormal mural cell recruitment underlie lymphatic vascular failure in lymphedema distichiasis. Nat Med 10(9):974–981PubMedCrossRef Petrova TV, Karpanen T et al (2004) Defective valves and abnormal mural cell recruitment underlie lymphatic vascular failure in lymphedema distichiasis. Nat Med 10(9):974–981PubMedCrossRef
Zurück zum Zitat Pollard JW (2004) Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 4(1):71–78PubMedCrossRef Pollard JW (2004) Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 4(1):71–78PubMedCrossRef
Zurück zum Zitat Prevo R, Banerji S et al (2004) Rapid plasma membrane-endosomal trafficking of the lymph node sinus and high endothelial venule scavenger receptor/homing receptor stabilin-1 (FEEL-1/CLEVER-1). J Biol Chem 279(50):52580–52592PubMedCrossRef Prevo R, Banerji S et al (2004) Rapid plasma membrane-endosomal trafficking of the lymph node sinus and high endothelial venule scavenger receptor/homing receptor stabilin-1 (FEEL-1/CLEVER-1). J Biol Chem 279(50):52580–52592PubMedCrossRef
Zurück zum Zitat Rinderknecht M, Detmar M (2008) Tumor lymphangiogenesis and melanoma metastasis. J Cell Physiol 216(2):347–354PubMedCrossRef Rinderknecht M, Detmar M (2008) Tumor lymphangiogenesis and melanoma metastasis. J Cell Physiol 216(2):347–354PubMedCrossRef
Zurück zum Zitat Ristimaki A, Narko K et al (1998) Proinflammatory cytokines regulate expression of the lymphatic endothelial mitogen vascular endothelial growth factor-C. J Biol Chem 273(14):8413–8418PubMedCrossRef Ristimaki A, Narko K et al (1998) Proinflammatory cytokines regulate expression of the lymphatic endothelial mitogen vascular endothelial growth factor-C. J Biol Chem 273(14):8413–8418PubMedCrossRef
Zurück zum Zitat Roberts N, Kloos B et al (2006) Inhibition of VEGFR-3 activation with the antagonistic antibody more potently suppresses lymph node and distant metastases than inactivation of VEGFR-2. Cancer Res 66(5):2650–2657PubMedCrossRef Roberts N, Kloos B et al (2006) Inhibition of VEGFR-3 activation with the antagonistic antibody more potently suppresses lymph node and distant metastases than inactivation of VEGFR-2. Cancer Res 66(5):2650–2657PubMedCrossRef
Zurück zum Zitat Ruddell A, Kelly-Spratt KS et al (2008) p19/Arf and p53 suppress sentinel lymph node lymphangiogenesis and carcinoma metastasis. Oncogene 27(22):3145–3155PubMedCrossRef Ruddell A, Kelly-Spratt KS et al (2008) p19/Arf and p53 suppress sentinel lymph node lymphangiogenesis and carcinoma metastasis. Oncogene 27(22):3145–3155PubMedCrossRef
Zurück zum Zitat Saban MR, Memet S et al (2004) Visualization of lymphatic vessels through NF-kappaB activity. Blood 104(10):3228–3230PubMedCrossRef Saban MR, Memet S et al (2004) Visualization of lymphatic vessels through NF-kappaB activity. Blood 104(10):3228–3230PubMedCrossRef
Zurück zum Zitat Sabine A, Agalarov Y et al (2012) “Mechanotransduction, PROX1, and FOXC2 cooperate to control connexin37 and calcineurin during lymphatic-valve formation”. Dev Cell 22(2):430–444PubMedCrossRef Sabine A, Agalarov Y et al (2012) “Mechanotransduction, PROX1, and FOXC2 cooperate to control connexin37 and calcineurin during lymphatic-valve formation”. Dev Cell 22(2):430–444PubMedCrossRef
Zurück zum Zitat Saharinen P, Helotera H et al (2010) Claudin-like protein 24 interacts with the VEGFR-2 and VEGFR-3 pathways and regulates lymphatic vessel development. Genes Dev 24(9):875–880PubMedCrossRef Saharinen P, Helotera H et al (2010) Claudin-like protein 24 interacts with the VEGFR-2 and VEGFR-3 pathways and regulates lymphatic vessel development. Genes Dev 24(9):875–880PubMedCrossRef
Zurück zum Zitat Salmi M, Koskinen K et al (2004) CLEVER-1 mediates lymphocyte transmigration through vascular and lymphatic endothelium. Blood 104(13):3849–3857PubMedCrossRef Salmi M, Koskinen K et al (2004) CLEVER-1 mediates lymphocyte transmigration through vascular and lymphatic endothelium. Blood 104(13):3849–3857PubMedCrossRef
Zurück zum Zitat Schepers GE, Teasdale RD et al (2002) Twenty pairs of sox: extent, homology, and nomenclature of the mouse and human sox transcription factor gene families. Dev Cell 3(2):167–170PubMedCrossRef Schepers GE, Teasdale RD et al (2002) Twenty pairs of sox: extent, homology, and nomenclature of the mouse and human sox transcription factor gene families. Dev Cell 3(2):167–170PubMedCrossRef
Zurück zum Zitat Schmid-Schonbein GW (1990) Microlymphatics and lymph flow. Physiol Rev 70(4):987–1028PubMed Schmid-Schonbein GW (1990) Microlymphatics and lymph flow. Physiol Rev 70(4):987–1028PubMed
Zurück zum Zitat Schoppmann SF, Birner P et al (2001) “Lymphatic microvessel density and lymphovascular invasion assessed by anti-podoplanin immunostaining in human breast cancer.”. Anticancer Res 21(4A):2351–2355PubMed Schoppmann SF, Birner P et al (2001) “Lymphatic microvessel density and lymphovascular invasion assessed by anti-podoplanin immunostaining in human breast cancer.”. Anticancer Res 21(4A):2351–2355PubMed
Zurück zum Zitat Schulz P, Fischer C et al (2011) Angiopoietin-2 drives lymphatic metastasis of pancreatic cancer. FASEB J 25(10):3325–3335PubMedCrossRef Schulz P, Fischer C et al (2011) Angiopoietin-2 drives lymphatic metastasis of pancreatic cancer. FASEB J 25(10):3325–3335PubMedCrossRef
Zurück zum Zitat Schwab SR, Cyster JG (2007) Finding a way out: lymphocyte egress from lymphoid organs. Nat Immunol 8(12):1295–1301PubMedCrossRef Schwab SR, Cyster JG (2007) Finding a way out: lymphocyte egress from lymphoid organs. Nat Immunol 8(12):1295–1301PubMedCrossRef
Zurück zum Zitat Shields JD, Kourtis IC et al (2010) Induction of lymphoidlike stroma and immune escape by tumors that express the chemokine CCL21. Science 328(5979):749–752PubMedCrossRef Shields JD, Kourtis IC et al (2010) Induction of lymphoidlike stroma and immune escape by tumors that express the chemokine CCL21. Science 328(5979):749–752PubMedCrossRef
Zurück zum Zitat Shimoda H, Bernas MJ et al (2007) Abnormal recruitment of periendothelial cells to lymphatic capillaries in digestive organs of angiopoietin-2-deficient mice. Cell Tissue Res 328(2):329–337PubMedCrossRef Shimoda H, Bernas MJ et al (2007) Abnormal recruitment of periendothelial cells to lymphatic capillaries in digestive organs of angiopoietin-2-deficient mice. Cell Tissue Res 328(2):329–337PubMedCrossRef
Zurück zum Zitat Shiojima I, Walsh K (2006) Regulation of cardiac growth and coronary angiogenesis by the Akt/PKB signaling pathway. Genes Dev 20(24):3347–3365PubMedCrossRef Shiojima I, Walsh K (2006) Regulation of cardiac growth and coronary angiogenesis by the Akt/PKB signaling pathway. Genes Dev 20(24):3347–3365PubMedCrossRef
Zurück zum Zitat Shrestha B, Hashiguchi T et al (2010) B cell-derived vascular endothelial growth factor A promotes lymphangiogenesis and high endothelial venule expansion in lymph nodes. J Immunol 184(9):4819–4826PubMedCrossRef Shrestha B, Hashiguchi T et al (2010) B cell-derived vascular endothelial growth factor A promotes lymphangiogenesis and high endothelial venule expansion in lymph nodes. J Immunol 184(9):4819–4826PubMedCrossRef
Zurück zum Zitat Srinivasan RS, Geng X et al (2010) The nuclear hormone receptor Coup-TFII is required for the initiation and early maintenance of Prox1 expression in lymphatic endothelial cells. Genes Dev 24(7):696–707PubMedCrossRef Srinivasan RS, Geng X et al (2010) The nuclear hormone receptor Coup-TFII is required for the initiation and early maintenance of Prox1 expression in lymphatic endothelial cells. Genes Dev 24(7):696–707PubMedCrossRef
Zurück zum Zitat Stacker SA, Baldwin ME et al (2002) The role of tumor lymphangiogenesis in metastatic spread. FASEB J 16(9):922–934PubMedCrossRef Stacker SA, Baldwin ME et al (2002) The role of tumor lymphangiogenesis in metastatic spread. FASEB J 16(9):922–934PubMedCrossRef
Zurück zum Zitat Straume O, Jackson DG et al (2003) Independent prognostic impact of lymphatic vessel density and presence of low-grade lymphangiogenesis in cutaneous melanoma. Clin Cancer Res 9(1):250–256PubMed Straume O, Jackson DG et al (2003) Independent prognostic impact of lymphatic vessel density and presence of low-grade lymphangiogenesis in cutaneous melanoma. Clin Cancer Res 9(1):250–256PubMed
Zurück zum Zitat Suri C, Jones PF et al (1996) Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 87(7):1171–1180PubMedCrossRef Suri C, Jones PF et al (1996) Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 87(7):1171–1180PubMedCrossRef
Zurück zum Zitat Suzuki-Inoue K, Inoue O et al (2010) “Essential in vivo roles of the C-type lectin receptor CLEC-2: embryonic/neonatal lethality of CLEC-2-deficient mice by blood/lymphatic misconnections and impaired thrombus formation of CLEC-2-deficient platelets”. J Biol Chem 285(32):24494–24507PubMedCrossRef Suzuki-Inoue K, Inoue O et al (2010) “Essential in vivo roles of the C-type lectin receptor CLEC-2: embryonic/neonatal lethality of CLEC-2-deficient mice by blood/lymphatic misconnections and impaired thrombus formation of CLEC-2-deficient platelets”. J Biol Chem 285(32):24494–24507PubMedCrossRef
Zurück zum Zitat Swartz MA, Kaipainen A et al (1999) Mechanics of interstitial-lymphatic fluid transport: theoretical foundation and experimental validation. J Biomech 32(12):1297–1307PubMedCrossRef Swartz MA, Kaipainen A et al (1999) Mechanics of interstitial-lymphatic fluid transport: theoretical foundation and experimental validation. J Biomech 32(12):1297–1307PubMedCrossRef
Zurück zum Zitat Tammela T, Saaristo A et al (2005) Angiopoietin-1 promotes lymphatic sprouting and hyperplasia. Blood 105(12):4642–4648PubMedCrossRef Tammela T, Saaristo A et al (2005) Angiopoietin-1 promotes lymphatic sprouting and hyperplasia. Blood 105(12):4642–4648PubMedCrossRef
Zurück zum Zitat Tammela T, Zarkada G et al (2008) Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation. Nature 454(7204):656–660PubMedCrossRef Tammela T, Zarkada G et al (2008) Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation. Nature 454(7204):656–660PubMedCrossRef
Zurück zum Zitat Taniguchi K, Kohno R et al (2007) Spreds are essential for embryonic lymphangiogenesis by regulating vascular endothelial growth factor receptor 3 signaling. Mol Cell Biol 27(12):4541–4550PubMedCrossRef Taniguchi K, Kohno R et al (2007) Spreds are essential for embryonic lymphangiogenesis by regulating vascular endothelial growth factor receptor 3 signaling. Mol Cell Biol 27(12):4541–4550PubMedCrossRef
Zurück zum Zitat Uhrin P, Zaujec J et al (2010) “Novel function for blood platelets and podoplanin in developmental separation of blood and lymphatic circulation”. Blood 115(19):3997–4005PubMedCrossRef Uhrin P, Zaujec J et al (2010) “Novel function for blood platelets and podoplanin in developmental separation of blood and lymphatic circulation”. Blood 115(19):3997–4005PubMedCrossRef
Zurück zum Zitat Van den Eynden GG, Vandenberghe MK et al (2007) Increased sentinel lymph node lymphangiogenesis is associated with nonsentinel axillary lymph node involvement in breast cancer patients with a positive sentinel node. Clin Cancer Res 13(18 Pt 1):5391–5397PubMedCrossRef Van den Eynden GG, Vandenberghe MK et al (2007) Increased sentinel lymph node lymphangiogenesis is associated with nonsentinel axillary lymph node involvement in breast cancer patients with a positive sentinel node. Clin Cancer Res 13(18 Pt 1):5391–5397PubMedCrossRef
Zurück zum Zitat Wang Y, Oliver G (2010) Current views on the function of the lymphatic vasculature in health and disease. Genes Dev 24(19):2115–2126PubMedCrossRef Wang Y, Oliver G (2010) Current views on the function of the lymphatic vasculature in health and disease. Genes Dev 24(19):2115–2126PubMedCrossRef
Zurück zum Zitat Wang HU, Chen ZF et al (1998) Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell 93(5):741–753PubMedCrossRef Wang HU, Chen ZF et al (1998) Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell 93(5):741–753PubMedCrossRef
Zurück zum Zitat Wang Y, Nakayama M et al (2010) Ephrin-B2 controls VEGF-induced angiogenesis and lymphangiogenesis. Nature 465(7297):483–486PubMedCrossRef Wang Y, Nakayama M et al (2010) Ephrin-B2 controls VEGF-induced angiogenesis and lymphangiogenesis. Nature 465(7297):483–486PubMedCrossRef
Zurück zum Zitat Wegner M (1999) From head to toes: the multiple facets of Sox proteins. Nucleic Acids Res 27(6):1409–1420PubMedCrossRef Wegner M (1999) From head to toes: the multiple facets of Sox proteins. Nucleic Acids Res 27(6):1409–1420PubMedCrossRef
Zurück zum Zitat Wigle JT, Oliver G (1999) Prox1 function is required for the development of the murine lymphatic system. Cell 98(6):769–778PubMedCrossRef Wigle JT, Oliver G (1999) Prox1 function is required for the development of the murine lymphatic system. Cell 98(6):769–778PubMedCrossRef
Zurück zum Zitat Wigle JT, Chowdhury K et al (1999) Prox1 function is crucial for mouse lens-fibre elongation. Nat Genet 21(3):318–322PubMedCrossRef Wigle JT, Chowdhury K et al (1999) Prox1 function is crucial for mouse lens-fibre elongation. Nat Genet 21(3):318–322PubMedCrossRef
Zurück zum Zitat Wigle JT, Harvey N et al (2002) An essential role for Prox1 in the induction of the lymphatic endothelial cell phenotype. EMBO J 21(7):1505–1513PubMedCrossRef Wigle JT, Harvey N et al (2002) An essential role for Prox1 in the induction of the lymphatic endothelial cell phenotype. EMBO J 21(7):1505–1513PubMedCrossRef
Zurück zum Zitat Wiley HE, Gonzalez EB et al (2001) Expression of CC chemokine receptor-7 and regional lymph node metastasis of B16 murine melanoma. J Natl Cancer Inst 93(21):1638–1643PubMedCrossRef Wiley HE, Gonzalez EB et al (2001) Expression of CC chemokine receptor-7 and regional lymph node metastasis of B16 murine melanoma. J Natl Cancer Inst 93(21):1638–1643PubMedCrossRef
Zurück zum Zitat Willis RA (1973) The spread of tumours in the human body. Butterworths, London Willis RA (1973) The spread of tumours in the human body. Butterworths, London
Zurück zum Zitat Wyble CW, Hynes KL et al (1997) TNF-alpha and IL-1 upregulate membrane-bound and soluble E-selectin through a common pathway. J Surg Res 73(2):107–112PubMedCrossRef Wyble CW, Hynes KL et al (1997) TNF-alpha and IL-1 upregulate membrane-bound and soluble E-selectin through a common pathway. J Surg Res 73(2):107–112PubMedCrossRef
Zurück zum Zitat Xu Y, Yuan L et al (2010) Neuropilin-2 mediates VEGF-C-induced lymphatic sprouting together with VEGFR3. J Cell Biol 188(1):115–130PubMedCrossRef Xu Y, Yuan L et al (2010) Neuropilin-2 mediates VEGF-C-induced lymphatic sprouting together with VEGFR3. J Cell Biol 188(1):115–130PubMedCrossRef
Zurück zum Zitat Yuan L, Moyon D et al (2002) Abnormal lymphatic vessel development in neuropilin 2 mutant mice. Development 129(20):4797–4806PubMed Yuan L, Moyon D et al (2002) Abnormal lymphatic vessel development in neuropilin 2 mutant mice. Development 129(20):4797–4806PubMed
Zurück zum Zitat Zhang X, Groopman JE et al (2005) Extracellular matrix regulates endothelial functions through interaction of VEGFR-3 and integrin alpha5beta1. J Cell Physiol 202(1):205–214PubMedCrossRef Zhang X, Groopman JE et al (2005) Extracellular matrix regulates endothelial functions through interaction of VEGFR-3 and integrin alpha5beta1. J Cell Physiol 202(1):205–214PubMedCrossRef
Zurück zum Zitat Zhang L, Zhou F et al (2010) VEGFR-3 ligand-binding and kinase activity are required for lymphangiogenesis but not for angiogenesis. Cell Res 20(12):1319–1331PubMedCrossRef Zhang L, Zhou F et al (2010) VEGFR-3 ligand-binding and kinase activity are required for lymphangiogenesis but not for angiogenesis. Cell Res 20(12):1319–1331PubMedCrossRef
Zurück zum Zitat Zhou F, Chang Z et al (2010) Akt/Protein kinase B is required for lymphatic network formation, remodeling, and valve development. Am J Pathol 177(4):2124–2133PubMedCrossRef Zhou F, Chang Z et al (2010) Akt/Protein kinase B is required for lymphatic network formation, remodeling, and valve development. Am J Pathol 177(4):2124–2133PubMedCrossRef
Zurück zum Zitat Zumsteg A, Baeriswyl V et al (2009) Myeloid cells contribute to tumor lymphangiogenesis. PLoS One 4(9):e7067PubMedCrossRef Zumsteg A, Baeriswyl V et al (2009) Myeloid cells contribute to tumor lymphangiogenesis. PLoS One 4(9):e7067PubMedCrossRef
Metadaten
Titel
Molecular Regulation of Lymphangiogenesis in Development and Tumor Microenvironment
verfasst von
Taotao Li
Jianfeng Yang
Quansheng Zhou
Yulong He
Publikationsdatum
01.12.2012
Verlag
Springer Netherlands
Erschienen in
Cancer Microenvironment / Ausgabe 3/2012
Print ISSN: 1875-2292
Elektronische ISSN: 1875-2284
DOI
https://doi.org/10.1007/s12307-012-0119-6

Weitere Artikel der Ausgabe 3/2012

Cancer Microenvironment 3/2012 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.