Skip to main content
Erschienen in: Cancer Microenvironment 3/2014

01.12.2014 | Original Papers

Microenvironmental Influences on Metastasis Suppressor Expression and Function during a Metastatic Cell’s Journey

verfasst von: Wen Liu, Carolyn J. Vivian, Amanda E. Brinker, Kelsey R. Hampton, Evi Lianidou, Danny R. Welch

Erschienen in: Cancer Microenvironment | Ausgabe 3/2014

Einloggen, um Zugang zu erhalten

Abstract

Metastasis is the process of primary tumor cells breaking away and colonizing distant secondary sites. In order for a tumor cell growing in one microenvironment to travel to, and flourish in, a secondary environment, it must survive a series of events termed the metastatic cascade. Before departing the primary tumor, cells acquire genetic and epigenetic changes that endow them with properties not usually associated with related normal differentiated cells. Those cells also induce a subset of bone marrow-derived stem cells to mobilize and establish pre-metastatic niches [1]. Many tumor cells undergo epithelial-to-mesenchymal transition (EMT), where they transiently acquire morphologic changes, reduced requirements for cell-cell contact and become more invasive [2]. Invasive tumor cells eventually enter the circulatory (hematogenous) or lymphatic systems or travel across body cavities. In transit, tumor cells must resist anoikis, survive sheer forces and evade detection by the immune system. For blood-borne metastases, surviving cells then arrest or adhere to endothelial linings before either proliferating or extravasating. Eventually, tumor cells complete the process by proliferating to form a macroscopic mass [3].
Up to 90 % of all cancer related morbidity and mortality can be attributed to metastasis. Surgery manages to ablate most primary tumors, especially when combined with chemotherapy and radiation. But if cells have disseminated, survival rates drop precipitously. While multiple parameters of the primary tumor are predictive of local or distant relapse, biopsies remain an imperfect science. The introduction of molecular and other biomarkers [4, 5] continue to improve the accuracy of prognosis. However, the invasive procedure introduces new complications for the patient. Likewise, the heterogeneity of any tumor population [3, 6, 7] means that sampling error (i.e., since it is impractical to examine the entire tumor) necessitates further improvements.
In the case of breast cancer, for example, women diagnosed with stage I diseases (i.e., no evidence of invasion through a basement membrane) still have a ~30 % likelihood of developing distant metastases [8]. Many physicians and patients opt for additional chemotherapy in order to “mop up“ cells that have disseminated and have the potential to grow into macroscopic metastases. This means that ~ 70 % of patients receive unnecessary therapy, which has undesirable side effects. Therefore, improving prognostic capability is highly desirable.
Recent advances allow profiling of primary tumor DNA sequences and gene expression patterns to define a so-called metastatic signature [911], which can be predictive of patient outcome. However, the genetic changes that a tumor cell must undergo to survive the initial events of the metastatic cascade and colonize a second location belie a plasticity that may not be adequately captured in a sampling of heterogeneous tumors. In order to tailor or personalize patient treatments, a more accurate assessment of the genetic profile in the metastases is needed. Biopsy of each individual metastasis is not practical, safe, nor particularly cost-effective. In recent years, there has been a resurrection of the notion to do a ‘liquid biopsy,’ which essentially involves sampling of circulating tumor cells (CTC) and/or cell free nucleic acids (cfDNA, including microRNA (miRNA)) present in blood and lymph [1216].
The rationale for liquid biopsy is that tumors shed cells and/or genetic fragments into the circulation, theoretically making the blood representative of not only the primary tumor but also distant metastases. Logically, one would predict that the proportion of CTC and/or cfDNA would be proportionate to the likelihood of developing metastases [14]. While a linear relationship does not exist, the information within CTC or cfDNA is beginning to show great promise for enabling a global snapshot of the disease. However, the CTC and cfDNA are present at extremely low levels. Nonetheless, newer technologies capture enough material to enrich and sequence the patient’s DNA or quantification of some biomarkers.
Among the biomarkers showing great promise are metastasis suppressors which, by definition, block a tumor cell’s ability to complete the metastatic process without prohibiting primary tumor growth [17]. Since the discovery of the first metastasis suppressor, Nm23, more than 30 have been functionally characterized. They function at various stages of the metastatic cascade, but their mechanisms of action, for the most part, remain ill-defined. Deciphering the molecular interactions of functional metastasis suppressors may provide insights for targeted therapies when these regulators cease to function and result in metastatic disease.
In this brief review, we summarize what is known about the various metastasis suppressors and their functions at individual steps of the metastatic cascade (Table 1). Some of the subdivisions are rather arbitrary in nature, since many metastasis suppressors affect more than one step in the metastatic cascade. Nonetheless what emerges is a realization that metastasis suppressors are intimately associated with the microenvironments in which cancer cells find themselves [18].
Literatur
1.
Zurück zum Zitat Peinado H, Aleckovic M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G, Hergueta-Redondo M, Williams C, Garcia-Santos G, Ghajar CM, Nitadori-Hoshino A, Hoffman C, Badal K, Garcia BA, Callahan MK, Yuan J, Martins VR, Skog J, Kaplan RN, Brady MS, Wolchok JD, Chapman PB, Kang Y, Bromberg J, Lyden D (2012) Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nature Med 18:883–891PubMedCentralPubMed Peinado H, Aleckovic M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G, Hergueta-Redondo M, Williams C, Garcia-Santos G, Ghajar CM, Nitadori-Hoshino A, Hoffman C, Badal K, Garcia BA, Callahan MK, Yuan J, Martins VR, Skog J, Kaplan RN, Brady MS, Wolchok JD, Chapman PB, Kang Y, Bromberg J, Lyden D (2012) Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nature Med 18:883–891PubMedCentralPubMed
2.
Zurück zum Zitat Bonnomet A, Brysse A, Tachsidis A, Waltham M, Thompson E, Polette M, Gilles C (2010) Epithelial-to-mesenchymal transitions and circulating tumor cells. J Mamm Gland Biol Neopl 15:261–273 Bonnomet A, Brysse A, Tachsidis A, Waltham M, Thompson E, Polette M, Gilles C (2010) Epithelial-to-mesenchymal transitions and circulating tumor cells. J Mamm Gland Biol Neopl 15:261–273
3.
4.
Zurück zum Zitat Guttery DS, Blighe K, Page K, Marchese SD, Hills A, Coombes RC, Stebbing J, Shaw JA (2013) Hide and seek: tell-tale signs of breast cancer lurking in the blood. Cancer Metastasis Rev 32:289–302PubMed Guttery DS, Blighe K, Page K, Marchese SD, Hills A, Coombes RC, Stebbing J, Shaw JA (2013) Hide and seek: tell-tale signs of breast cancer lurking in the blood. Cancer Metastasis Rev 32:289–302PubMed
5.
Zurück zum Zitat Hayes DF, Allen J, Compton C, Gustavsen G, Leonard DG, McCormack R, Newcomer L, Pothier K, Ransohoff D, Schilsky RL, Sigal E, Taube SE, and Tunis SR (2013) Breaking a vicious cycle. Sci. Transl. Med. 5:196 cm6. Hayes DF, Allen J, Compton C, Gustavsen G, Leonard DG, McCormack R, Newcomer L, Pothier K, Ransohoff D, Schilsky RL, Sigal E, Taube SE, and Tunis SR (2013) Breaking a vicious cycle. Sci. Transl. Med. 5:196 cm6.
6.
Zurück zum Zitat Heppner GH (1993) Cancer cell societies and tumor progression. Stem Cells 11:199–203PubMed Heppner GH (1993) Cancer cell societies and tumor progression. Stem Cells 11:199–203PubMed
7.
Zurück zum Zitat Marusyk A, Almendro V, Polyak K (2012) Intra-tumour heterogeneity: a looking glass for cancer? Nature Rev Cancer 12:323–334 Marusyk A, Almendro V, Polyak K (2012) Intra-tumour heterogeneity: a looking glass for cancer? Nature Rev Cancer 12:323–334
8.
Zurück zum Zitat Klein CA (2011) Framework models of tumor dormancy from patient-derived observations. Curr Opin Genet Dev 21:42–49PubMed Klein CA (2011) Framework models of tumor dormancy from patient-derived observations. Curr Opin Genet Dev 21:42–49PubMed
9.
Zurück zum Zitat Massague J (2007) Sorting out breast-cancer gene signatures. N Engl J Med 356:294–297PubMed Massague J (2007) Sorting out breast-cancer gene signatures. N Engl J Med 356:294–297PubMed
10.
Zurück zum Zitat Landemaine T, Jackson A, Bellahcene A, Rucci N, Sin S, Abad BM, Sierra A, Boudinet A, Guinebretiere JM, Ricevuto E, Nogues C, Briffod M, Bieche I, Cherel P, Garcia T, Castronovo V, Teti A, Lidereau R, Driouch K (2008) A six-gene signature predicting breast cancer lung metastasis. Cancer Res 68:6092–6099PubMed Landemaine T, Jackson A, Bellahcene A, Rucci N, Sin S, Abad BM, Sierra A, Boudinet A, Guinebretiere JM, Ricevuto E, Nogues C, Briffod M, Bieche I, Cherel P, Garcia T, Castronovo V, Teti A, Lidereau R, Driouch K (2008) A six-gene signature predicting breast cancer lung metastasis. Cancer Res 68:6092–6099PubMed
11.
Zurück zum Zitat Ellsworth RE, Seebach J, Field LA, Heckman C, Kane J, Hooke JA, Love B, Shriver CD (2009) A gene expression signature that defines breast cancer metastases. Clin Exptl Metastasis 26:205–213 Ellsworth RE, Seebach J, Field LA, Heckman C, Kane J, Hooke JA, Love B, Shriver CD (2009) A gene expression signature that defines breast cancer metastases. Clin Exptl Metastasis 26:205–213
12.
Zurück zum Zitat Haber DA, Velculescu VE (2014) Blood-based analyses of cancer: circulating tumor cells and circulating tumor DNA. Cancer Discov 4:650–661PubMed Haber DA, Velculescu VE (2014) Blood-based analyses of cancer: circulating tumor cells and circulating tumor DNA. Cancer Discov 4:650–661PubMed
13.
Zurück zum Zitat Wan L, Pantel K, Kang Y (2013) Tumor metastasis: moving new biological insights into the clinic. Nature Med 19:1450–1464PubMed Wan L, Pantel K, Kang Y (2013) Tumor metastasis: moving new biological insights into the clinic. Nature Med 19:1450–1464PubMed
14.
Zurück zum Zitat Pantel K, Alix-Panabieres C (2013) Real-time liquid biopsy in cancer patients: fact or fiction? Cancer Res 73:6384–6388PubMed Pantel K, Alix-Panabieres C (2013) Real-time liquid biopsy in cancer patients: fact or fiction? Cancer Res 73:6384–6388PubMed
15.
Zurück zum Zitat Seeberg LT, Waage A, Brunborg C, Hugenschmidt H, Renolen A, Stav I, Bjornbeth BA, Brudvik KW, Borgen EF, Naume B, and Wiedswang G (2014) Circulating Tumor Cells in Patients With Colorectal Liver Metastasis Predict Impaired Survival. Ann. Surg. Seeberg LT, Waage A, Brunborg C, Hugenschmidt H, Renolen A, Stav I, Bjornbeth BA, Brudvik KW, Borgen EF, Naume B, and Wiedswang G (2014) Circulating Tumor Cells in Patients With Colorectal Liver Metastasis Predict Impaired Survival. Ann. Surg.
16.
Zurück zum Zitat Bidard FC, Fehm T, Ignatiadis M, Smerage JB, Alix-Panabieres C, Janni W, Messina C, Paoletti C, Muller V, Hayes DF, Piccart M, Pierga JY (2013) Clinical application of circulating tumor cells in breast cancer: overview of the current interventional trials. Cancer Metastasis Rev 32:179–188PubMedCentralPubMed Bidard FC, Fehm T, Ignatiadis M, Smerage JB, Alix-Panabieres C, Janni W, Messina C, Paoletti C, Muller V, Hayes DF, Piccart M, Pierga JY (2013) Clinical application of circulating tumor cells in breast cancer: overview of the current interventional trials. Cancer Metastasis Rev 32:179–188PubMedCentralPubMed
17.
Zurück zum Zitat Bohl CR, Harihar S, Denning WL, Sharma R, Welch DR (2013) Metastasis suppressors in breast cancers: mechanistic insights and clinical potential. J Mol Med 92:13–30PubMed Bohl CR, Harihar S, Denning WL, Sharma R, Welch DR (2013) Metastasis suppressors in breast cancers: mechanistic insights and clinical potential. J Mol Med 92:13–30PubMed
18.
Zurück zum Zitat Hurst DR, Welch DR (2011) Metastasis suppressor genes: at the interface between the environment and tumor cell growth. Intl Rev Cell Molec Biol 286:107–180 Hurst DR, Welch DR (2011) Metastasis suppressor genes: at the interface between the environment and tumor cell growth. Intl Rev Cell Molec Biol 286:107–180
19.
Zurück zum Zitat Seraj MJ, Samant RS, Verderame MF, Welch DR (2000) Functional evidence for a novel human breast carcinoma metastasis suppressor, BRMS1, encoded at chromosome 11q13. Cancer Res 60:2764–2769PubMed Seraj MJ, Samant RS, Verderame MF, Welch DR (2000) Functional evidence for a novel human breast carcinoma metastasis suppressor, BRMS1, encoded at chromosome 11q13. Cancer Res 60:2764–2769PubMed
20.
Zurück zum Zitat Hurst DR, Welch DR (2011) Unraveling the enigmatic complexities of BRMS1-mediated metastasis suppression. FEBS Lett 585:3185–3190PubMedCentralPubMed Hurst DR, Welch DR (2011) Unraveling the enigmatic complexities of BRMS1-mediated metastasis suppression. FEBS Lett 585:3185–3190PubMedCentralPubMed
21.
Zurück zum Zitat Slipicevic A, Holm R, Emilsen E, Ree Rosnes AK, Welch DR, Maelandsmo GM, Florenes VA (2012) Cytoplasmic BRMS1 expression in malignant melanoma is associated with increased disease-free survival. BMC Cancer 12:73PubMedCentralPubMed Slipicevic A, Holm R, Emilsen E, Ree Rosnes AK, Welch DR, Maelandsmo GM, Florenes VA (2012) Cytoplasmic BRMS1 expression in malignant melanoma is associated with increased disease-free survival. BMC Cancer 12:73PubMedCentralPubMed
22.
Zurück zum Zitat Spinola-Amilibia M, Rivera J, Ortiz-Lombardia M, Romero A, Neira JL, Bravo J (2011) The structure of BRMS1 nuclear export signal and SNX6 interacting region reveals a hexamer formed by antiparallel coiled coils. J Mol Biol 411:1114–1127PubMed Spinola-Amilibia M, Rivera J, Ortiz-Lombardia M, Romero A, Neira JL, Bravo J (2011) The structure of BRMS1 nuclear export signal and SNX6 interacting region reveals a hexamer formed by antiparallel coiled coils. J Mol Biol 411:1114–1127PubMed
23.
Zurück zum Zitat Frolova N, Edmonds MD, Bodenstine TM, Seitz R, Johnson MR, Feng R, Welch DR, Frost AR (2009) A shift from nuclear to cytoplasmic breast cancer metastasis suppressor 1 expression is associated with highly proliferative estrogen receptor-negative breast cancers. Tumor Biol 30:148–159 Frolova N, Edmonds MD, Bodenstine TM, Seitz R, Johnson MR, Feng R, Welch DR, Frost AR (2009) A shift from nuclear to cytoplasmic breast cancer metastasis suppressor 1 expression is associated with highly proliferative estrogen receptor-negative breast cancers. Tumor Biol 30:148–159
24.
Zurück zum Zitat Hurst DR, Xie Y, Thomas JW, Liu J, Edmonds MD, Stewart MD, Welch DR (2013) The C-terminal putative nuclear localization sequence of BReast cancer metastasis suppressor 1, BRMS1, is necessary for metastasis suppression. PLoS One 8:e55966PubMedCentralPubMed Hurst DR, Xie Y, Thomas JW, Liu J, Edmonds MD, Stewart MD, Welch DR (2013) The C-terminal putative nuclear localization sequence of BReast cancer metastasis suppressor 1, BRMS1, is necessary for metastasis suppression. PLoS One 8:e55966PubMedCentralPubMed
25.
Zurück zum Zitat Khotskaya YB, Beck BH, Hurst DR, Han Z, Xia W, Hung MC, and Welch DR (2013) Expression of metastasis suppressor BRMS1 in breast cancer cells results in a marked delay in cellular adhesion to matrix. Mol. Carcinog. doi:10.1002/mc.22068 Khotskaya YB, Beck BH, Hurst DR, Han Z, Xia W, Hung MC, and Welch DR (2013) Expression of metastasis suppressor BRMS1 in breast cancer cells results in a marked delay in cellular adhesion to matrix. Mol. Carcinog. doi:10.​1002/​mc.​22068
26.
Zurück zum Zitat Liu Y, Mayo MW, Nagji AS, Hall EH, Shock LS, Xiao A, Stelow EB, Jones DR (2013) BRMS1 suppresses lung cancer metastases through an E3 ligase function on histone acetyltransferase p300. Cancer Res 73:1308–1317PubMedCentralPubMed Liu Y, Mayo MW, Nagji AS, Hall EH, Shock LS, Xiao A, Stelow EB, Jones DR (2013) BRMS1 suppresses lung cancer metastases through an E3 ligase function on histone acetyltransferase p300. Cancer Res 73:1308–1317PubMedCentralPubMed
27.
Zurück zum Zitat DeWald DB, Torabinejad J, Samant RS, Johnston D, Erin N, Shope JC, Xie Y, Welch DR (2005) Metastasis suppression by breast cancer metastasis suppressor 1 involves reduction of phosphoinositide signaling in MDA-MB-435 breast carcinoma cells. Cancer Res 65:713–717PubMed DeWald DB, Torabinejad J, Samant RS, Johnston D, Erin N, Shope JC, Xie Y, Welch DR (2005) Metastasis suppression by breast cancer metastasis suppressor 1 involves reduction of phosphoinositide signaling in MDA-MB-435 breast carcinoma cells. Cancer Res 65:713–717PubMed
28.
Zurück zum Zitat Vaidya KS, Harihar S, Stafford LJ, Hurst DR, Hicks DG, Casey G, DeWald DB, Welch DR (2008) Breast cancer metastasis suppressor-1 differentially modulates growth factor signaling. J Biol Chem 283:28354–28360PubMedCentralPubMed Vaidya KS, Harihar S, Stafford LJ, Hurst DR, Hicks DG, Casey G, DeWald DB, Welch DR (2008) Breast cancer metastasis suppressor-1 differentially modulates growth factor signaling. J Biol Chem 283:28354–28360PubMedCentralPubMed
29.
Zurück zum Zitat Ponnusamy S, Selvam SP, Mehrotra S, Kawamori T, Snider AJ, Obeid LM, Shao Y, Sabbadini R, Ogretmen B (2012) Communication between host organism and cancer cells is transduced by systemic sphingosine kinase 1/sphingosine 1-phosphate signalling to regulate tumour metastasis. EMBO Mol Med 4:761–775PubMedCentralPubMed Ponnusamy S, Selvam SP, Mehrotra S, Kawamori T, Snider AJ, Obeid LM, Shao Y, Sabbadini R, Ogretmen B (2012) Communication between host organism and cancer cells is transduced by systemic sphingosine kinase 1/sphingosine 1-phosphate signalling to regulate tumour metastasis. EMBO Mol Med 4:761–775PubMedCentralPubMed
30.
Zurück zum Zitat Seraj MJ, Samant RS, Verderame MF et al (1999) Identification of breast-cancer metastasis-suppressor candidate genes from metastasis-suppressed chromosome 11/MDA-MB-435 hybrids. Proc Natl Acad Sci 40:689 Seraj MJ, Samant RS, Verderame MF et al (1999) Identification of breast-cancer metastasis-suppressor candidate genes from metastasis-suppressed chromosome 11/MDA-MB-435 hybrids. Proc Natl Acad Sci 40:689
31.
Zurück zum Zitat Zhang S, Lin QD, Di W (2006) Suppression of human ovarian carcinoma metastasis by the metastasis-suppressor gene, BRMS1. Int J Gynecol Cancer 16:522–531PubMed Zhang S, Lin QD, Di W (2006) Suppression of human ovarian carcinoma metastasis by the metastasis-suppressor gene, BRMS1. Int J Gynecol Cancer 16:522–531PubMed
32.
Zurück zum Zitat Yang J, Zhang B, Lin Y, Yang Y, Liu X, Lu F (2008) Breast cancer metastasis suppressor 1 inhibits SDF-1alpha-induced migration of non-small cell lung cancer by decreasing CXCR4 expression. Cancer Lett 269:46–56PubMed Yang J, Zhang B, Lin Y, Yang Y, Liu X, Lu F (2008) Breast cancer metastasis suppressor 1 inhibits SDF-1alpha-induced migration of non-small cell lung cancer by decreasing CXCR4 expression. Cancer Lett 269:46–56PubMed
33.
Zurück zum Zitat Phadke PA, Vaidya KS, Nash KT, Hurst DR, Welch DR (2008) BRMS1 suppresses breast cancer experimental metastasis to multiple organs by inhibiting several steps of the metastatic process. Am J Pathol 172:809–817PubMedCentralPubMed Phadke PA, Vaidya KS, Nash KT, Hurst DR, Welch DR (2008) BRMS1 suppresses breast cancer experimental metastasis to multiple organs by inhibiting several steps of the metastatic process. Am J Pathol 172:809–817PubMedCentralPubMed
34.
Zurück zum Zitat Metge BJ, Frost AR, King JA, Dyess DL, Welch DR, Samant RS, Shevde LA (2008) Epigenetic silencing contributes to the loss of BRMS1 expression in breast cancer. Clin Exptl Metastasis 25:753–763 Metge BJ, Frost AR, King JA, Dyess DL, Welch DR, Samant RS, Shevde LA (2008) Epigenetic silencing contributes to the loss of BRMS1 expression in breast cancer. Clin Exptl Metastasis 25:753–763
35.
Zurück zum Zitat Chimonidou M, Kallergi G, Georgoulias V, Welch DR, Lianidou ES (2013) BRSM1 promoter methylation provides prognostic information in primary breast tumors. Mol Cancer Res 11:1248–1257PubMed Chimonidou M, Kallergi G, Georgoulias V, Welch DR, Lianidou ES (2013) BRSM1 promoter methylation provides prognostic information in primary breast tumors. Mol Cancer Res 11:1248–1257PubMed
36.
Zurück zum Zitat Balgkouranidou I, Chimonidou M, Milaki G, Tsarouxa EG, Kakolyris S, Welch DR, Georgoulias V, Lianidou ES (2014) Breast cancer metastasis suppressor-1 promoter methylation in cell-free DNA provides prognostic information in non-small cell lung cancer. Br J Cancer 110:2054–2062PubMed Balgkouranidou I, Chimonidou M, Milaki G, Tsarouxa EG, Kakolyris S, Welch DR, Georgoulias V, Lianidou ES (2014) Breast cancer metastasis suppressor-1 promoter methylation in cell-free DNA provides prognostic information in non-small cell lung cancer. Br J Cancer 110:2054–2062PubMed
37.
Zurück zum Zitat Jothy S (2003) CD44 and its partners in metastasis. Clin Exptl Metastasis 20:195–201 Jothy S (2003) CD44 and its partners in metastasis. Clin Exptl Metastasis 20:195–201
38.
Zurück zum Zitat Herrera-Gayol A, Jothy S (1999) Adhesion proteins in the biology of breast cancer: contribution of CD44. Exp Mol Pathol 66:149–156PubMed Herrera-Gayol A, Jothy S (1999) Adhesion proteins in the biology of breast cancer: contribution of CD44. Exp Mol Pathol 66:149–156PubMed
39.
Zurück zum Zitat Sneath RJS, Mangham DC (1998) The normal structure and function of CD44 and its role in neoplasia. J Clin Path Mol Path 51:191–200 Sneath RJS, Mangham DC (1998) The normal structure and function of CD44 and its role in neoplasia. J Clin Path Mol Path 51:191–200
40.
Zurück zum Zitat Hiraga T, Ito S, Nakamura H (2013) Cancer stem-like cell marker CD44 promotes bone metastases by enhancing tumorigenicity, cell motility, and hyaluronan production. Cancer Res 73:4112–4122PubMed Hiraga T, Ito S, Nakamura H (2013) Cancer stem-like cell marker CD44 promotes bone metastases by enhancing tumorigenicity, cell motility, and hyaluronan production. Cancer Res 73:4112–4122PubMed
41.
Zurück zum Zitat Lopez JI, Camenisch TD, Stevens MV, Sands BJ, McDonald J, Schroeder JA (2005) CD44 attenuates metastatic invasion during breast cancer progression. Cancer Res 65:6755–6763PubMed Lopez JI, Camenisch TD, Stevens MV, Sands BJ, McDonald J, Schroeder JA (2005) CD44 attenuates metastatic invasion during breast cancer progression. Cancer Res 65:6755–6763PubMed
42.
Zurück zum Zitat Gvozdenovic A, Arlt MJ, Campanile C, Brennecke P, Husmann K, Li Y, Born W, Muff R, Fuchs B (2013) CD44 enhances tumor formation and lung metastasis in experimental osteosarcoma and is an additional predictor for poor patient outcome. J Bone Miner Res 28:838–847PubMed Gvozdenovic A, Arlt MJ, Campanile C, Brennecke P, Husmann K, Li Y, Born W, Muff R, Fuchs B (2013) CD44 enhances tumor formation and lung metastasis in experimental osteosarcoma and is an additional predictor for poor patient outcome. J Bone Miner Res 28:838–847PubMed
43.
Zurück zum Zitat Gao X, Pang J, Li LY, Liu WP, Di JM, Sun QP, Fang YQ, Liu XP, Pu XY, He D, Li MT, Su ZL, Li BY (2010) Expression profiling identifies new function of collapsin response mediator protein 4 as a metastasis-suppressor in prostate cancer. Oncogene 29:4555–4566PubMed Gao X, Pang J, Li LY, Liu WP, Di JM, Sun QP, Fang YQ, Liu XP, Pu XY, He D, Li MT, Su ZL, Li BY (2010) Expression profiling identifies new function of collapsin response mediator protein 4 as a metastasis-suppressor in prostate cancer. Oncogene 29:4555–4566PubMed
44.
Zurück zum Zitat Yamashita N, Goshima Y (2012) Collapsin response mediator proteins regulate neuronal development and plasticity by switching their phosphorylation status. Mol Neurobiol 45:234–246PubMed Yamashita N, Goshima Y (2012) Collapsin response mediator proteins regulate neuronal development and plasticity by switching their phosphorylation status. Mol Neurobiol 45:234–246PubMed
45.
Zurück zum Zitat Hou ST, Jiang SX, Smith RA (2008) Permissive and repulsive cues and signalling pathways of axonal outgrowth and regeneration. Int Rev Cell Mol Biol 267:125–181PubMed Hou ST, Jiang SX, Smith RA (2008) Permissive and repulsive cues and signalling pathways of axonal outgrowth and regeneration. Int Rev Cell Mol Biol 267:125–181PubMed
46.
Zurück zum Zitat Shih JY, Lee YCG, Yang SC, Hong TM, Huang CYF, Yang PC (2003) Collapsin response mediator protein-1: a novel invasion-suppressor gene. Clin Exptl Metastasis 20:69–76 Shih JY, Lee YCG, Yang SC, Hong TM, Huang CYF, Yang PC (2003) Collapsin response mediator protein-1: a novel invasion-suppressor gene. Clin Exptl Metastasis 20:69–76
47.
Zurück zum Zitat Ong Tone S, Dayanandan B, Fournier AE, Mandato CA (2010) GSK3 regulates mitotic chromosomal alignment through CRMP4. PLoS One 5:e14345PubMedCentralPubMed Ong Tone S, Dayanandan B, Fournier AE, Mandato CA (2010) GSK3 regulates mitotic chromosomal alignment through CRMP4. PLoS One 5:e14345PubMedCentralPubMed
48.
Zurück zum Zitat Krimpenfort P, Song JY, Proost N, Zevenhoven J, Jonkers J, Berns A (2012) Deleted in colorectal carcinoma suppresses metastasis in p53-deficient mammary tumours. Nature 482:538–541PubMed Krimpenfort P, Song JY, Proost N, Zevenhoven J, Jonkers J, Berns A (2012) Deleted in colorectal carcinoma suppresses metastasis in p53-deficient mammary tumours. Nature 482:538–541PubMed
49.
Zurück zum Zitat Fitamant J, Guenebeaud C, Coissieux MM, Guix C, Treilleux I, Scoazec JY, Bachelot T, Bernet A, Mehlen P (2008) Netrin-1 expression confers a selective advantage for tumor cell survival in metastatic breast cancer. Proc Natl Acad Sci 105:4850–4855PubMedCentralPubMed Fitamant J, Guenebeaud C, Coissieux MM, Guix C, Treilleux I, Scoazec JY, Bachelot T, Bernet A, Mehlen P (2008) Netrin-1 expression confers a selective advantage for tumor cell survival in metastatic breast cancer. Proc Natl Acad Sci 105:4850–4855PubMedCentralPubMed
50.
Zurück zum Zitat Manhire-Heath R, Golenkina S, Saint R, Murray MJ (2013) Netrin-dependent downregulation of Frazzled/DCC is required for the dissociation of the peripodial epithelium in Drosophila. Nat Commun 4:2790PubMed Manhire-Heath R, Golenkina S, Saint R, Murray MJ (2013) Netrin-dependent downregulation of Frazzled/DCC is required for the dissociation of the peripodial epithelium in Drosophila. Nat Commun 4:2790PubMed
51.
Zurück zum Zitat Li PL, Liu MM, Ni J (2003) Study on the expression of the gene deleted in colorectal carcinoma in ovarian carcinoma. Zhonghua Fu Chan Ke. Za Zhi 38:207–209 Li PL, Liu MM, Ni J (2003) Study on the expression of the gene deleted in colorectal carcinoma in ovarian carcinoma. Zhonghua Fu Chan Ke. Za Zhi 38:207–209
52.
Zurück zum Zitat Bamias AT, Bai MC, Agnantis NJ, Michael MC, Alamanos YP, Stefanaki SV, Razi ED, Skarlos DV, Kappas AM, Pavlidis NA (2003) Prognostic significance of the deleted in colorectal cancer gene protein expression in high-risk resected gastric carcinoma. Cancer Invest 21:333–340PubMed Bamias AT, Bai MC, Agnantis NJ, Michael MC, Alamanos YP, Stefanaki SV, Razi ED, Skarlos DV, Kappas AM, Pavlidis NA (2003) Prognostic significance of the deleted in colorectal cancer gene protein expression in high-risk resected gastric carcinoma. Cancer Invest 21:333–340PubMed
53.
Zurück zum Zitat Tarafa G, Villanueva A, Farré L, Rodriguez J, Masulen E, Reyes G, Seminago R, Olmedo E, Paules AB, Peinado MA, Bachs O, Capellá G (2000) DCC and SMAD4 alterations in human colorectal and pancreatic tumor dissemination. Oncogene 19:546–555PubMed Tarafa G, Villanueva A, Farré L, Rodriguez J, Masulen E, Reyes G, Seminago R, Olmedo E, Paules AB, Peinado MA, Bachs O, Capellá G (2000) DCC and SMAD4 alterations in human colorectal and pancreatic tumor dissemination. Oncogene 19:546–555PubMed
54.
Zurück zum Zitat Delloye-Bourgeois C, Fitamant J, Paradisi A, Cappellen D, Douc-Rasy S, Raquin MA, Stupack D, Nakagawara A, Rousseau R, Combaret V, Puisieux A, Valteau-Couanet D, Benard J, Bernet A, Mehlen P (2009) Netrin-1 acts as a survival factor for aggressive neuroblastoma. J Exp Med 206:833–847PubMedCentralPubMed Delloye-Bourgeois C, Fitamant J, Paradisi A, Cappellen D, Douc-Rasy S, Raquin MA, Stupack D, Nakagawara A, Rousseau R, Combaret V, Puisieux A, Valteau-Couanet D, Benard J, Bernet A, Mehlen P (2009) Netrin-1 acts as a survival factor for aggressive neuroblastoma. J Exp Med 206:833–847PubMedCentralPubMed
55.
Zurück zum Zitat Son TW, Yun SP, Yong MS, Seo BN, Ryu JM, Youn HY, Oh YM, Han HJ (2013) Netrin-1 protects hypoxia-induced mitochondrial apoptosis through HSP27 expression via DCC- and integrin alpha6beta4-dependent Akt, GSK-3beta, and HSF-1 in mesenchymal stem cells. Cell Death Dis 4:e563PubMedCentralPubMed Son TW, Yun SP, Yong MS, Seo BN, Ryu JM, Youn HY, Oh YM, Han HJ (2013) Netrin-1 protects hypoxia-induced mitochondrial apoptosis through HSP27 expression via DCC- and integrin alpha6beta4-dependent Akt, GSK-3beta, and HSF-1 in mesenchymal stem cells. Cell Death Dis 4:e563PubMedCentralPubMed
56.
Zurück zum Zitat Goodison S, Yuan G, Sloan D, Kim R, Li C, Popescu NC, Urquidi V (2005) The RhoGAP protein DLC-1 functions as a metastasis suppressor in breast cancer cells. Cancer Res 65:6042–6053PubMedCentralPubMed Goodison S, Yuan G, Sloan D, Kim R, Li C, Popescu NC, Urquidi V (2005) The RhoGAP protein DLC-1 functions as a metastasis suppressor in breast cancer cells. Cancer Res 65:6042–6053PubMedCentralPubMed
57.
Zurück zum Zitat Xue YZ, Wu TL, Wu YM, Sheng YY, Wei ZQ, Lu YF, Yu LH, Li JP, Li ZS (2013) DLC-1 is a candidate biomarker methylated and down-regulated in pancreatic ductal adenocarcinoma. Tumour Biol 34:2857–2861PubMed Xue YZ, Wu TL, Wu YM, Sheng YY, Wei ZQ, Lu YF, Yu LH, Li JP, Li ZS (2013) DLC-1 is a candidate biomarker methylated and down-regulated in pancreatic ductal adenocarcinoma. Tumour Biol 34:2857–2861PubMed
58.
Zurück zum Zitat Guan CN, Zhang PW, Lou HQ, Liao XH, Chen BY (2012) DLC-1 expression levels in breast cancer assessed by qRT- PCR are negatively associated with malignancy. Asian Pac J Cancer Prev 13:1231–1233PubMed Guan CN, Zhang PW, Lou HQ, Liao XH, Chen BY (2012) DLC-1 expression levels in breast cancer assessed by qRT- PCR are negatively associated with malignancy. Asian Pac J Cancer Prev 13:1231–1233PubMed
59.
Zurück zum Zitat Chen WT, Yang CH, Wu CC, Huang YC, Chai CY (2013) Aberrant deleted in liver cancer-1 expression is associated with tumor metastasis and poor prognosis in urothelial carcinoma. APMIS 121:1131–1138PubMed Chen WT, Yang CH, Wu CC, Huang YC, Chai CY (2013) Aberrant deleted in liver cancer-1 expression is associated with tumor metastasis and poor prognosis in urothelial carcinoma. APMIS 121:1131–1138PubMed
60.
Zurück zum Zitat Kim T, Vigil D, Der C, Juliano R (2009) Role of DLC-1, a tumor suppressor protein with RhoGAP activity, in regulation of the cytoskeleton and cell motility. Cancer Metastasis Rev 28:77–83PubMedCentralPubMed Kim T, Vigil D, Der C, Juliano R (2009) Role of DLC-1, a tumor suppressor protein with RhoGAP activity, in regulation of the cytoskeleton and cell motility. Cancer Metastasis Rev 28:77–83PubMedCentralPubMed
61.
Zurück zum Zitat Fujita H, Okada F, Hamada J, Hosokawa M, Moriuchi T, Koya RC, Kuzumaki N (2001) Gelsolin functions as a metastasis suppressor in B16-BL6 mouse melanoma cells and requirement of the carboxyl-terminus for its effect. Int J Cancer 93:773–780PubMed Fujita H, Okada F, Hamada J, Hosokawa M, Moriuchi T, Koya RC, Kuzumaki N (2001) Gelsolin functions as a metastasis suppressor in B16-BL6 mouse melanoma cells and requirement of the carboxyl-terminus for its effect. Int J Cancer 93:773–780PubMed
62.
Zurück zum Zitat Yuan X, Yu L, Li J, Xie G, Rong T, Zhang L, Chen J, Meng Q, Irving AT, Wang D, Williams ED, Liu JP, Sadler AJ, Williams BR, Shen L, Xu D (2013) ATF3 suppresses metastasis of bladder cancer by regulating gelsolin-mediated remodeling of the actin cytoskeleton. Cancer Res 73:3625–3637PubMed Yuan X, Yu L, Li J, Xie G, Rong T, Zhang L, Chen J, Meng Q, Irving AT, Wang D, Williams ED, Liu JP, Sadler AJ, Williams BR, Shen L, Xu D (2013) ATF3 suppresses metastasis of bladder cancer by regulating gelsolin-mediated remodeling of the actin cytoskeleton. Cancer Res 73:3625–3637PubMed
63.
Zurück zum Zitat Marino N, Marshall JC, Collins JW, Zhou M, Qian Y, Veenstra T, Steeg PS (2013) Nm23-h1 binds to gelsolin and inactivates its actin-severing capacity to promote tumor cell motility and metastasis. Cancer Res 73:5949–5962PubMed Marino N, Marshall JC, Collins JW, Zhou M, Qian Y, Veenstra T, Steeg PS (2013) Nm23-h1 binds to gelsolin and inactivates its actin-severing capacity to promote tumor cell motility and metastasis. Cancer Res 73:5949–5962PubMed
64.
Zurück zum Zitat Iorns E, Ward TM, Dean S, Jegg A, Thomas D, Murugaesu N, Sims D, Mitsopoulos C, Fenwick K, Kozarewa I, Naceur-Lombarelli C, Zvelebil M, Isacke CM, Lord CJ, Ashworth A, Hnatyszyn HJ, Pegram M, Lippman M (2012) Whole genome in vivo RNAi screening identifies the leukemia inhibitory factor receptor as a novel breast tumor suppressor. Breast Cancer Res Treat 135:79–91PubMed Iorns E, Ward TM, Dean S, Jegg A, Thomas D, Murugaesu N, Sims D, Mitsopoulos C, Fenwick K, Kozarewa I, Naceur-Lombarelli C, Zvelebil M, Isacke CM, Lord CJ, Ashworth A, Hnatyszyn HJ, Pegram M, Lippman M (2012) Whole genome in vivo RNAi screening identifies the leukemia inhibitory factor receptor as a novel breast tumor suppressor. Breast Cancer Res Treat 135:79–91PubMed
65.
Zurück zum Zitat Chen D, Sun Y, Wei Y, Zhang P, Rezaeian AH, Teruya-Feldstein J, Gupta S, Liang H, Lin HK, Hung MC, Ma L (2012) LIFR is a breast cancer metastasis suppressor upstream of the Hippo-YAP pathway and a prognostic marker. Nature Med 18:1511–1517PubMedCentralPubMed Chen D, Sun Y, Wei Y, Zhang P, Rezaeian AH, Teruya-Feldstein J, Gupta S, Liang H, Lin HK, Hung MC, Ma L (2012) LIFR is a breast cancer metastasis suppressor upstream of the Hippo-YAP pathway and a prognostic marker. Nature Med 18:1511–1517PubMedCentralPubMed
66.
Zurück zum Zitat Lamar JM, Stern P, Liu H, Schindler JW, Jiang ZG, Hynes RO (2012) The Hippo pathway target, YAP, promotes metastasis through its TEAD-interaction domain. Proc Natl Acad Sci 109:E2441–E2450PubMedCentralPubMed Lamar JM, Stern P, Liu H, Schindler JW, Jiang ZG, Hynes RO (2012) The Hippo pathway target, YAP, promotes metastasis through its TEAD-interaction domain. Proc Natl Acad Sci 109:E2441–E2450PubMedCentralPubMed
67.
Zurück zum Zitat Wang Y, Zhang H, Chen YP, Sun YM, Yang F, Yu WH, Liang J, Sun LY, Yang XH, Shi L, Li RF, Li YY, Zhang Y, Li Q, Yi X, Shang YF (2009) LSD1 is a subunit of the NuRD complex and targets the metastasis programs in breast cancer. Cell 138:660–672PubMed Wang Y, Zhang H, Chen YP, Sun YM, Yang F, Yu WH, Liang J, Sun LY, Yang XH, Shi L, Li RF, Li YY, Zhang Y, Li Q, Yi X, Shang YF (2009) LSD1 is a subunit of the NuRD complex and targets the metastasis programs in breast cancer. Cell 138:660–672PubMed
68.
Zurück zum Zitat Lin Y, Wu Y, Li J, Dong C, Ye X, Chi YI, Evers BM, Zhou BP (2010) The SNAG domain of Snail1 functions as a molecular hook for recruiting lysine-specific demethylase 1. EMBO J 29:1803–1816PubMedCentralPubMed Lin Y, Wu Y, Li J, Dong C, Ye X, Chi YI, Evers BM, Zhou BP (2010) The SNAG domain of Snail1 functions as a molecular hook for recruiting lysine-specific demethylase 1. EMBO J 29:1803–1816PubMedCentralPubMed
69.
Zurück zum Zitat Ding J, Zhang ZM, Xia Y, Liao GQ, Pan Y, Liu S, Zhang Y, Yan ZS (2013) LSD1-mediated epigenetic modification contributes to proliferation and metastasis of colon cancer. Br J Cancer 109:994–1003PubMedCentralPubMed Ding J, Zhang ZM, Xia Y, Liao GQ, Pan Y, Liu S, Zhang Y, Yan ZS (2013) LSD1-mediated epigenetic modification contributes to proliferation and metastasis of colon cancer. Br J Cancer 109:994–1003PubMedCentralPubMed
70.
Zurück zum Zitat Yu Y, Wang B, Zhang K, Lei Z, Guo Y, Xiao H, Wang J, Fan L, Lan C, Wei Y, Ma Q, Lin L, Mao C, Yang X, Chen X, Li Y, Bai Y, Chen D (2013) High expression of lysine-specific demethylase 1 correlates with poor prognosis of patients with esophageal squamous cell carcinoma. Biochem Biophys Res Commun 437:192–198PubMed Yu Y, Wang B, Zhang K, Lei Z, Guo Y, Xiao H, Wang J, Fan L, Lan C, Wei Y, Ma Q, Lin L, Mao C, Yang X, Chen X, Li Y, Bai Y, Chen D (2013) High expression of lysine-specific demethylase 1 correlates with poor prognosis of patients with esophageal squamous cell carcinoma. Biochem Biophys Res Commun 437:192–198PubMed
71.
Zurück zum Zitat Meng F, Sun G, Zhong M, Yu Y, Brewer MA (2013) Inhibition of DNA methyltransferases, histone deacetylases and lysine-specific demethylase-1 suppresses the tumorigenicity of the ovarian cancer ascites cell line SKOV3. Int J Oncol 43:495–502PubMed Meng F, Sun G, Zhong M, Yu Y, Brewer MA (2013) Inhibition of DNA methyltransferases, histone deacetylases and lysine-specific demethylase-1 suppresses the tumorigenicity of the ovarian cancer ascites cell line SKOV3. Int J Oncol 43:495–502PubMed
72.
Zurück zum Zitat Agarwal N, Adhikari AS, Iyer SV, Hekmatdoost K, Welch DR, Iwakuma T (2013) MTBP suppresses cell migration and filopodia formation by inhibiting ACTN4. Oncogene 32:462–470PubMedCentralPubMed Agarwal N, Adhikari AS, Iyer SV, Hekmatdoost K, Welch DR, Iwakuma T (2013) MTBP suppresses cell migration and filopodia formation by inhibiting ACTN4. Oncogene 32:462–470PubMedCentralPubMed
73.
Zurück zum Zitat Agarwal N, Adhikari AS, Iyer SV, Hekmatdoost K, Welch DR, Iwakuma T (2012) MTBP suppresses cell migration and filopodia formation by inhibiting ACTN4. Oncogene 32:462–470PubMedCentralPubMed Agarwal N, Adhikari AS, Iyer SV, Hekmatdoost K, Welch DR, Iwakuma T (2012) MTBP suppresses cell migration and filopodia formation by inhibiting ACTN4. Oncogene 32:462–470PubMedCentralPubMed
74.
Zurück zum Zitat Iwakuma T, Tochigi Y, VanPelt CS, Caldwell LC, Terzian T, Parant JM, Chau GP, Koch JG, Eischen CM, Lozano G (2008) Mtbp haploinsufficiency in mice increases tumor metastasis. Oncogene 27:1813–1820PubMed Iwakuma T, Tochigi Y, VanPelt CS, Caldwell LC, Terzian T, Parant JM, Chau GP, Koch JG, Eischen CM, Lozano G (2008) Mtbp haploinsufficiency in mice increases tumor metastasis. Oncogene 27:1813–1820PubMed
75.
Zurück zum Zitat Singh LS, Berk M, Oates R, Zhao ZW, Tan HY, Jiang Y, Zhou A, Kirmani K, Steinmetz R, Lindner D, Xu Y (2007) Ovarian cancer G protein-coupled receptor 1, a new metastasis suppressor gene in prostate cancer. J Natl Cancer Inst 99:1313–1327PubMed Singh LS, Berk M, Oates R, Zhao ZW, Tan HY, Jiang Y, Zhou A, Kirmani K, Steinmetz R, Lindner D, Xu Y (2007) Ovarian cancer G protein-coupled receptor 1, a new metastasis suppressor gene in prostate cancer. J Natl Cancer Inst 99:1313–1327PubMed
76.
Zurück zum Zitat Seuwen K, Ludwig MG, Wolf RM (2006) Receptors for protons or lipid messengers or both? J Recept Signal Transduct Res 26:599–610PubMed Seuwen K, Ludwig MG, Wolf RM (2006) Receptors for protons or lipid messengers or both? J Recept Signal Transduct Res 26:599–610PubMed
77.
Zurück zum Zitat Radu CG, Nijagal A, McLaughlin J, Wang L, Witte ON (2005) Differential proton sensitivity of related G protein-coupled receptors T cell death-associated gene 8 and G2A expressed in immune cells. Proc Natl Acad Sci 102:1632–1637PubMedCentralPubMed Radu CG, Nijagal A, McLaughlin J, Wang L, Witte ON (2005) Differential proton sensitivity of related G protein-coupled receptors T cell death-associated gene 8 and G2A expressed in immune cells. Proc Natl Acad Sci 102:1632–1637PubMedCentralPubMed
78.
Zurück zum Zitat Li H, Wang D, Singh LS, Berk M, Tan H, Zhao Z, Steinmetz R, Kirmani K, Wei G, Xu Y (2009) Abnormalities in osteoclastogenesis and decreased tumorigenesis in mice deficient for ovarian cancer G protein-coupled receptor 1. PLoS One 4:e5705PubMedCentralPubMed Li H, Wang D, Singh LS, Berk M, Tan H, Zhao Z, Steinmetz R, Kirmani K, Wei G, Xu Y (2009) Abnormalities in osteoclastogenesis and decreased tumorigenesis in mice deficient for ovarian cancer G protein-coupled receptor 1. PLoS One 4:e5705PubMedCentralPubMed
79.
Zurück zum Zitat Wang J, Sun Y, Tomura H, Okajima F (2012) Ovarian cancer G-protein-coupled receptor 1 induces the expression of the pain mediator prostaglandin E2 in response to an acidic extracellular environment in human osteoblast-like cells. Int J Biochem Cell Biol 44:1937–1941PubMed Wang J, Sun Y, Tomura H, Okajima F (2012) Ovarian cancer G-protein-coupled receptor 1 induces the expression of the pain mediator prostaglandin E2 in response to an acidic extracellular environment in human osteoblast-like cells. Int J Biochem Cell Biol 44:1937–1941PubMed
80.
Zurück zum Zitat Lynch CC (2011) Matrix metalloproteinases as master regulators of the vicious cycle of bone metastasis. Bone 48:44–53PubMed Lynch CC (2011) Matrix metalloproteinases as master regulators of the vicious cycle of bone metastasis. Bone 48:44–53PubMed
81.
Zurück zum Zitat Mastro AM, Vogler EA (2009) A three-dimensional osteogenic tissue model for the study of metastatic tumor cell interactions with bone. Cancer Res 69:4097–4100PubMed Mastro AM, Vogler EA (2009) A three-dimensional osteogenic tissue model for the study of metastatic tumor cell interactions with bone. Cancer Res 69:4097–4100PubMed
82.
Zurück zum Zitat D’Ambrosio J, Fatatis A (2009) Osteoblasts modulate Ca2+ signaling in bone-metastatic prostate and breast cancer cells. Clin Exptl Metastasis 26:955–964 D’Ambrosio J, Fatatis A (2009) Osteoblasts modulate Ca2+ signaling in bone-metastatic prostate and breast cancer cells. Clin Exptl Metastasis 26:955–964
83.
Zurück zum Zitat Ma XR, Kundu N, Ioffe OB, Goloubeva O, Konger R, Baquet C, Gimotty P, Reader J, Fulton AM (2010) Prostaglandin E receptor EP1 suppresses breast cancer metastasis and is linked to survival differences and cancer disparities. Mol Cancer Res 8:1310–1318PubMedCentralPubMed Ma XR, Kundu N, Ioffe OB, Goloubeva O, Konger R, Baquet C, Gimotty P, Reader J, Fulton AM (2010) Prostaglandin E receptor EP1 suppresses breast cancer metastasis and is linked to survival differences and cancer disparities. Mol Cancer Res 8:1310–1318PubMedCentralPubMed
84.
Zurück zum Zitat Sinha P, Clements VK, Fulton AM, Ostrand-Rosenberg S (2007) Prostaglandin E2 promotes tumor progression by inducing myeloid-derived suppressor cells. Cancer Res 67:4507–4513PubMed Sinha P, Clements VK, Fulton AM, Ostrand-Rosenberg S (2007) Prostaglandin E2 promotes tumor progression by inducing myeloid-derived suppressor cells. Cancer Res 67:4507–4513PubMed
85.
Zurück zum Zitat Fulton AM (1987) Interaction of natural effector cells and prostaglandins in the control of metastasis. J Natl Cancer Inst 78:735–741PubMed Fulton AM (1987) Interaction of natural effector cells and prostaglandins in the control of metastasis. J Natl Cancer Inst 78:735–741PubMed
86.
Zurück zum Zitat Fu Z, Smith PC, Zhang L, Rubin MA, Dunn RL, Yao Z, Keller ET (2003) Effects of Raf kinase inhibitor protein expression on suppression of prostate cancer metastasis. J Natl Cancer Inst 95:878–889PubMed Fu Z, Smith PC, Zhang L, Rubin MA, Dunn RL, Yao Z, Keller ET (2003) Effects of Raf kinase inhibitor protein expression on suppression of prostate cancer metastasis. J Natl Cancer Inst 95:878–889PubMed
87.
Zurück zum Zitat Dangi-Garimella S, Yun J, Eves EM, Newman M, Erkeland SJ, Hammond SM, Minn AJ, Rosner MR (2009) Raf kinase inhibitory protein suppresses a metastasis signalling cascade involving LIN28 and let-7. EMBO J 28:347–358PubMedCentralPubMed Dangi-Garimella S, Yun J, Eves EM, Newman M, Erkeland SJ, Hammond SM, Minn AJ, Rosner MR (2009) Raf kinase inhibitory protein suppresses a metastasis signalling cascade involving LIN28 and let-7. EMBO J 28:347–358PubMedCentralPubMed
88.
Zurück zum Zitat Zeng LC, Imamoto A, Rosner MR (2008) Raf kinase inhibitory protein (RKIP): a physiological regulator and future therapeutic target. Expert Opin Ther Targets 12:1275–1287PubMed Zeng LC, Imamoto A, Rosner MR (2008) Raf kinase inhibitory protein (RKIP): a physiological regulator and future therapeutic target. Expert Opin Ther Targets 12:1275–1287PubMed
89.
Zurück zum Zitat Trakul N, Menard RE, Schade GR, Qian Z, Rosner MR (2005) Raf kinase inhibitory protein regulates Raf-1 but not B-Raf kinase activation. J Biol Chem 280:24931–24940PubMed Trakul N, Menard RE, Schade GR, Qian Z, Rosner MR (2005) Raf kinase inhibitory protein regulates Raf-1 but not B-Raf kinase activation. J Biol Chem 280:24931–24940PubMed
90.
Zurück zum Zitat Corbit KC, Trakul N, Eves EM, Diaz B, Marshall M, Rosner MR (2003) Activation of Raf-1 signaling by protein kinase C through a mechanism involving Raf kinase inhibitory protein. J Biol Chem 278:13061–13068PubMed Corbit KC, Trakul N, Eves EM, Diaz B, Marshall M, Rosner MR (2003) Activation of Raf-1 signaling by protein kinase C through a mechanism involving Raf kinase inhibitory protein. J Biol Chem 278:13061–13068PubMed
91.
Zurück zum Zitat Das SK, Bhutia SK, Sokhi UK, Azab B, Su ZZ, Boukerche H, Anwar T, Moen EL, Chatterjee D, Pellecchia M, Sarkar D, Fisher PB (2012) Raf kinase Inhibitor RKIP Inhibits MDA-9/Syntenin-mediated metastasis in melanoma. Cancer Res 72:6217–6226PubMedCentralPubMed Das SK, Bhutia SK, Sokhi UK, Azab B, Su ZZ, Boukerche H, Anwar T, Moen EL, Chatterjee D, Pellecchia M, Sarkar D, Fisher PB (2012) Raf kinase Inhibitor RKIP Inhibits MDA-9/Syntenin-mediated metastasis in melanoma. Cancer Res 72:6217–6226PubMedCentralPubMed
92.
Zurück zum Zitat Huang L, Dai T, Lin X, Zhao X, Chen X, Wang C, Li X, Shen H, Wang X (2012) MicroRNA-224 targets RKIP to control cell invasion and expression of metastasis genes in human breast cancer cells. Biochem Biophys Res Commun 425:127–133PubMed Huang L, Dai T, Lin X, Zhao X, Chen X, Wang C, Li X, Shen H, Wang X (2012) MicroRNA-224 targets RKIP to control cell invasion and expression of metastasis genes in human breast cancer cells. Biochem Biophys Res Commun 425:127–133PubMed
93.
Zurück zum Zitat Sun M, Gomes S, Chen P, Frankenberger CA, Sankarasharma D, Chung CH, Chada KK, and Rosner MR (2013) RKIP and HMGA2 regulate breast tumor survival and metastasis through lysyl oxidase and syndecan-2. Oncogene. doi:10.1038/onc.2013.328 Sun M, Gomes S, Chen P, Frankenberger CA, Sankarasharma D, Chung CH, Chada KK, and Rosner MR (2013) RKIP and HMGA2 regulate breast tumor survival and metastasis through lysyl oxidase and syndecan-2. Oncogene. doi:10.​1038/​onc.​2013.​328
94.
Zurück zum Zitat Chatterjee D, Bai Y, Wang Z, Beach S, Mott S, Roy R, Braastad C, Sun Y, Mukhopadhyay A, Aggarwal BB, Darnowski J, Pantazis P, Wyche J, Fu Z, Kitagwa Y, Keller ET, Sedivy JM, Yeung KC (2004) RKIP sensitizes prostate and breast cancer cells to drug-induced apoptosis. J Biol Chem 279:17515–17523PubMed Chatterjee D, Bai Y, Wang Z, Beach S, Mott S, Roy R, Braastad C, Sun Y, Mukhopadhyay A, Aggarwal BB, Darnowski J, Pantazis P, Wyche J, Fu Z, Kitagwa Y, Keller ET, Sedivy JM, Yeung KC (2004) RKIP sensitizes prostate and breast cancer cells to drug-induced apoptosis. J Biol Chem 279:17515–17523PubMed
95.
Zurück zum Zitat Beach S, Tang H, Park S, Dhillon AS, Keller ET, Kolch W, Yeung KC (2008) Snail is a repressor of RKIP transcription in metastatic prostate cancer cells. Oncogene 27:2243–2248PubMedCentralPubMed Beach S, Tang H, Park S, Dhillon AS, Keller ET, Kolch W, Yeung KC (2008) Snail is a repressor of RKIP transcription in metastatic prostate cancer cells. Oncogene 27:2243–2248PubMedCentralPubMed
96.
Zurück zum Zitat Ren G, Baritaki S, Marathe H, Feng J, Park S, Beach S, Bazeley PS, Beshir AB, Fenteany G, Mehra R, Daignault S, Al-Mulla F, Keller E, Bonavida B, de la Serna I, Yeung KC (2012) Polycomb protein EZH2 regulates tumor invasion via the transcriptional repression of the metastasis suppressor RKIP in breast and prostate cancer. Cancer Res 72:3091–3104PubMed Ren G, Baritaki S, Marathe H, Feng J, Park S, Beach S, Bazeley PS, Beshir AB, Fenteany G, Mehra R, Daignault S, Al-Mulla F, Keller E, Bonavida B, de la Serna I, Yeung KC (2012) Polycomb protein EZH2 regulates tumor invasion via the transcriptional repression of the metastasis suppressor RKIP in breast and prostate cancer. Cancer Res 72:3091–3104PubMed
97.
Zurück zum Zitat Gelman IH (2012) Suppression of tumor and metastasis progression through the scaffolding functions of SSeCKS/Gravin/AKAP12. Cancer Metastasis Rev 31:493–500PubMedCentralPubMed Gelman IH (2012) Suppression of tumor and metastasis progression through the scaffolding functions of SSeCKS/Gravin/AKAP12. Cancer Metastasis Rev 31:493–500PubMedCentralPubMed
98.
Zurück zum Zitat Su B, Bu Y, Engelberg D, Gelman IH (2010) SSeCKS/Gravin/AKAP12 inhibits cancer cell invasiveness and chemotaxis by suppressing a protein kinase C- Raf/MEK/ERK pathway. J Biol Chem 285:4578–4586PubMedCentralPubMed Su B, Bu Y, Engelberg D, Gelman IH (2010) SSeCKS/Gravin/AKAP12 inhibits cancer cell invasiveness and chemotaxis by suppressing a protein kinase C- Raf/MEK/ERK pathway. J Biol Chem 285:4578–4586PubMedCentralPubMed
99.
Zurück zum Zitat Gelman IH, Gao LQ (2006) SSeCKS/Gravin/AKAP12 metastasis suppressor inhibits podosome formation via RhoA- and Cdc42-dependent pathways. Mol Cancer Res 4:151–158PubMed Gelman IH, Gao LQ (2006) SSeCKS/Gravin/AKAP12 metastasis suppressor inhibits podosome formation via RhoA- and Cdc42-dependent pathways. Mol Cancer Res 4:151–158PubMed
100.
Zurück zum Zitat Su B, Zheng Q, Vaughan MM, Bu Y, Gelman IH (2006) SSeCKS metastasis-suppressing activity in MatLyLu prostate cancer cells correlates with vascular endothelial growth factor inhibition. Cancer Res 66:5599–5607PubMed Su B, Zheng Q, Vaughan MM, Bu Y, Gelman IH (2006) SSeCKS metastasis-suppressing activity in MatLyLu prostate cancer cells correlates with vascular endothelial growth factor inhibition. Cancer Res 66:5599–5607PubMed
101.
Zurück zum Zitat Lee SW, Kim WJ, Choi YK, Song HS, Son MJ, Gelman IH, Kim YJ, Kim KW (2003) SSeCKS regulates angiogenesis and tight junction formation in blood–brain barrier. Nature Med 9:900–906PubMed Lee SW, Kim WJ, Choi YK, Song HS, Son MJ, Gelman IH, Kim YJ, Kim KW (2003) SSeCKS regulates angiogenesis and tight junction formation in blood–brain barrier. Nature Med 9:900–906PubMed
102.
Zurück zum Zitat Akakura S, Gelman IH (2012) Pivotal role of AKAP12 in the regulation of cellular adhesion dynamics: control of cytoskeletal architecture, cell migration, and mitogenic signaling. J Signal Transduct 2012:529179PubMedCentralPubMed Akakura S, Gelman IH (2012) Pivotal role of AKAP12 in the regulation of cellular adhesion dynamics: control of cytoskeletal architecture, cell migration, and mitogenic signaling. J Signal Transduct 2012:529179PubMedCentralPubMed
103.
Zurück zum Zitat Parker BS, Ciocca DR, Bidwell BN, Gago FE, Fanelli MA, George J, Slavin JL, Moller A, Steel R, Pouliot N, Eckhardt B, Henderson MA, Anderson RL (2008) Primary tumour expression of the cysteine cathepsin inhibitor Stefin A inhibits distant metastasis in breast cancer. J Pathol 214:337–346PubMed Parker BS, Ciocca DR, Bidwell BN, Gago FE, Fanelli MA, George J, Slavin JL, Moller A, Steel R, Pouliot N, Eckhardt B, Henderson MA, Anderson RL (2008) Primary tumour expression of the cysteine cathepsin inhibitor Stefin A inhibits distant metastasis in breast cancer. J Pathol 214:337–346PubMed
104.
Zurück zum Zitat Li W, Ding F, Zhang L, Liu Z, Wu Y, Luo A, Wu M, Wang M, Zhan Q, Liu Z (2005) Overexpression of stefin A in human esophageal squamous cell carcinoma cells inhibits tumor cell growth, angiogenesis, invasion, and metastasis. Clin Cancer Res 11:8753–8762PubMed Li W, Ding F, Zhang L, Liu Z, Wu Y, Luo A, Wu M, Wang M, Zhan Q, Liu Z (2005) Overexpression of stefin A in human esophageal squamous cell carcinoma cells inhibits tumor cell growth, angiogenesis, invasion, and metastasis. Clin Cancer Res 11:8753–8762PubMed
105.
Zurück zum Zitat Mohamed MM, Sloane BF (2006) Cysteine cathepsins: multifunctional enzymes in cancer. Nature Rev Cancer 6:764–775 Mohamed MM, Sloane BF (2006) Cysteine cathepsins: multifunctional enzymes in cancer. Nature Rev Cancer 6:764–775
106.
Zurück zum Zitat Hugo H, Ackland ML, Blick T, Lawrence MG, Clements JA, Williams ED, Thompson EW (2007) Epithelial-mesenchymal and mesenchymal-epithelial transitions in carcinoma progression. J Cell Physiol 213:374–383PubMed Hugo H, Ackland ML, Blick T, Lawrence MG, Clements JA, Williams ED, Thompson EW (2007) Epithelial-mesenchymal and mesenchymal-epithelial transitions in carcinoma progression. J Cell Physiol 213:374–383PubMed
107.
Zurück zum Zitat Chaffer CL, Brennan JP, Slavin JL, Blick T, Thompson EW, Williams ED (2006) Mesenchymal-to-epithelial transition facilitates bladder cancer metastasis: role of fibroblast growth factor receptor-2. Cancer Res 66:11271–11278PubMed Chaffer CL, Brennan JP, Slavin JL, Blick T, Thompson EW, Williams ED (2006) Mesenchymal-to-epithelial transition facilitates bladder cancer metastasis: role of fibroblast growth factor receptor-2. Cancer Res 66:11271–11278PubMed
108.
Zurück zum Zitat Gildea JJ, Seraj MJ, Oxford G, Harding MA, Hampton GM, Moskaluk CA, Frierson HF, Conaway MR, Theodorescu D (2002) RhoGD12 is an invasion and metastasis suppressor gene in human cancer. Cancer Res 62:6418–6423PubMed Gildea JJ, Seraj MJ, Oxford G, Harding MA, Hampton GM, Moskaluk CA, Frierson HF, Conaway MR, Theodorescu D (2002) RhoGD12 is an invasion and metastasis suppressor gene in human cancer. Cancer Res 62:6418–6423PubMed
109.
Zurück zum Zitat Wu YM, Moissogiu K, Wang H, Wang XJ, Frierson HF, Schwartz MA, Theodorescu D (2009) Src phosphorylation of RhoGDI2 regulates its metastasis suppressor function. Proc Natl Acad Sci 106:5807–5812PubMedCentralPubMed Wu YM, Moissogiu K, Wang H, Wang XJ, Frierson HF, Schwartz MA, Theodorescu D (2009) Src phosphorylation of RhoGDI2 regulates its metastasis suppressor function. Proc Natl Acad Sci 106:5807–5812PubMedCentralPubMed
110.
Zurück zum Zitat Said N, Frierson HF, Sanchez-Carbayo M, Brekken RA, Theodorescu D (2013) Loss of SPARC in bladder cancer enhances carcinogenesis and progression. J Clin Invest 123:751–766PubMedCentralPubMed Said N, Frierson HF, Sanchez-Carbayo M, Brekken RA, Theodorescu D (2013) Loss of SPARC in bladder cancer enhances carcinogenesis and progression. J Clin Invest 123:751–766PubMedCentralPubMed
111.
Zurück zum Zitat Said N, Theodorescu D (2012) RhoGDI2 suppresses bladder cancer metastasis via reduction of inflammation in the tumor microenvironment. Oncoimmunology 1:1175–1177PubMedCentralPubMed Said N, Theodorescu D (2012) RhoGDI2 suppresses bladder cancer metastasis via reduction of inflammation in the tumor microenvironment. Oncoimmunology 1:1175–1177PubMedCentralPubMed
112.
Zurück zum Zitat Said N, Sanchez-Carbayo M, Smith SC, Theodorescu D (2012) RhoGDI2 suppresses lung metastasis in mice by reducing tumor versican expression and macrophage infiltration. J Clin Invest 122:1503–1518PubMedCentralPubMed Said N, Sanchez-Carbayo M, Smith SC, Theodorescu D (2012) RhoGDI2 suppresses lung metastasis in mice by reducing tumor versican expression and macrophage infiltration. J Clin Invest 122:1503–1518PubMedCentralPubMed
113.
Zurück zum Zitat Harding MA, Theodorescu D (2010) RhoGDI signaling provides targets for cancer therapy. Eur J Cancer 46:1252–1259PubMed Harding MA, Theodorescu D (2010) RhoGDI signaling provides targets for cancer therapy. Eur J Cancer 46:1252–1259PubMed
114.
Zurück zum Zitat Titus B, Frierson HF, Conaway M, Ching K, Guise T, Chirgwin J, Hampton G, Theodorescu D (2005) Endothelin axis is a target of the lung metastasis suppressor gene RhoGD12. Cancer Res 65:7320–7327PubMed Titus B, Frierson HF, Conaway M, Ching K, Guise T, Chirgwin J, Hampton G, Theodorescu D (2005) Endothelin axis is a target of the lung metastasis suppressor gene RhoGD12. Cancer Res 65:7320–7327PubMed
115.
Zurück zum Zitat Gautam A, Li ZR, Bepler G (2003) RRM1-induced metastasis suppression through PTEN-regulated pathways. Oncogene 22:2135–2142PubMed Gautam A, Li ZR, Bepler G (2003) RRM1-induced metastasis suppression through PTEN-regulated pathways. Oncogene 22:2135–2142PubMed
116.
Zurück zum Zitat Bepler G, O’Briant KC, Kim YC, Schreiber G, Pitterle DM (1999) A 1.4-Mb high-resolution physical map and contig of chromosome segment 11p15.5 and genes in the LOH11A metastasis suppressor region. Genomics 55:164–175PubMed Bepler G, O’Briant KC, Kim YC, Schreiber G, Pitterle DM (1999) A 1.4-Mb high-resolution physical map and contig of chromosome segment 11p15.5 and genes in the LOH11A metastasis suppressor region. Genomics 55:164–175PubMed
117.
Zurück zum Zitat Gautam A, Bepler G (2006) Suppression of lung tumor formation by the regulatory subunit of ribonucleotide reductase. Cancer Res 66:6497–6502PubMed Gautam A, Bepler G (2006) Suppression of lung tumor formation by the regulatory subunit of ribonucleotide reductase. Cancer Res 66:6497–6502PubMed
118.
Zurück zum Zitat Bepler G, Zheng Z, Gautam A, Sharma S, Cantor A, Sharma A, Cress WD, Kim YC, Rosell R, McBride C, Robinson L, Sommers E, Haura E (2005) Ribonucleotide reductase M1 gene promoter activity, polymorphisms, population frequencies, and clinical relevance. Lung Cancer 47:183–192PubMed Bepler G, Zheng Z, Gautam A, Sharma S, Cantor A, Sharma A, Cress WD, Kim YC, Rosell R, McBride C, Robinson L, Sommers E, Haura E (2005) Ribonucleotide reductase M1 gene promoter activity, polymorphisms, population frequencies, and clinical relevance. Lung Cancer 47:183–192PubMed
119.
Zurück zum Zitat Shu HB, Halpin DR, Goeddel DV (1997) Casper is a FADD- and caspase-related inducer of apoptosis. Immunity 6:751–763PubMed Shu HB, Halpin DR, Goeddel DV (1997) Casper is a FADD- and caspase-related inducer of apoptosis. Immunity 6:751–763PubMed
120.
Zurück zum Zitat Zuzak TJ, Steinhoff DF, Sutton LN, Phillips PC, Eggert A, Grotzer MA (2002) Loss of caspase-8 mRNA expression is common in childhood primitive neuroectodermal brain tumour/medulloblastoma. Eur J Cancer 38:83–91PubMed Zuzak TJ, Steinhoff DF, Sutton LN, Phillips PC, Eggert A, Grotzer MA (2002) Loss of caspase-8 mRNA expression is common in childhood primitive neuroectodermal brain tumour/medulloblastoma. Eur J Cancer 38:83–91PubMed
121.
Zurück zum Zitat Stupack DG, Puente XS, Boutsaboualoy S, Storgard CM, Cheresh DA (2001) Apoptosis of adherent cells by recruitment of caspase-8 to unligated integrins. J Cell Biol 155:459–470PubMedCentralPubMed Stupack DG, Puente XS, Boutsaboualoy S, Storgard CM, Cheresh DA (2001) Apoptosis of adherent cells by recruitment of caspase-8 to unligated integrins. J Cell Biol 155:459–470PubMedCentralPubMed
122.
Zurück zum Zitat Eliceiri BP, Klemke R, Stromblad S, Cheresh DA (1998) Integrin alphavbeta3 requirement for sustained mitogen-activated protein kinase activity during angiogenesis. J Cell Biol 140:1255–1263PubMedCentralPubMed Eliceiri BP, Klemke R, Stromblad S, Cheresh DA (1998) Integrin alphavbeta3 requirement for sustained mitogen-activated protein kinase activity during angiogenesis. J Cell Biol 140:1255–1263PubMedCentralPubMed
123.
Zurück zum Zitat Cheresh DA, Stupack DG (2002) Integrin-mediated death: an explanation of the integrin-knockout phenotype? Nature Med 8:193–194PubMed Cheresh DA, Stupack DG (2002) Integrin-mediated death: an explanation of the integrin-knockout phenotype? Nature Med 8:193–194PubMed
124.
Zurück zum Zitat Lahti JM, Teitz T, Stupack DG (2006) Does integrin-mediated cell death confer tissue tropism in metastasis? Cancer Res 66:5981–5984PubMed Lahti JM, Teitz T, Stupack DG (2006) Does integrin-mediated cell death confer tissue tropism in metastasis? Cancer Res 66:5981–5984PubMed
125.
Zurück zum Zitat Stupack DG, Cho SY, Klemke RL (2000) Molecular signaling mechanisms of cell migration and invasion. Immunol Res 21:83–88PubMed Stupack DG, Cho SY, Klemke RL (2000) Molecular signaling mechanisms of cell migration and invasion. Immunol Res 21:83–88PubMed
126.
Zurück zum Zitat Stupack DG, Puente XS, Boutsaboualoy S, Storgard CM, Cheresh DA (2001) Apoptosis of adherent cells by recruitment of caspase-8 to unligated integrins. J Cell Biol 155:459–470PubMedCentralPubMed Stupack DG, Puente XS, Boutsaboualoy S, Storgard CM, Cheresh DA (2001) Apoptosis of adherent cells by recruitment of caspase-8 to unligated integrins. J Cell Biol 155:459–470PubMedCentralPubMed
127.
Zurück zum Zitat Stupack DG, Teitz T, Potter MD, Mikolon D, Houghton PJ, Kidd VJ, Lahti JM, Cheresh DA (2006) Potentiation of neuroblastoma metastasis by loss of caspase-8. Nature 439:95–99PubMed Stupack DG, Teitz T, Potter MD, Mikolon D, Houghton PJ, Kidd VJ, Lahti JM, Cheresh DA (2006) Potentiation of neuroblastoma metastasis by loss of caspase-8. Nature 439:95–99PubMed
128.
Zurück zum Zitat Del Sal G, Ruaro ME, Philipson L, Schneider C (1992) The growth arrest-specific gene, gas1, is involved in growth suppression. Cell 70:595–607PubMed Del Sal G, Ruaro ME, Philipson L, Schneider C (1992) The growth arrest-specific gene, gas1, is involved in growth suppression. Cell 70:595–607PubMed
129.
Zurück zum Zitat Stebel M, Vatta P, Ruaro ME, Del SG, Parton RG, Schneider C (2000) The growth suppressing gas1 product is a GPI-linked protein. FEBS Lett 481:152–158PubMed Stebel M, Vatta P, Ruaro ME, Del SG, Parton RG, Schneider C (2000) The growth suppressing gas1 product is a GPI-linked protein. FEBS Lett 481:152–158PubMed
130.
Zurück zum Zitat Gobeil S, Zhu XC, Doillon CJ, Green MR (2008) A genome-wide shRNA screen identifies GAS1 as a novel melanoma metastasis suppressor gene. Genes Dev 22:2932–2940PubMedCentralPubMed Gobeil S, Zhu XC, Doillon CJ, Green MR (2008) A genome-wide shRNA screen identifies GAS1 as a novel melanoma metastasis suppressor gene. Genes Dev 22:2932–2940PubMedCentralPubMed
131.
Zurück zum Zitat Mellstrom B, Cena V, Lamas M, Perales C, Gonzalez C, Naranjo JR (2002) Gas1 is induced during and participates in excitotoxic neuronal death. Mol Cell Neurosci 19:417–429PubMed Mellstrom B, Cena V, Lamas M, Perales C, Gonzalez C, Naranjo JR (2002) Gas1 is induced during and participates in excitotoxic neuronal death. Mol Cell Neurosci 19:417–429PubMed
132.
Zurück zum Zitat Lee CS, Buttitta L, Fan CM (2001) Evidence that the WNT-inducible growth arrest-specific gene 1 encodes an antagonist of sonic hedgehog signaling in the somite. Proc Natl Acad Sci 98:11347–11352PubMedCentralPubMed Lee CS, Buttitta L, Fan CM (2001) Evidence that the WNT-inducible growth arrest-specific gene 1 encodes an antagonist of sonic hedgehog signaling in the somite. Proc Natl Acad Sci 98:11347–11352PubMedCentralPubMed
133.
Zurück zum Zitat Dong JT, Lamb PW, Rinker-Schaeffer CW, Vukanovic J, Ichikawa T, Isaacs JT, Barrett JC (1995) KAI1, a metastasis suppressor gene for prostate cancer on human chromosome 11p11.2. Science 268:884–886PubMed Dong JT, Lamb PW, Rinker-Schaeffer CW, Vukanovic J, Ichikawa T, Isaacs JT, Barrett JC (1995) KAI1, a metastasis suppressor gene for prostate cancer on human chromosome 11p11.2. Science 268:884–886PubMed
134.
Zurück zum Zitat Bandyopadhyay S, Zhan R, Chaudhuri A, Watabe M, Pai SK, Hirota S, Hosobe S, Tsukada T, Miura K, Takano Y, Saito K, Pauza ME, Hayashi S, Wang Y, Mohinta S, Mashimo T, Iiizumi M, Furuta E, Watabe K (2006) Interaction of KAI1 on tumor cells with DARC on vascular endothelium leads to metastasis suppression. Nat Med 12:933–938PubMed Bandyopadhyay S, Zhan R, Chaudhuri A, Watabe M, Pai SK, Hirota S, Hosobe S, Tsukada T, Miura K, Takano Y, Saito K, Pauza ME, Hayashi S, Wang Y, Mohinta S, Mashimo T, Iiizumi M, Furuta E, Watabe K (2006) Interaction of KAI1 on tumor cells with DARC on vascular endothelium leads to metastasis suppression. Nat Med 12:933–938PubMed
135.
Zurück zum Zitat Chairoungdua A, Smith DL, Pochard P, Hull M, Caplan MJ (2010) Exosome release of beta-catenin: a novel mechanism that antagonizes Wnt signaling. J Cell Biol 190:1079–1091PubMedCentralPubMed Chairoungdua A, Smith DL, Pochard P, Hull M, Caplan MJ (2010) Exosome release of beta-catenin: a novel mechanism that antagonizes Wnt signaling. J Cell Biol 190:1079–1091PubMedCentralPubMed
136.
Zurück zum Zitat Suzuki HI, Miyazono K (2011) Emerging complexity of microRNA generation cascades. J Biochem (Tokyo) 149:15–25 Suzuki HI, Miyazono K (2011) Emerging complexity of microRNA generation cascades. J Biochem (Tokyo) 149:15–25
137.
Zurück zum Zitat Hurst DR, Edmonds MD, Welch DR (2009) Metastamir: the field of metastasis-regulatory microRNA is spreading. Cancer Res 69:7495–7498PubMedCentralPubMed Hurst DR, Edmonds MD, Welch DR (2009) Metastamir: the field of metastasis-regulatory microRNA is spreading. Cancer Res 69:7495–7498PubMedCentralPubMed
138.
Zurück zum Zitat Azmi AS, Bao B, Sarkar FH (2013) Exosomes in cancer development, metastasis, and drug resistance: a comprehensive review. Cancer Metastasis Rev 32:623–642PubMed Azmi AS, Bao B, Sarkar FH (2013) Exosomes in cancer development, metastasis, and drug resistance: a comprehensive review. Cancer Metastasis Rev 32:623–642PubMed
139.
Zurück zum Zitat Baer C, Claus R, Plass C (2013) Genome-wide epigenetic regulation of miRNAs in cancer. Cancer Res 73:473–477PubMed Baer C, Claus R, Plass C (2013) Genome-wide epigenetic regulation of miRNAs in cancer. Cancer Res 73:473–477PubMed
140.
141.
Zurück zum Zitat Kogo R, Shimamura T, Mimori K, Kawahara K, Imoto S, Sudo T, Tanaka F, Shibata K, Suzuki A, Komune S, Miyano S, Mori M (2011) Long noncoding RNA HOTAIR regulates polycomb-dependent chromatin modification and is associated with poor prognosis in colorectal cancers. Cancer Res 71:6320–6326PubMed Kogo R, Shimamura T, Mimori K, Kawahara K, Imoto S, Sudo T, Tanaka F, Shibata K, Suzuki A, Komune S, Miyano S, Mori M (2011) Long noncoding RNA HOTAIR regulates polycomb-dependent chromatin modification and is associated with poor prognosis in colorectal cancers. Cancer Res 71:6320–6326PubMed
142.
Zurück zum Zitat Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, Tsai MC, Hung T, Argani P, Rinn JL, Wang Y, Brzoska P, Kong B, Li R, West RB, Van de Vijver MJ, Sukumar S, Chang HY (2010) Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464:1071–1076PubMedCentralPubMed Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, Tsai MC, Hung T, Argani P, Rinn JL, Wang Y, Brzoska P, Kong B, Li R, West RB, Van de Vijver MJ, Sukumar S, Chang HY (2010) Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464:1071–1076PubMedCentralPubMed
143.
Zurück zum Zitat Niinuma T, Suzuki H, Nojima M, Nosho K, Yamamoto H, Takamaru H, Yamamoto E, Maruyama R, Nobuoka T, Miyazaki Y, Nishida T, Bamba T, Kanda T, Ajioka Y, Taguchi T, Okahara S, Takahashi H, Nishida Y, Hosokawa M, Hasegawa T, Tokino T, Hirata K, Imai K, Toyota M, Shinomura Y (2012) Upregulation of miR-196a and HOTAIR drive malignant character in gastrointestinal stromal tumors. Cancer Res 72:1126–1136PubMed Niinuma T, Suzuki H, Nojima M, Nosho K, Yamamoto H, Takamaru H, Yamamoto E, Maruyama R, Nobuoka T, Miyazaki Y, Nishida T, Bamba T, Kanda T, Ajioka Y, Taguchi T, Okahara S, Takahashi H, Nishida Y, Hosokawa M, Hasegawa T, Tokino T, Hirata K, Imai K, Toyota M, Shinomura Y (2012) Upregulation of miR-196a and HOTAIR drive malignant character in gastrointestinal stromal tumors. Cancer Res 72:1126–1136PubMed
144.
Zurück zum Zitat Crea F, Clermont PL, Parolia A, Wang Y, and Helgason CD (2013) The non-coding transcriptome as a dynamic regulator of cancer metastasis. Cancer Metastasis. Rev. doi:10.1007/s10555-013-9455-3 Crea F, Clermont PL, Parolia A, Wang Y, and Helgason CD (2013) The non-coding transcriptome as a dynamic regulator of cancer metastasis. Cancer Metastasis. Rev. doi:10.​1007/​s10555-013-9455-3
145.
Zurück zum Zitat Beck BH, Welch DR (2010) The KISS1 metastasis suppressor: a good night kiss for disseminated cancer cells. Eur J Cancer 46:1283–1289PubMedCentralPubMed Beck BH, Welch DR (2010) The KISS1 metastasis suppressor: a good night kiss for disseminated cancer cells. Eur J Cancer 46:1283–1289PubMedCentralPubMed
146.
Zurück zum Zitat Lee JH, Miele ME, Hicks DJ, Phillips KK, Trent JM, Weissman BE, Welch DR (1996) KiSS-1, a novel human malignant melanoma metastasis-suppressor gene. J Natl Cancer Inst 88:1731–1737PubMed Lee JH, Miele ME, Hicks DJ, Phillips KK, Trent JM, Weissman BE, Welch DR (1996) KiSS-1, a novel human malignant melanoma metastasis-suppressor gene. J Natl Cancer Inst 88:1731–1737PubMed
147.
Zurück zum Zitat Nash KT, Phadke PA, Navenot JM, Hurst DR, Accavitti-Loper MA, Sztul E, Vaidya KS, Frost AR, Kappes JC, Peiper SC, Welch DR (2007) Requirement of KISS1 secretion for multiple organ metastasis suppression and maintenance of tumor dormancy. J Natl Cancer Inst 99:309–321PubMedCentralPubMed Nash KT, Phadke PA, Navenot JM, Hurst DR, Accavitti-Loper MA, Sztul E, Vaidya KS, Frost AR, Kappes JC, Peiper SC, Welch DR (2007) Requirement of KISS1 secretion for multiple organ metastasis suppression and maintenance of tumor dormancy. J Natl Cancer Inst 99:309–321PubMedCentralPubMed
148.
Zurück zum Zitat Ohtaki T, Shintani Y, Honda S, Matsumoto H, Hori A, Kanehashi K, Terao Y, Kumano S, Takatsu Y, Masuda Y, Ishibashi Y, Watanabe T, Asada M, Yamada T, Suenaga M, Kitada C, Usuki S, Kurokawa T, Onda H, Nishimura O, Fujino M (2001) Metastasis suppressor gene KiSS-1 encodes peptide ligand of a G-protein-coupled receptor. Nature 411:613–617PubMed Ohtaki T, Shintani Y, Honda S, Matsumoto H, Hori A, Kanehashi K, Terao Y, Kumano S, Takatsu Y, Masuda Y, Ishibashi Y, Watanabe T, Asada M, Yamada T, Suenaga M, Kitada C, Usuki S, Kurokawa T, Onda H, Nishimura O, Fujino M (2001) Metastasis suppressor gene KiSS-1 encodes peptide ligand of a G-protein-coupled receptor. Nature 411:613–617PubMed
149.
Zurück zum Zitat Kotani M, Detheux M, Vandenbogaerde A, Communi D, Vanderwinden JM, Le PE, Brezillon S, Tyldesley R, Suarez-Huerta N, Vandeput F, Blanpain C, Schiffmann SN, Vassart G, Parmentier M (2001) The metastasis suppressor gene KiSS-1 encodes kisspeptins, the natural ligands of the orphan G protein-coupled receptor GPR54. J Biol Chem 276:34631–34636PubMed Kotani M, Detheux M, Vandenbogaerde A, Communi D, Vanderwinden JM, Le PE, Brezillon S, Tyldesley R, Suarez-Huerta N, Vandeput F, Blanpain C, Schiffmann SN, Vassart G, Parmentier M (2001) The metastasis suppressor gene KiSS-1 encodes kisspeptins, the natural ligands of the orphan G protein-coupled receptor GPR54. J Biol Chem 276:34631–34636PubMed
150.
Zurück zum Zitat Becker JA, Mirjolet JF, Bernard J, Burgeon E, Simons MJ, Vassart G, Parmentier M, Libert F (2005) Activation of GPR54 promotes cell cycle arrest and apoptosis of human tumor cells through a specific transcriptional program not shared by other Gq-coupled receptors. Biochem Biophys Res Commun 326:677–686PubMed Becker JA, Mirjolet JF, Bernard J, Burgeon E, Simons MJ, Vassart G, Parmentier M, Libert F (2005) Activation of GPR54 promotes cell cycle arrest and apoptosis of human tumor cells through a specific transcriptional program not shared by other Gq-coupled receptors. Biochem Biophys Res Commun 326:677–686PubMed
151.
Zurück zum Zitat Navarro VM, Tena-Sempere M (2012) Neuroendocrine control by kisspeptins: role in metabolic regulation of fertility. Nat Rev Endocrinol 8:40–53 Navarro VM, Tena-Sempere M (2012) Neuroendocrine control by kisspeptins: role in metabolic regulation of fertility. Nat Rev Endocrinol 8:40–53
152.
Zurück zum Zitat Liu W, Beck BH, Vaidya KS, Nash KT, Feeley KP, Ballinger SW, Pounds KM, Denning WL, Diers AR, Landar A, Dhar A, Iwakuma T, and Welch DR (2013) Metastasis suppressor KISS1 appears to reverse the Warburg effect by enhancing mitochondrial biogenesis. Cancer Res Liu W, Beck BH, Vaidya KS, Nash KT, Feeley KP, Ballinger SW, Pounds KM, Denning WL, Diers AR, Landar A, Dhar A, Iwakuma T, and Welch DR (2013) Metastasis suppressor KISS1 appears to reverse the Warburg effect by enhancing mitochondrial biogenesis. Cancer Res
153.
Zurück zum Zitat Sun J, Zhang D, Bae DH, Sahni S, Jansson P, Zheng Y, Zhao Q, Yue F, Zheng M, Kovacevic Z, Richardson DR (2013) Metastasis suppressor, NDRG1, mediates its activity through signaling pathways and molecular motors. Carcinogenesis 34:1943–1954PubMed Sun J, Zhang D, Bae DH, Sahni S, Jansson P, Zheng Y, Zhao Q, Yue F, Zheng M, Kovacevic Z, Richardson DR (2013) Metastasis suppressor, NDRG1, mediates its activity through signaling pathways and molecular motors. Carcinogenesis 34:1943–1954PubMed
154.
Zurück zum Zitat Liu W, Xing F, Iiizumi-Gairani M, Okuda H, Watabe M, Pai SK, Pandey PR, Hirota S, Kobayashi A, Mo YY, Fukuda K, Li Y, Watabe K (2012) N-myc downstream regulated gene 1 modulates Wnt-beta-catenin signalling and pleiotropically suppresses metastasis. EMBO Mol Med 4:93–108PubMedCentralPubMed Liu W, Xing F, Iiizumi-Gairani M, Okuda H, Watabe M, Pai SK, Pandey PR, Hirota S, Kobayashi A, Mo YY, Fukuda K, Li Y, Watabe K (2012) N-myc downstream regulated gene 1 modulates Wnt-beta-catenin signalling and pleiotropically suppresses metastasis. EMBO Mol Med 4:93–108PubMedCentralPubMed
155.
Zurück zum Zitat Steeg PS, Bevilacqua G, Pozzatti R, Liotta LA, Sobel ME (1988) Altered expression of NM23, a gene associated with low tumor metastatic potential, during adenovirus 2 Ela inhibition of experimental metastasis. Cancer Res 48:6550–6554PubMed Steeg PS, Bevilacqua G, Pozzatti R, Liotta LA, Sobel ME (1988) Altered expression of NM23, a gene associated with low tumor metastatic potential, during adenovirus 2 Ela inhibition of experimental metastasis. Cancer Res 48:6550–6554PubMed
156.
Zurück zum Zitat Hartsough MT, Steeg PS (2000) Nm23/nucleoside diphosphate kinase in human cancers. J Bioenerg Biomembr 32:301–308PubMed Hartsough MT, Steeg PS (2000) Nm23/nucleoside diphosphate kinase in human cancers. J Bioenerg Biomembr 32:301–308PubMed
157.
Zurück zum Zitat Kim HD, Youn B, Kim TS, Kim SH, Shin HS, Kim J (2009) Regulators affecting the metastasis suppressor activity of Nm23-H1. Mol Cell Biochem 329:167–173PubMed Kim HD, Youn B, Kim TS, Kim SH, Shin HS, Kim J (2009) Regulators affecting the metastasis suppressor activity of Nm23-H1. Mol Cell Biochem 329:167–173PubMed
158.
Zurück zum Zitat Marino N, Marshall JC, Steeg PS (2011) Protein-protein interactions: a mechanism regulating the anti-metastatic properties of Nm23-H1. Naunyn Schmiedebergs Arch Pharmacol 384:351–362PubMed Marino N, Marshall JC, Steeg PS (2011) Protein-protein interactions: a mechanism regulating the anti-metastatic properties of Nm23-H1. Naunyn Schmiedebergs Arch Pharmacol 384:351–362PubMed
159.
Zurück zum Zitat Taylor JL, Szmulewitz RZ, Lotan T, Hickson J, Griend DV, Yamada SD, Macleod K, Rinker-Schaeffer CW (2008) New paradigms for the function of JNKK1/MKK4 in controlling growth of disseminated cancer cells. Cancer Lett 272:12–22PubMed Taylor JL, Szmulewitz RZ, Lotan T, Hickson J, Griend DV, Yamada SD, Macleod K, Rinker-Schaeffer CW (2008) New paradigms for the function of JNKK1/MKK4 in controlling growth of disseminated cancer cells. Cancer Lett 272:12–22PubMed
160.
Zurück zum Zitat Aguirre-Ghiso JA, Estrada Y, Liu D, Ossowski L (2003) ERK(MAPK) activity as a determinant of tumor growth and dormancy; regulation by p38 (SAPK). Cancer Res 63:1684–1695PubMed Aguirre-Ghiso JA, Estrada Y, Liu D, Ossowski L (2003) ERK(MAPK) activity as a determinant of tumor growth and dormancy; regulation by p38 (SAPK). Cancer Res 63:1684–1695PubMed
161.
Zurück zum Zitat Krishnan V, Stadick N, Clark R, Bainer R, Veneris JT, Khan S, Drew A, Rinker-Schaeffer C (2012) Using MKK4’s metastasis suppressor function to identify and dissect cancer cell-microenvironment interactions during metastatic colonization. Cancer Metastasis Rev 31:605–613PubMed Krishnan V, Stadick N, Clark R, Bainer R, Veneris JT, Khan S, Drew A, Rinker-Schaeffer C (2012) Using MKK4’s metastasis suppressor function to identify and dissect cancer cell-microenvironment interactions during metastatic colonization. Cancer Metastasis Rev 31:605–613PubMed
162.
Zurück zum Zitat Huang MJ, Wang PN, Huang J, Zhang XW, Wang L, Liu HL, Wang JP (2013) [Expression and clinicopathological significance of serine-257/threonine-261 phosphorylated MKK4 in colorectal carcinoma]. Zhonghua Yi. Xue. Za Zhi 93:746–750 Huang MJ, Wang PN, Huang J, Zhang XW, Wang L, Liu HL, Wang JP (2013) [Expression and clinicopathological significance of serine-257/threonine-261 phosphorylated MKK4 in colorectal carcinoma]. Zhonghua Yi. Xue. Za Zhi 93:746–750
163.
Zurück zum Zitat Murakami Y, Nobukuni T, Tamura K, Maruyama T, Sekiya T, Arai Y, Gomyou H, Tanigami A, Ohki M, Cabin D, Frischmeyer P, Hunt P, Reeves RH (1998) Localization of tumor suppressor activity important in nonsmall cell lung carcinoma on chromosome 11q. Proc Natl Acad Sci U S A 95:8153–8158PubMedCentralPubMed Murakami Y, Nobukuni T, Tamura K, Maruyama T, Sekiya T, Arai Y, Gomyou H, Tanigami A, Ohki M, Cabin D, Frischmeyer P, Hunt P, Reeves RH (1998) Localization of tumor suppressor activity important in nonsmall cell lung carcinoma on chromosome 11q. Proc Natl Acad Sci U S A 95:8153–8158PubMedCentralPubMed
164.
Zurück zum Zitat Kuramochi M, Fukuhara H, Nobukuni T, Kanbe T, Maruyama T, Ghosh HP, Pletcher M, Isomura M, Onizuka M, Kitamura T, Sekiya T, Reeves RH, Murakami Y (2001) TSLC1 is a tumor-suppressor gene in human non-small-cell lung cancer. Nat Genet 27:427–430PubMed Kuramochi M, Fukuhara H, Nobukuni T, Kanbe T, Maruyama T, Ghosh HP, Pletcher M, Isomura M, Onizuka M, Kitamura T, Sekiya T, Reeves RH, Murakami Y (2001) TSLC1 is a tumor-suppressor gene in human non-small-cell lung cancer. Nat Genet 27:427–430PubMed
165.
Zurück zum Zitat Faraji F, Pang Y, Walker RC, Nieves BR, Yang L, Hunter KW (2012) Cadm1 is a metastasis susceptibility gene that suppresses metastasis by modifying tumor interaction with the cell-mediated immunity. PLoS Genet 8:e1002926PubMedCentralPubMed Faraji F, Pang Y, Walker RC, Nieves BR, Yang L, Hunter KW (2012) Cadm1 is a metastasis susceptibility gene that suppresses metastasis by modifying tumor interaction with the cell-mediated immunity. PLoS Genet 8:e1002926PubMedCentralPubMed
166.
Zurück zum Zitat Fukami T, Fukuhara H, Kuramochi M, Maruyama T, Isogai K, Sakamoto M, Takamoto S, Murakami Y (2003) Promoter methylation of the TSLC1 gene in advanced lung tumors and various cancer cell lines. Int J Cancer 107:53–59PubMed Fukami T, Fukuhara H, Kuramochi M, Maruyama T, Isogai K, Sakamoto M, Takamoto S, Murakami Y (2003) Promoter methylation of the TSLC1 gene in advanced lung tumors and various cancer cell lines. Int J Cancer 107:53–59PubMed
167.
Zurück zum Zitat Fukuhara H, Kuramochi M, Fukami T, Kasahara K, Furuhata M, Nobukuni T, Maruyama T, Isogai K, Sekiya T, Shuin T, Kitamura T, Reeves RH, Murakami Y (2002) Promoter methylation of TSLC1 and tumor suppression by its gene product in human prostate cancer. Jpn J Cancer Res 93:605–609PubMed Fukuhara H, Kuramochi M, Fukami T, Kasahara K, Furuhata M, Nobukuni T, Maruyama T, Isogai K, Sekiya T, Shuin T, Kitamura T, Reeves RH, Murakami Y (2002) Promoter methylation of TSLC1 and tumor suppression by its gene product in human prostate cancer. Jpn J Cancer Res 93:605–609PubMed
168.
Zurück zum Zitat Allinen M, Peri L, Kujala S, Lahti-Domenici J, Outila K, Karppinen SM, Launonen V, Winqvist R (2002) Analysis of 11q21-24 loss of heterozygosity candidate target genes in breast cancer: indications of TSLC1 promoter hypermethylation. Genes Chromosomes Cancer 34:384–389PubMed Allinen M, Peri L, Kujala S, Lahti-Domenici J, Outila K, Karppinen SM, Launonen V, Winqvist R (2002) Analysis of 11q21-24 loss of heterozygosity candidate target genes in breast cancer: indications of TSLC1 promoter hypermethylation. Genes Chromosomes Cancer 34:384–389PubMed
169.
Zurück zum Zitat Deuschle U, Schuler J, Schulz A, Schluter T, Kinzel O, Abel U, Kremoser C (2012) FXR controls the tumor suppressor NDRG2 and FXR agonists reduce liver tumor growth and metastasis in an orthotopic mouse xenograft model. PLoS One 7:e43044PubMedCentralPubMed Deuschle U, Schuler J, Schulz A, Schluter T, Kinzel O, Abel U, Kremoser C (2012) FXR controls the tumor suppressor NDRG2 and FXR agonists reduce liver tumor growth and metastasis in an orthotopic mouse xenograft model. PLoS One 7:e43044PubMedCentralPubMed
170.
Zurück zum Zitat Silva J, Dasgupta S, Wang G, Krishnamurthy K, Ritter E, Bieberich E (2006) Lipids isolated from bone induce the migration of human breast cancer cells. J Lipid Res 47:724–733PubMed Silva J, Dasgupta S, Wang G, Krishnamurthy K, Ritter E, Bieberich E (2006) Lipids isolated from bone induce the migration of human breast cancer cells. J Lipid Res 47:724–733PubMed
171.
Zurück zum Zitat Zhang Y, Edwards PA (2008) FXR signaling in metabolic disease. FEBS Lett 582:10–18PubMed Zhang Y, Edwards PA (2008) FXR signaling in metabolic disease. FEBS Lett 582:10–18PubMed
172.
Zurück zum Zitat Yang S, Lee KT, Lee JY, Lee JK, Lee KH, Rhee JC (2013) Inhibition of SCAMP1 suppresses cell migration and invasion in human pancreatic and gallbladder cancer cells. Tumour Biol 34:2731–2739PubMed Yang S, Lee KT, Lee JY, Lee JK, Lee KH, Rhee JC (2013) Inhibition of SCAMP1 suppresses cell migration and invasion in human pancreatic and gallbladder cancer cells. Tumour Biol 34:2731–2739PubMed
173.
Zurück zum Zitat Guan B, Li H, Yang Z, Hoque A, Xu X (2013) Inhibition of farnesoid X receptor controls esophageal cancer cell growth in vitro and in nude mouse xenografts. Cancer 119:1321–1329PubMedCentralPubMed Guan B, Li H, Yang Z, Hoque A, Xu X (2013) Inhibition of farnesoid X receptor controls esophageal cancer cell growth in vitro and in nude mouse xenografts. Cancer 119:1321–1329PubMedCentralPubMed
174.
Zurück zum Zitat Nieto MA (2013) Epithelial plasticity: a common theme in embryonic and cancer cells. Science 342:1234850PubMed Nieto MA (2013) Epithelial plasticity: a common theme in embryonic and cancer cells. Science 342:1234850PubMed
175.
Zurück zum Zitat Yu M, Bardia A, Wittner BS, Stott SL, Smas ME, Ting DT, Isakoff SJ, Ciciliano JC, Wells MN, Shah AM, Concannon KF, Donaldson MC, Sequist LV, Brachtel E, Sgroi D, Baselga J, Ramaswamy S, Toner M, Haber DA, Maheswaran S (2013) Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science 339:580–584PubMedCentralPubMed Yu M, Bardia A, Wittner BS, Stott SL, Smas ME, Ting DT, Isakoff SJ, Ciciliano JC, Wells MN, Shah AM, Concannon KF, Donaldson MC, Sequist LV, Brachtel E, Sgroi D, Baselga J, Ramaswamy S, Toner M, Haber DA, Maheswaran S (2013) Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science 339:580–584PubMedCentralPubMed
Metadaten
Titel
Microenvironmental Influences on Metastasis Suppressor Expression and Function during a Metastatic Cell’s Journey
verfasst von
Wen Liu
Carolyn J. Vivian
Amanda E. Brinker
Kelsey R. Hampton
Evi Lianidou
Danny R. Welch
Publikationsdatum
01.12.2014
Verlag
Springer Netherlands
Erschienen in
Cancer Microenvironment / Ausgabe 3/2014
Print ISSN: 1875-2292
Elektronische ISSN: 1875-2284
DOI
https://doi.org/10.1007/s12307-014-0148-4

Weitere Artikel der Ausgabe 3/2014

Cancer Microenvironment 3/2014 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.