Skip to main content
Erschienen in: The Cerebellum 3/2012

01.09.2012 | Original Paper

Pathoanatomy of Cerebellar Degeneration in Spinocerebellar Ataxia Type 2 (SCA2) and Type 3 (SCA3)

verfasst von: W. Scherzed, E. R. Brunt, H. Heinsen, R. A. de Vos, K. Seidel, K. Bürk, L. Schöls, G. Auburger, D. Del Turco, T. Deller, H. W. Korf, W. F. den Dunnen, U. Rüb

Erschienen in: The Cerebellum | Ausgabe 3/2012

Einloggen, um Zugang zu erhalten

Abstract

The cerebellum is one of the well-known targets of the pathological processes underlying spinocerebellar ataxia type 2 (SCA2) and type 3 (SCA3). Despite its pivotal role for the clinical pictures of these polyglutamine ataxias, no pathoanatomical studies of serial tissue sections through the cerebellum have been performed in SCA2 and SCA3 so far. Detailed pathoanatomical data are an important prerequisite for the identification of the initial events of the underlying disease processes of SCA2 and SCA3 and the reconstruction of its spread through the brain. In the present study, we performed a pathoanatomical investigation of serial thick tissue sections through the cerebellum of clinically diagnosed and genetically confirmed SCA2 and SCA3 patients. This study demonstrates that the cerebellar Purkinje cell layer and all four deep cerebellar nuclei consistently undergo considerable neuronal loss in SCA2 and SCA3. These cerebellar findings contribute substantially to the pathogenesis of clinical symptoms (i.e., dysarthria, intention tremor, oculomotor dysfunctions) of SCA2 and SCA3 patients and may facilitate the identification of the initial pathological alterations of the pathological processes of SCA2 and SCA3 and reconstruction of its spread through the brain.
Fußnoten
1
Please note that these oculomotor dysfunctions evolve during different disease stages of SCA2 and SCA3. They may change their clinical features or even disappear in the advanced disease stages of SCA2 and SCA3 reflecting the widespread affection, but different vulnerability of the structures of the oculomotor network of the human brain and the chronological sequence of their affection during SCA2 and SCA3.
 
Literatur
1.
Zurück zum Zitat Klockgether T. Ataxias. In: Goetz CG, editor. Textbook of clinical neurology. Philadelphia: WB Saunders; 2003. p. 741–57. Klockgether T. Ataxias. In: Goetz CG, editor. Textbook of clinical neurology. Philadelphia: WB Saunders; 2003. p. 741–57.
2.
Zurück zum Zitat Schöls L, Bauer P, Schmidt T, Schulte T, Riess O. Autosomal dominant cerebellar ataxias: clinical features, genetics, and pathogenesis. Lancet Neurol. 2004;3:291–304.PubMedCrossRef Schöls L, Bauer P, Schmidt T, Schulte T, Riess O. Autosomal dominant cerebellar ataxias: clinical features, genetics, and pathogenesis. Lancet Neurol. 2004;3:291–304.PubMedCrossRef
3.
Zurück zum Zitat Soong BW, Paulson HL. Spinocerebellar ataxias: an update. Curr Opin Neurol. 2007;20:438–46.PubMedCrossRef Soong BW, Paulson HL. Spinocerebellar ataxias: an update. Curr Opin Neurol. 2007;20:438–46.PubMedCrossRef
5.
Zurück zum Zitat Imbert G, Saudou F, Yvert G, Devys D, Trottier Y, Garnier JM, et al. Cloning of the gene for spinocerebellar ataxia 2 reveals a locus with high sensitivity to expanded CAG/glutamine repeats. Nat Genet. 1996;14:285–91.PubMedCrossRef Imbert G, Saudou F, Yvert G, Devys D, Trottier Y, Garnier JM, et al. Cloning of the gene for spinocerebellar ataxia 2 reveals a locus with high sensitivity to expanded CAG/glutamine repeats. Nat Genet. 1996;14:285–91.PubMedCrossRef
6.
Zurück zum Zitat Kawaguchi Y, Okamoto T, Taniwaki M, Aizawa M, Inoue M, Katayama S, et al. CAG expansions in a novel gene for Machado–Joseph disease at chromosome 14q32.1. Nat Genet. 1994;8:221–8.PubMedCrossRef Kawaguchi Y, Okamoto T, Taniwaki M, Aizawa M, Inoue M, Katayama S, et al. CAG expansions in a novel gene for Machado–Joseph disease at chromosome 14q32.1. Nat Genet. 1994;8:221–8.PubMedCrossRef
7.
Zurück zum Zitat Pulst SM, Nechiporuk A, Nechiporuk T, Gispert S, Chen XN, Lopes-Cendes I, et al. Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nat Genet. 1996;14:269–76.PubMedCrossRef Pulst SM, Nechiporuk A, Nechiporuk T, Gispert S, Chen XN, Lopes-Cendes I, et al. Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nat Genet. 1996;14:269–76.PubMedCrossRef
8.
Zurück zum Zitat Riess O, Laccone FA, Gispert S, Schöls L, Zühlke C, Vieira-Saecker AM, et al. SCA2 trinucleotide expansion in German SCA patients. Neurogenetics. 1997;1:59–64.PubMedCrossRef Riess O, Laccone FA, Gispert S, Schöls L, Zühlke C, Vieira-Saecker AM, et al. SCA2 trinucleotide expansion in German SCA patients. Neurogenetics. 1997;1:59–64.PubMedCrossRef
9.
Zurück zum Zitat Bürk K, Abele M, Fetter M, Dichgans J, Skalej M, Laccone F, et al. Autosomal dominant cerebellar ataxia type I—clinical features and MRI in families with SCA1, SCA2 and SCA3. Brain. 1996;119:1497–505.PubMedCrossRef Bürk K, Abele M, Fetter M, Dichgans J, Skalej M, Laccone F, et al. Autosomal dominant cerebellar ataxia type I—clinical features and MRI in families with SCA1, SCA2 and SCA3. Brain. 1996;119:1497–505.PubMedCrossRef
10.
Zurück zum Zitat Bürk K, Fetter M, Abele M, Laccone F, Brice A, Dichgans J, et al. Autosomal dominant cerebellar ataxia type I: oculomotor abnormalities in families with SCA1, SCA2 and SCA3. J Neurol. 1999;246:789–97.PubMedCrossRef Bürk K, Fetter M, Abele M, Laccone F, Brice A, Dichgans J, et al. Autosomal dominant cerebellar ataxia type I: oculomotor abnormalities in families with SCA1, SCA2 and SCA3. J Neurol. 1999;246:789–97.PubMedCrossRef
11.
Zurück zum Zitat Cancel G, Dürr A, Didierjean O, Imbert G, Bürk K, Lezin A, et al. Molecular and clinical correlations in spinocerebellar ataxia 2: a study of 32 families. Hum Mol Genet. 1997;6:709–15.PubMedCrossRef Cancel G, Dürr A, Didierjean O, Imbert G, Bürk K, Lezin A, et al. Molecular and clinical correlations in spinocerebellar ataxia 2: a study of 32 families. Hum Mol Genet. 1997;6:709–15.PubMedCrossRef
12.
Zurück zum Zitat Dürr A, Smadja D, Cancel G, Lezin A, Stevanin G, Mikol J, et al. Autosomal dominant cerebellar ataxia type I in Martinique (French West Indies). Clinical and neuropathological analysis of 53 patients from three unrelated SCA2 families. Brain. 1995;118:1573–81.PubMedCrossRef Dürr A, Smadja D, Cancel G, Lezin A, Stevanin G, Mikol J, et al. Autosomal dominant cerebellar ataxia type I in Martinique (French West Indies). Clinical and neuropathological analysis of 53 patients from three unrelated SCA2 families. Brain. 1995;118:1573–81.PubMedCrossRef
13.
Zurück zum Zitat Dürr A, Stevanin G, Cancel G, Duyckaerts C, Abbas N, Didierjean O, et al. Spinocerebellar ataxia 3 and Machado–Joseph disease: clinical, molecular, and neuropathological features. Ann Neurol. 1996;39:490–9.PubMedCrossRef Dürr A, Stevanin G, Cancel G, Duyckaerts C, Abbas N, Didierjean O, et al. Spinocerebellar ataxia 3 and Machado–Joseph disease: clinical, molecular, and neuropathological features. Ann Neurol. 1996;39:490–9.PubMedCrossRef
14.
Zurück zum Zitat Geschwind DH, Perlman S, Figueroa KP, Karrim J, Baloh RW, Pulst SM. Spinocerebellar ataxia type 6. Frequency of the mutation and genotype-phenotype correlations. Neurology. 1997;49:1247–51.PubMedCrossRef Geschwind DH, Perlman S, Figueroa KP, Karrim J, Baloh RW, Pulst SM. Spinocerebellar ataxia type 6. Frequency of the mutation and genotype-phenotype correlations. Neurology. 1997;49:1247–51.PubMedCrossRef
15.
Zurück zum Zitat Iwabuchi K, Tsuchiya K, Uchihara T, Yagishita S. Autosomal dominant spinocerebellar degenerations. Clinical, pathological, and genetic correlations. Rev Neurol. 1999;155:255–70.PubMed Iwabuchi K, Tsuchiya K, Uchihara T, Yagishita S. Autosomal dominant spinocerebellar degenerations. Clinical, pathological, and genetic correlations. Rev Neurol. 1999;155:255–70.PubMed
16.
Zurück zum Zitat Schöls L, Amoiridis G, Büttner T, Przuntek H, Epplen JT, Riess O. Autosomal dominant cerebellar ataxia: phenotypic differences in genetically defined subtypes? Ann Neurol. 1997;42:924–32.PubMedCrossRef Schöls L, Amoiridis G, Büttner T, Przuntek H, Epplen JT, Riess O. Autosomal dominant cerebellar ataxia: phenotypic differences in genetically defined subtypes? Ann Neurol. 1997;42:924–32.PubMedCrossRef
17.
18.
Zurück zum Zitat Munoz E, Rey MJ, Mila M, Cardozo A, Ribalta T, Tolosa E, Ferrer I. Intranuclear inlcusions, neuronal loss and CAG mosaicism in two patients with Machado-Joseph disease. J Neurol Sci. 2002;200:19–25.PubMedCrossRef Munoz E, Rey MJ, Mila M, Cardozo A, Ribalta T, Tolosa E, Ferrer I. Intranuclear inlcusions, neuronal loss and CAG mosaicism in two patients with Machado-Joseph disease. J Neurol Sci. 2002;200:19–25.PubMedCrossRef
19.
Zurück zum Zitat Rüb U, Del Turco D, Bürk K, Diaz GO, Auburger G, Mittelbronn M, et al. Extended pathoanatomical studies point to a consistent affection of the thalamus in spinocerebellar ataxia type 2. Neuropathol Appl Neurobiol. 2005;31:127–40.PubMedCrossRef Rüb U, Del Turco D, Bürk K, Diaz GO, Auburger G, Mittelbronn M, et al. Extended pathoanatomical studies point to a consistent affection of the thalamus in spinocerebellar ataxia type 2. Neuropathol Appl Neurobiol. 2005;31:127–40.PubMedCrossRef
20.
Zurück zum Zitat Rüb U, Del Turco D, Del Tredici K, de Vos RA, Brunt ER, Reifenberger G, et al. Thalamic involvement in a spinocerebellar ataxia type 2 (SCA2) and a spinocerebellar ataxia type 3 (SCA3) patient, and its clinical relevance. Brain. 2003;126:2257–72.PubMedCrossRef Rüb U, Del Turco D, Del Tredici K, de Vos RA, Brunt ER, Reifenberger G, et al. Thalamic involvement in a spinocerebellar ataxia type 2 (SCA2) and a spinocerebellar ataxia type 3 (SCA3) patient, and its clinical relevance. Brain. 2003;126:2257–72.PubMedCrossRef
21.
Zurück zum Zitat Rüb U, de Vos RA, Brunt ER, Sebestény T, Schöls L, Auburger G, et al. Spinocerebellar ataxia type 3 (SCA3): thalamic neurodegeneration occurs independently from thalamic ataxin-3 immunopositive neuronal intranuclear inclusions. Brain Pathol. 2006;16:218–27.PubMedCrossRef Rüb U, de Vos RA, Brunt ER, Sebestény T, Schöls L, Auburger G, et al. Spinocerebellar ataxia type 3 (SCA3): thalamic neurodegeneration occurs independently from thalamic ataxin-3 immunopositive neuronal intranuclear inclusions. Brain Pathol. 2006;16:218–27.PubMedCrossRef
22.
Zurück zum Zitat Rüb U, Gierga K, Brunt ER, de Vos RA, Bauer M, Schöls L, et al. Spinocerebellar ataxias types 2 and 3: degeneration of the pre-cerebellar nuclei isolates the three phylogenetically defined regions of the cerebellum. J Neural Transm. 2005;112:1523–45.PubMedCrossRef Rüb U, Gierga K, Brunt ER, de Vos RA, Bauer M, Schöls L, et al. Spinocerebellar ataxias types 2 and 3: degeneration of the pre-cerebellar nuclei isolates the three phylogenetically defined regions of the cerebellum. J Neural Transm. 2005;112:1523–45.PubMedCrossRef
23.
Zurück zum Zitat Rüb U, Seidel K, Özerden I, Gierga K, Brunt ER, Schöls L, et al. Consistent affection of the central somatosensory system in spinocerebellar ataxia type 2 and type 3 and its significance for clinical symptoms and rehabilitative therapy. Brain Res Rev. 2007;53:235–49.PubMedCrossRef Rüb U, Seidel K, Özerden I, Gierga K, Brunt ER, Schöls L, et al. Consistent affection of the central somatosensory system in spinocerebellar ataxia type 2 and type 3 and its significance for clinical symptoms and rehabilitative therapy. Brain Res Rev. 2007;53:235–49.PubMedCrossRef
24.
Zurück zum Zitat Grinberg LT, Rüb U, Ferretti RE, Nitrini R, Farfel JM, Polichiso L, et al. The dorsal raphe nucleus shows phospho-tau neurofibrillary changes before the transentorhinal region in Alzheimer’s disease. A precocious onset? Neuropathol Appl Neurobiol. 2009;35:406–15.PubMedCrossRef Grinberg LT, Rüb U, Ferretti RE, Nitrini R, Farfel JM, Polichiso L, et al. The dorsal raphe nucleus shows phospho-tau neurofibrillary changes before the transentorhinal region in Alzheimer’s disease. A precocious onset? Neuropathol Appl Neurobiol. 2009;35:406–15.PubMedCrossRef
25.
Zurück zum Zitat Braak H, Braak E. Demonstration of amyloid deposits and neurofibrillary changes in whole brain sections. Brain Pathol. 1991;1:213–6.PubMedCrossRef Braak H, Braak E. Demonstration of amyloid deposits and neurofibrillary changes in whole brain sections. Brain Pathol. 1991;1:213–6.PubMedCrossRef
26.
Zurück zum Zitat Smithson KG, MacVicar BA, Hatton GI. Polyethylene glycol embedding: a technique compatible with immunocytochemistry, enzyme histochemistry, histofluorescence and intracellular staining. J Neurosci Methods. 1983;7:27–41.PubMedCrossRef Smithson KG, MacVicar BA, Hatton GI. Polyethylene glycol embedding: a technique compatible with immunocytochemistry, enzyme histochemistry, histofluorescence and intracellular staining. J Neurosci Methods. 1983;7:27–41.PubMedCrossRef
27.
Zurück zum Zitat Braak H, Rüb U, Del Tredici. Involvement of precerebellar nuclei in multiple system atrophy. Neuropathol Appl Neurobiol. 2003;29:60–76.PubMedCrossRef Braak H, Rüb U, Del Tredici. Involvement of precerebellar nuclei in multiple system atrophy. Neuropathol Appl Neurobiol. 2003;29:60–76.PubMedCrossRef
28.
Zurück zum Zitat Rüb U, Brunt ER, Del Turco D, de Vos RA, Gierga K, Paulson H, et al. Guidelines for the pathoanatomical examination of the lower brain stem in ingestive and swallowing disorders and its application to a dysphagic spinocerebellar ataxia type 3 patient. Neuropathol Appl Neurobiol. 2003;29:1–13.PubMedCrossRef Rüb U, Brunt ER, Del Turco D, de Vos RA, Gierga K, Paulson H, et al. Guidelines for the pathoanatomical examination of the lower brain stem in ingestive and swallowing disorders and its application to a dysphagic spinocerebellar ataxia type 3 patient. Neuropathol Appl Neurobiol. 2003;29:1–13.PubMedCrossRef
29.
Zurück zum Zitat Rüb U, Schultz C, Del Tredici K, Gierga K, Reifenberger G, de Vos RA, et al. Anatomically based guidelines for systematic investigation of the central somatosensory system and their application to a spinocerebellar ataxia type 2 (SCA2) patient. Neuropathol Appl Neurobiol. 2003;29:418–33.PubMedCrossRef Rüb U, Schultz C, Del Tredici K, Gierga K, Reifenberger G, de Vos RA, et al. Anatomically based guidelines for systematic investigation of the central somatosensory system and their application to a spinocerebellar ataxia type 2 (SCA2) patient. Neuropathol Appl Neurobiol. 2003;29:418–33.PubMedCrossRef
30.
Zurück zum Zitat Ghez C. The cerebellum. In: Kandel ER, Schwartz JH, Jessell TM, editors. Principles of neural science. 3dth ed. New York: Elsevier; 1992. p. 596–607. Ghez C. The cerebellum. In: Kandel ER, Schwartz JH, Jessell TM, editors. Principles of neural science. 3dth ed. New York: Elsevier; 1992. p. 596–607.
31.
Zurück zum Zitat Gilman S. Cerebellum and motor dysfunction. In: Asbury AK, McKhann GM, McDonald WI, editors. Diseases of the nervous system: clinical neurobiology. 2nd ed. Philadelphia: Saunders; 1992. p. 368–89. Gilman S. Cerebellum and motor dysfunction. In: Asbury AK, McKhann GM, McDonald WI, editors. Diseases of the nervous system: clinical neurobiology. 2nd ed. Philadelphia: Saunders; 1992. p. 368–89.
32.
Zurück zum Zitat Robertson LT, Dow RS. Anatomy of the cerebellum. In: Schaltenbrand G, Walker AE, editors. Stereotaxy of the human brain. Stuttgart: Thieme; 1982. p. 60–70. Robertson LT, Dow RS. Anatomy of the cerebellum. In: Schaltenbrand G, Walker AE, editors. Stereotaxy of the human brain. Stuttgart: Thieme; 1982. p. 60–70.
33.
Zurück zum Zitat Schmahmann JD, Doyon J, McDonald D, Holmes C, Lavoie K, Hurwitz AS, et al. Three-dimensional MRI atlas of the human cerebellum in proportional stereotaxic space. NeuroImage. 1999;10:233–60.PubMedCrossRef Schmahmann JD, Doyon J, McDonald D, Holmes C, Lavoie K, Hurwitz AS, et al. Three-dimensional MRI atlas of the human cerebellum in proportional stereotaxic space. NeuroImage. 1999;10:233–60.PubMedCrossRef
35.
Zurück zum Zitat Voogd J, Feirabend HKP, Schoen JHR. Cerebellum and precerebellar nuclei. In: Paxinos G, editor. The human central nervous system. San Diego: Academic; 1990. p. 321–86. Voogd J, Feirabend HKP, Schoen JHR. Cerebellum and precerebellar nuclei. In: Paxinos G, editor. The human central nervous system. San Diego: Academic; 1990. p. 321–86.
36.
37.
Zurück zum Zitat Voogd J, Nieuwenhuys R, Van Dongen DAM, Ten Donkelhaar HJ. Mammals. In: Nieuwenhys R, Ten Donkelhaar HH, Nicholson C, editors. The central nervous system of vertebrates. Berlin: Springer; 1998. p. 1637–2097. Voogd J, Nieuwenhuys R, Van Dongen DAM, Ten Donkelhaar HJ. Mammals. In: Nieuwenhys R, Ten Donkelhaar HH, Nicholson C, editors. The central nervous system of vertebrates. Berlin: Springer; 1998. p. 1637–2097.
38.
Zurück zum Zitat Hutchins B, Weber JT. A rapid myelin stain for frozen sections: modification of the Heidenhain procedure. J Neurosci Methods. 1983;7:289–94.PubMedCrossRef Hutchins B, Weber JT. A rapid myelin stain for frozen sections: modification of the Heidenhain procedure. J Neurosci Methods. 1983;7:289–94.PubMedCrossRef
39.
Zurück zum Zitat Riley HA. An atlas of the basal ganglia, brainstem and spinal cord. Baltimore: Williams & Wilkins; 1943. Riley HA. An atlas of the basal ganglia, brainstem and spinal cord. Baltimore: Williams & Wilkins; 1943.
40.
Zurück zum Zitat Huynh DP, Figueroa K, Hoang N, Pulst SM. Nuclear localization or inclusion body formation of ataxin-2 are not necessary for SCA2 pathogenesis in mouse or human. Nat Genet. 2000;26:44–50.PubMedCrossRef Huynh DP, Figueroa K, Hoang N, Pulst SM. Nuclear localization or inclusion body formation of ataxin-2 are not necessary for SCA2 pathogenesis in mouse or human. Nat Genet. 2000;26:44–50.PubMedCrossRef
41.
Zurück zum Zitat Whitney ER, Kemper TL, Rosene DL, Bauman ML, Blatt GJ. Calbindin-D28k is a more reliable marker of human Purkinje cells than standard Nissl stains: a stereological experiment. J Neurosci Methods. 2008;168:42–7.PubMedCrossRef Whitney ER, Kemper TL, Rosene DL, Bauman ML, Blatt GJ. Calbindin-D28k is a more reliable marker of human Purkinje cells than standard Nissl stains: a stereological experiment. J Neurosci Methods. 2008;168:42–7.PubMedCrossRef
42.
Zurück zum Zitat Bortz J, Lienert GA, Boehnke K. Verteilungsfreie methoden in der biostatistik. Berlin: Springer; 1990. Bortz J, Lienert GA, Boehnke K. Verteilungsfreie methoden in der biostatistik. Berlin: Springer; 1990.
43.
Zurück zum Zitat Rüb U, Brunt ER, de Vos RA, Del Turco D, Del Tredici K, Gierga K, et al. Degeneration of the central vestibular system in spinocerebellar ataxia type 3 (SCA3) patients and its possible clinical significance. Neuropathol Appl Neurobiol. 2004;30:402–14.PubMedCrossRef Rüb U, Brunt ER, de Vos RA, Del Turco D, Del Tredici K, Gierga K, et al. Degeneration of the central vestibular system in spinocerebellar ataxia type 3 (SCA3) patients and its possible clinical significance. Neuropathol Appl Neurobiol. 2004;30:402–14.PubMedCrossRef
44.
Zurück zum Zitat Rüb U, Brunt ER, Petrasch-Parwez E, Schöls L, Theegarten D, Auburger G, et al. Degeneration of ingestion-related brainstem nuclei in spinocerebellar ataxia type 2, 3, 6 and 7. Neuropathol Appl Neurobiol. 2006;32:635–49.PubMedCrossRef Rüb U, Brunt ER, Petrasch-Parwez E, Schöls L, Theegarten D, Auburger G, et al. Degeneration of ingestion-related brainstem nuclei in spinocerebellar ataxia type 2, 3, 6 and 7. Neuropathol Appl Neurobiol. 2006;32:635–49.PubMedCrossRef
45.
Zurück zum Zitat Gierga K, Schelhaas H, Brunt E, Seidel K, Scherzed W, Egensperger R, et al. Spinocerebellar ataxia type 6 (SCA6): neurodegeneration goes beyond the known brain predilection sites. Neuropathol Appl Neurobiol. 2009;35:515–27.PubMedCrossRef Gierga K, Schelhaas H, Brunt E, Seidel K, Scherzed W, Egensperger R, et al. Spinocerebellar ataxia type 6 (SCA6): neurodegeneration goes beyond the known brain predilection sites. Neuropathol Appl Neurobiol. 2009;35:515–27.PubMedCrossRef
46.
Zurück zum Zitat Gomez CM, Thompson RM, Gammack JT, Perlman SL, Dobyns WB, Truwit CL, et al. Spinocerebellar ataxia type 6: gaze-evoked and vertical nystagmus, Purkinje cell degeneration, and variable age of onset. Ann Neurol. 1997;42:933–50.PubMedCrossRef Gomez CM, Thompson RM, Gammack JT, Perlman SL, Dobyns WB, Truwit CL, et al. Spinocerebellar ataxia type 6: gaze-evoked and vertical nystagmus, Purkinje cell degeneration, and variable age of onset. Ann Neurol. 1997;42:933–50.PubMedCrossRef
47.
Zurück zum Zitat Rüb U, Brunt ER, Gierga K, Seidel K, Schultz C, Schöls L, et al. Spinocerebellar ataxia type 7 (SCA7): first report of a systematic neuropathological study of the brain of a patient with a very short expanded CAG-repeat. Brain Pathol. 2005;15:287–95.PubMedCrossRef Rüb U, Brunt ER, Gierga K, Seidel K, Schultz C, Schöls L, et al. Spinocerebellar ataxia type 7 (SCA7): first report of a systematic neuropathological study of the brain of a patient with a very short expanded CAG-repeat. Brain Pathol. 2005;15:287–95.PubMedCrossRef
48.
Zurück zum Zitat Rüb U, Brunt ER, Seidel K, Gierga K, Mooy CM, Kettner M, et al. Spinocerebellar ataxia type 7 (SCA7): widespread brain damage in an adult-onset patient with progressive visual impairments in comparison with an adult-onset patient without visual impairments. Neuropathol Appl Neurobiol. 2008;34:155–68.PubMedCrossRef Rüb U, Brunt ER, Seidel K, Gierga K, Mooy CM, Kettner M, et al. Spinocerebellar ataxia type 7 (SCA7): widespread brain damage in an adult-onset patient with progressive visual impairments in comparison with an adult-onset patient without visual impairments. Neuropathol Appl Neurobiol. 2008;34:155–68.PubMedCrossRef
49.
Zurück zum Zitat Heinsen H, Heinsen YL. Serial thick, frozen, gallocyanin stained sections of human central nervous system. J Histotechnol. 1991;14:167–73. Heinsen H, Heinsen YL. Serial thick, frozen, gallocyanin stained sections of human central nervous system. J Histotechnol. 1991;14:167–73.
50.
Zurück zum Zitat Büttner U, Büttner-Ennever JA. Present concepts of oculomotor organization. Prog Brain Res. 2006;151:1–42.PubMedCrossRef Büttner U, Büttner-Ennever JA. Present concepts of oculomotor organization. Prog Brain Res. 2006;151:1–42.PubMedCrossRef
51.
Zurück zum Zitat Horn AKE, Büttner U, Büttner-Ennever JA. Brainstem and cerebellar structures for eye movement generation. In: Büttner U, editor. Vestibular dysfunction and its therapy. Basel: Karger; 1999. p. 1–25. Horn AKE, Büttner U, Büttner-Ennever JA. Brainstem and cerebellar structures for eye movement generation. In: Büttner U, editor. Vestibular dysfunction and its therapy. Basel: Karger; 1999. p. 1–25.
52.
Zurück zum Zitat Leigh RJ, Zee DS. The neurology of eye movements. 4th ed. Oxford: University Press; 2006. Leigh RJ, Zee DS. The neurology of eye movements. 4th ed. Oxford: University Press; 2006.
53.
Zurück zum Zitat Robinson FR, Fuchs AF. The role of the cerebellum in voluntary eye movements. Annu Rev Neurosci. 2001;24:981–1004.PubMedCrossRef Robinson FR, Fuchs AF. The role of the cerebellum in voluntary eye movements. Annu Rev Neurosci. 2001;24:981–1004.PubMedCrossRef
Metadaten
Titel
Pathoanatomy of Cerebellar Degeneration in Spinocerebellar Ataxia Type 2 (SCA2) and Type 3 (SCA3)
verfasst von
W. Scherzed
E. R. Brunt
H. Heinsen
R. A. de Vos
K. Seidel
K. Bürk
L. Schöls
G. Auburger
D. Del Turco
T. Deller
H. W. Korf
W. F. den Dunnen
U. Rüb
Publikationsdatum
01.09.2012
Verlag
Springer-Verlag
Erschienen in
The Cerebellum / Ausgabe 3/2012
Print ISSN: 1473-4222
Elektronische ISSN: 1473-4230
DOI
https://doi.org/10.1007/s12311-011-0340-8

Weitere Artikel der Ausgabe 3/2012

The Cerebellum 3/2012 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.