Skip to main content
Erschienen in: The Cerebellum 3/2017

01.06.2017 | Letter to the Editor

The Known and Missing Links Between the Cerebellum, Basal Ganglia, and Cerebral Cortex

verfasst von: Alberto Cacciola, Demetrio Milardi, Paolo Livrea, Paolo Flace, Giuseppe Anastasi, Angelo Quartarone

Erschienen in: The Cerebellum | Ausgabe 3/2017

Einloggen, um Zugang zu erhalten

Excerpt

Sir, …
Literatur
1.
Zurück zum Zitat Caligiore D, Pezzulo G, Baldassarre G, Bostan AC, Strick PL, Doya K, et al. Consensus paper: towards a systems-level view of cerebellar function: the interplay between cerebellum, basal ganglia, and cortex. Cerebellum. 2016. Caligiore D, Pezzulo G, Baldassarre G, Bostan AC, Strick PL, Doya K, et al. Consensus paper: towards a systems-level view of cerebellar function: the interplay between cerebellum, basal ganglia, and cortex. Cerebellum. 2016.
2.
Zurück zum Zitat Kemp JM, Powell TP. The termination of fibres from the cerebral cortex and thalamus upon dendritic spines in the caudate nucleus: a study with the Golgi method. Philos Trans R Soc Lond Ser B Biol Sci. 1971;262(845):429–39.CrossRef Kemp JM, Powell TP. The termination of fibres from the cerebral cortex and thalamus upon dendritic spines in the caudate nucleus: a study with the Golgi method. Philos Trans R Soc Lond Ser B Biol Sci. 1971;262(845):429–39.CrossRef
3.
Zurück zum Zitat Allen GI, Tsukahara N. Cerebrocerebellar communication systems. Physiol Rev. 1974;54(4):957–1006.PubMed Allen GI, Tsukahara N. Cerebrocerebellar communication systems. Physiol Rev. 1974;54(4):957–1006.PubMed
4.
Zurück zum Zitat Brooks VB. Roles of cerebellum and basal ganglia in initiation and control of movements. Can J Neurol Sci. 1975;2(3):265–77.CrossRefPubMed Brooks VB. Roles of cerebellum and basal ganglia in initiation and control of movements. Can J Neurol Sci. 1975;2(3):265–77.CrossRefPubMed
5.
Zurück zum Zitat Ichinohe N, Mori F, Shoumura K. A di-synaptic projection from the lateral cerebellar nucleus to the laterodorsal part of the striatum via the central lateral nucleus of the thalamus in the rat. Brain Res. 2000;880(1):191–7.CrossRefPubMed Ichinohe N, Mori F, Shoumura K. A di-synaptic projection from the lateral cerebellar nucleus to the laterodorsal part of the striatum via the central lateral nucleus of the thalamus in the rat. Brain Res. 2000;880(1):191–7.CrossRefPubMed
6.
Zurück zum Zitat Hoshi E, Tremblay L, Féger J, Carras PL, Strick PL. The cerebellum communicates with the basal ganglia. Nat Neurosci. 2005;8(11):1491–3.CrossRefPubMed Hoshi E, Tremblay L, Féger J, Carras PL, Strick PL. The cerebellum communicates with the basal ganglia. Nat Neurosci. 2005;8(11):1491–3.CrossRefPubMed
8.
Zurück zum Zitat Pelzer EA, Hintzen A, Goldau M, Cramon DY, Timmermann L, Tittgemeyer M. Cerebellar networks with basal ganglia: feasibility for tracking cerebello-pallidal and subthalamo-cerebellar projections in the human brain. Eur J Neurosci. 2013;38(8):3106–14.CrossRefPubMed Pelzer EA, Hintzen A, Goldau M, Cramon DY, Timmermann L, Tittgemeyer M. Cerebellar networks with basal ganglia: feasibility for tracking cerebello-pallidal and subthalamo-cerebellar projections in the human brain. Eur J Neurosci. 2013;38(8):3106–14.CrossRefPubMed
9.
Zurück zum Zitat McFarland NR, Haber SN. Convergent inputs from thalamic motor nuclei and frontal cortical areas to the dorsal striatum in the primate. J Neurosci. 2000;20:3798–813.PubMed McFarland NR, Haber SN. Convergent inputs from thalamic motor nuclei and frontal cortical areas to the dorsal striatum in the primate. J Neurosci. 2000;20:3798–813.PubMed
10.
Zurück zum Zitat Nambu A, Tokuno H, Hamada I, Kita H, Imanishi M, Akazawa T, et al. Excitatory cortical inputs to pallidal neurons via the subthalamic nucleus in the monkey. J Neurophysiol. 2000;84:289–300.PubMed Nambu A, Tokuno H, Hamada I, Kita H, Imanishi M, Akazawa T, et al. Excitatory cortical inputs to pallidal neurons via the subthalamic nucleus in the monkey. J Neurophysiol. 2000;84:289–300.PubMed
11.
Zurück zum Zitat Kita H. Neostriatal and globus pallidus stimulation induced inhibitory postsynaptic potentials in entopeduncular neurons in rat brain slice preparations. Neuroscience. 2001;105:871–9.CrossRefPubMed Kita H. Neostriatal and globus pallidus stimulation induced inhibitory postsynaptic potentials in entopeduncular neurons in rat brain slice preparations. Neuroscience. 2001;105:871–9.CrossRefPubMed
12.
13.
Zurück zum Zitat Henderson JM. “Connectomic surgery”: diffusion tensor imaging (DTI) tractography as a targeting modality for surgical modulation of neural networks. Front Integr Neurosci. 2012;6:15.CrossRefPubMedPubMedCentral Henderson JM. “Connectomic surgery”: diffusion tensor imaging (DTI) tractography as a targeting modality for surgical modulation of neural networks. Front Integr Neurosci. 2012;6:15.CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Tournier JD, Calamante F, Connelly A. Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution. NeuroImage. 2007;35:1459–72.CrossRefPubMed Tournier JD, Calamante F, Connelly A. Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution. NeuroImage. 2007;35:1459–72.CrossRefPubMed
15.
Zurück zum Zitat Tournier JD, Yeh CH, Calamante F, Cho KH, Connelly A, Lin CP. Resolving crossing fibres using constrained spherical deconvolution: validation using diffusion-weighted imaging phantom data. NeuroImage. 2008;42:617–25.CrossRefPubMed Tournier JD, Yeh CH, Calamante F, Cho KH, Connelly A, Lin CP. Resolving crossing fibres using constrained spherical deconvolution: validation using diffusion-weighted imaging phantom data. NeuroImage. 2008;42:617–25.CrossRefPubMed
16.
Zurück zum Zitat Milardi D, Cacciola A, Cutroneo G, Marino S, Irrera M, Cacciola G, et al. Red nucleus connectivity as revealed by constrained spherical deconvolution tractography. Neurosci Lett. 2016;626:68–73.CrossRefPubMed Milardi D, Cacciola A, Cutroneo G, Marino S, Irrera M, Cacciola G, et al. Red nucleus connectivity as revealed by constrained spherical deconvolution tractography. Neurosci Lett. 2016;626:68–73.CrossRefPubMed
17.
Zurück zum Zitat Cacciola A, Milardi D, Calamuneri A, Bonanno L, Marino S, Ciolli P, et al. Constrained spherical deconvolution tractography reveals cerebello-mammillary connections in humans. Cerebellum. 2016. Cacciola A, Milardi D, Calamuneri A, Bonanno L, Marino S, Ciolli P, et al. Constrained spherical deconvolution tractography reveals cerebello-mammillary connections in humans. Cerebellum. 2016.
18.
Zurück zum Zitat Cacciola A, Milardi D, Anastasi GP, Basile GA, Ciolli P, Irrera M, et al. A direct cortico-nigral pathway as revealed by constrained spherical deconvolution tractography in humans. Front Hum Neurosci. 2016;10:374.CrossRefPubMedPubMedCentral Cacciola A, Milardi D, Anastasi GP, Basile GA, Ciolli P, Irrera M, et al. A direct cortico-nigral pathway as revealed by constrained spherical deconvolution tractography in humans. Front Hum Neurosci. 2016;10:374.CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Milardi D, Arrigo A, Anastasi G, Cacciola A, Marino S, Mormina E, et al. Extensive direct subcortical cerebellum-basal ganglia connections in human brain as revealed by constrained spherical deconvolution tractography. Front Neuroanat. 2016;10:29.CrossRefPubMedPubMedCentral Milardi D, Arrigo A, Anastasi G, Cacciola A, Marino S, Mormina E, et al. Extensive direct subcortical cerebellum-basal ganglia connections in human brain as revealed by constrained spherical deconvolution tractography. Front Neuroanat. 2016;10:29.CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Wichmann T, Kliem MA. Neuronal activity in the primate substantia nigra pars reticulata during the performance of simple and memory-guided elbow movements. J Neurophysiol. 2004;91:815–27.CrossRefPubMed Wichmann T, Kliem MA. Neuronal activity in the primate substantia nigra pars reticulata during the performance of simple and memory-guided elbow movements. J Neurophysiol. 2004;91:815–27.CrossRefPubMed
21.
Zurück zum Zitat Snider RS, Maiti A, Snider SR. Cerebellar pathways to ventral midbrain and nigra. Exp Neurol. 1976;53(3):714–28.CrossRefPubMed Snider RS, Maiti A, Snider SR. Cerebellar pathways to ventral midbrain and nigra. Exp Neurol. 1976;53(3):714–28.CrossRefPubMed
22.
Zurück zum Zitat Nieoullon A, Cheramy A, Glowinski J. Release of dopamine in both caudate nuclei and both substantia nigrae in response to unilateral stimulation of cerebellar nuclei in the cat. Brain Res. 1978;148(1):143–52.CrossRefPubMed Nieoullon A, Cheramy A, Glowinski J. Release of dopamine in both caudate nuclei and both substantia nigrae in response to unilateral stimulation of cerebellar nuclei in the cat. Brain Res. 1978;148(1):143–52.CrossRefPubMed
23.
Zurück zum Zitat Neumann WJ, Jha A, Bock A, Huebl J, Horn A, Schneider GH, et al. Cortico-pallidal oscillatory connectivity in patients with dystonia. Brain. 2015;138(Pt 7):1894–906.CrossRefPubMed Neumann WJ, Jha A, Bock A, Huebl J, Horn A, Schneider GH, et al. Cortico-pallidal oscillatory connectivity in patients with dystonia. Brain. 2015;138(Pt 7):1894–906.CrossRefPubMed
24.
Zurück zum Zitat Milardi D, Gaeta M, Marino S, Arrigo A, Vaccarino G, Mormina E, et al. Basal ganglia network by constrained spherical deconvolution: a possible cortico-pallidal pathway? Mov Disord. 2015;30(3):342–9.CrossRefPubMed Milardi D, Gaeta M, Marino S, Arrigo A, Vaccarino G, Mormina E, et al. Basal ganglia network by constrained spherical deconvolution: a possible cortico-pallidal pathway? Mov Disord. 2015;30(3):342–9.CrossRefPubMed
25.
Zurück zum Zitat Cacciola A, Milardi D, Quartarone A. Role of cortico-pallidal connectivity in the pathophysiology of dystonia. Brain. 2016;139(Pt 9):e48.CrossRefPubMed Cacciola A, Milardi D, Quartarone A. Role of cortico-pallidal connectivity in the pathophysiology of dystonia. Brain. 2016;139(Pt 9):e48.CrossRefPubMed
26.
Zurück zum Zitat Smith Y, Mathai A, Pare JF, Moot RC. A putative vGluT1-positive glutamatergic cortico-pallidal projection: differential organization between the internal and external globus pallidus. Soc Neurosci Abstr. 2014;248:10. Smith Y, Mathai A, Pare JF, Moot RC. A putative vGluT1-positive glutamatergic cortico-pallidal projection: differential organization between the internal and external globus pallidus. Soc Neurosci Abstr. 2014;248:10.
27.
Zurück zum Zitat Smith Y, Wichmann T. The cortico-pallidal projection: an additional route for cortical regulation of the basal ganglia circuitry. Mov Disord. 2015;30(3):293–5.CrossRefPubMed Smith Y, Wichmann T. The cortico-pallidal projection: an additional route for cortical regulation of the basal ganglia circuitry. Mov Disord. 2015;30(3):293–5.CrossRefPubMed
28.
Zurück zum Zitat Jones DK, Cercignani M. Twenty-five pitfalls in the analysis of diffusion MRI data. NMR Biomed. 2010;23(7):803–20.CrossRefPubMed Jones DK, Cercignani M. Twenty-five pitfalls in the analysis of diffusion MRI data. NMR Biomed. 2010;23(7):803–20.CrossRefPubMed
29.
Zurück zum Zitat Bassett DS, Brown JA, Deshpande V, Carlson JM, Grafton ST. Conserved and variable architecture of human white matter connectivity. NeuroImage. 2011;54(2):1262–79.CrossRefPubMed Bassett DS, Brown JA, Deshpande V, Carlson JM, Grafton ST. Conserved and variable architecture of human white matter connectivity. NeuroImage. 2011;54(2):1262–79.CrossRefPubMed
30.
Zurück zum Zitat Dyrby TB, Søgaard LV, Parker GJ, Alexander DC, Lind NM, Baaré WF. Validation of in vitro probabilistic tractography. NeuroImage. 2007;37(4):1267–77.CrossRefPubMed Dyrby TB, Søgaard LV, Parker GJ, Alexander DC, Lind NM, Baaré WF. Validation of in vitro probabilistic tractography. NeuroImage. 2007;37(4):1267–77.CrossRefPubMed
31.
Zurück zum Zitat Azadbakht H, Parkes LM, Haroon HA, Augath M, Logothetis NK, de Crespigny A, D’Arceuil HE, Parker GJ. Validation of high-resolution tractography against in vivo tracing in the macaque visual cortex. Cereb Cortex. 2015;25(11):4299–309.CrossRefPubMedPubMedCentral Azadbakht H, Parkes LM, Haroon HA, Augath M, Logothetis NK, de Crespigny A, D’Arceuil HE, Parker GJ. Validation of high-resolution tractography against in vivo tracing in the macaque visual cortex. Cereb Cortex. 2015;25(11):4299–309.CrossRefPubMedPubMedCentral
Metadaten
Titel
The Known and Missing Links Between the Cerebellum, Basal Ganglia, and Cerebral Cortex
verfasst von
Alberto Cacciola
Demetrio Milardi
Paolo Livrea
Paolo Flace
Giuseppe Anastasi
Angelo Quartarone
Publikationsdatum
01.06.2017
Verlag
Springer US
Erschienen in
The Cerebellum / Ausgabe 3/2017
Print ISSN: 1473-4222
Elektronische ISSN: 1473-4230
DOI
https://doi.org/10.1007/s12311-017-0850-0

Weitere Artikel der Ausgabe 3/2017

The Cerebellum 3/2017 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.